Chou,Chia-Fu / Research Fellow

pi_image

Contact Information

Education

  • 1996, PhD., Dept. of Physics, State University of New York at Buffalo
  • 1986, B.S., Dept. of Physics, National Tsing Hua University

Secretary

Chu, Michelle / 886-2-2789-8364

Research Interest

  • Biophysics, Biophotonics, Nanobiotechnology, Micro/nanofluidics, Liquid Crystals

獎項及殊榮

(1) 國內學術研究獎項 2014-04 2013 科技部傑出研究獎 Outstanding Research Award of Ministry of Science and Technology

Experience

  • 2007- Adjunct Research Fellow, Genomics Research Center, Academia Sinica
  • 2006- Adjunct Research Fellow, Research Center for Applied Sciences, Academia Sinica
  • 2005-Adjunct Faculty, Harrington Department of Bioengineering, Arizona State University
  • 2003-2005Associate Professor & Principal Investigator, Co-Founder, Center for Applied NanoBioscience at Biodesign Institute, Arizona State University
  • 2001-2002Principal Staff Scientist, Micro-Technologies Research Lab, Motorola Labs
  • 2000-2001 Lead Scientist, Micro-Technologies Research Lab, Motorola Labs
  • 1997-2000Postdoctoral Research Fellow, Departments of Physics and Molecular Biology, Princeton University

Publication

Journal Papers

  • [1]     B. Navaneethan, G.P. Vijayakumar, L.A. Luwang, S. Karuppiah, V.J. Reddy, S. Ramakrishna, C.F. Chou*, 2021, “Novel Self-Directing Single-Polymer Jet Developing Layered-Like 3D Buckled Microfibrous Scaffolds for Tissue Engineering Applications”, ACS APPLIED MATERIALS & INTERFACES, 13 (8), 9691-9701. (SCIE) (IF: 8.758; SCI ranking: 10.5%,17.5%)

  • [2]     S. Gautam, C. Sharma, S.D. Purohit, H. Singh, A.K. Dinda, P.D. Potdar, C.F. Chou, N.C. Mishra*, 2020, “Gelatin-polycaprolactone-nanohydroxyapatite electrospun nanocomposite scaffold for bone tissue engineering”, MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 119 , 111588. (SCIE) (IF: 5.88; SCI ranking: 21.1%)

  • [3]     S.D. Purohit, H. Singh, R. Bhaskar, I. Yadav, C.F. Chou, M. Gupta, N. Mishra*, 2020, “Gelatin—Alginate—Cerium Oxide Nanocomposite Scaffold for Bone Regeneration”, MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 116, 111111. (SCIE) (IF: 5.88; SCI ranking: 21.1%)

  • [4]     J.P. Shen, Y.R. Chang, C.F. Chou*, 2020, “DNA dynamics and organization at sub-micron scale: bacterial chromosomes and plasmids in vivo and in vitro”, CHINESE JOURNAL OF PHYSICS, 66, 82-90. (SCIE) (IF: 2.638; SCI ranking: 35.3%)

  • [5]     J.P. Shen, Y.R. Chang*, C.F. Chou*, 2020, “Frequency modulation of the Min-protein oscillator by nucleoid-associated factors in Escherichia coli”, BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 525(4), 857-862. (SCIE) (IF: 2.985; SCI ranking: 36.6%,53.5%)

  • [6]     C.Y. Lai, W.C. Huang, J.H. Weng, L.C. Chen*, C.F. Chou and P.K. Wei, 2020, “Impedimetric aptasensing using a symmetric Randles circuit model”, ELECTROCHIMICA ACTA, 337, 135750. (SCIE) (IF: 6.215; SCI ranking: 18.5%)

  • [7]     J.W. Yeh, A. Taloni, K.K. Sriram, J.P. Shen, D.Y. Kao, C.F. Chou*, 2020, “Nanoconfinement-induced DNA reptating motion and analogy to fluctuating interfaces”, MACROMOLECULES, 53(3), 1001-1013. (SCIE) (IF: 5.918; SCI ranking: 7.9%)

  • [8]     Lai Chih-Yu, Weng Jui-Hong, Shih Wei-Li, Chen Lin-Chi, Chou Chia-Fu, Wei Pei-Kuen, 2019, “Diffusion impedance modeling for interdigitated array electrodes by conformal mapping and cylindrical finite length approximation”, Electrochimica Acta, 320 134629. (SCIE) (IF: 6.215; SCI ranking: 18.5%)

  • [9]     Pan Ming-Yang, Yang Deng-Kai, Lai Chih-Yu, Weng Jui-Hong, Lee Kuang-Li, Chen Lin-Chi, Chou Chia-Fu, Wei Pei-Kuen, 2019, “Spectral contrast imaging method for mapping transmission surface plasmon images in metallic nanostructures”, Biosensors and Bioelectronics, 142 111545. (SCIE) (IF: 10.257; SCI ranking: 5.6%,14.6%,4.5%,7.4%,1.2%)

  • [10]     P. Teerapanich, M. Pugnière, C. Henriquet , Y. L. Lin , A. Naillona, P. Josepha, C. F. Chou, T. Leichle*, 2018, “Nanofluidic fluorescence microscopy with integrated concentration gradient generation for one-shot parallel kinetic assays”, SENSORS AND ACTUATORS B-CHEMICAL, 274, 338-342. (SCIE) (IF: 7.1; SCI ranking: 46.2%,84.8%)

  • [11]     D.K. Yang, C.F. Chou, L.C. Chen*, 2018, “Selection of Aptamers for AMACR Detection from the DNA Libraries with Different Primers”, RSC ADVANCES, 8, 19067. (SCIE) (IF: 3.119; SCI ranking: 46.2%,84.8%)

  • [12]     A. Rohani, B. J. Sanghavi, A. Salahi, K. T. Liao, C. F. Chou, N. S. Swami*, 2017, “Frequency-selective electrokinetic enrichment of biomolecules in physiological media based on electrical double-layer polarization”, NANOSCALE, 9, 12124-12131. (SCIE) (IF: 6.895; SCI ranking: 15.8%,24.3%,14.8%,15.9%)

  • [13]     F. T. Chien, P. K. Lin, W. Chien, C. H. Hung, M. H. Yu, C. F. Chou, Y. L. Chen*, 2017, “Crowding-facilitated macromolecular transport in attractive micropost arrays”, SCIENTIFIC REPORTS, 7, 1340. (SCIE) (IF: 3.998; SCI ranking: 23.9%)

  • [14]     P. Teerapanich, M. Pugnière, C. Henriquet , Y. L. Lin , C. F. Chou, T. Leichle*, 2017, “Nanofluidic Fluorescence Microscopy (NFM) for real-time monitoring of protein binding kinetics and affinity studies”, BIOSENSORS & BIOELECTRONICS, 88, 25-33. (SCIE) (IF: 10.257; SCI ranking: 5.6%,14.6%,4.5%,7.4%,1.2%)

  • [15]     K. K. Sriram, S. Nayak, C.F. Chou*, A. Erbe*, 2017, “10-nm Deep, Sub-Nanoliter Fluidic Nanochannels on Germanium for Attenuated Total Reflection Infrared (ATR-IR) Spectroscopy”, ANALYST, 142, 273-278. (SCIE) (IF: 3.978; SCI ranking: 17.4%)

  • [16]     R. Fernandez, B. Sanghavi, V. Farmehini, J. Chavez, J. Hagen, N. Kelley-Loughnane, C.F. Chou, N. Swami*, 2016, “Aptamer-functionalized graphene-gold nanocomposites for label-free detection of dielectrophoretic-enriched neuropeptide Y”, ELECTROCHEMISTRY COMMUNICATIONS, 72, 144–147. (SCIE) (IF: 4.333; SCI ranking: 33.3%)

  • [17]     C. Sharma, A.K. Dinda, P.D. Potdar, C.F. Chou, N.C. Mishra *, 2016, “Fabrication and characterization of novel nanobiocomposite scaffold of chitosan–gelatin–alginate–hydroxyapatite for bone tissue engineering”, Materials Science & Engineering C-Materials for Biological Applications, 64, 416–427. (SCIE) (IF: 5.88; SCI ranking: 21.1%)

  • [18]     J.P. Shen and C.F. Chou* , 2016, “Morphological Plasticity of Bacteria − Open Questions”, Biomicrofluidics, 10(3), 031501. (SCIE) (IF: 2.504; SCI ranking: 46.2%,84.8%)

  • [19]     Y.L. Lin, Y.J. Huang, P. Teerapanich, T. Leichlé, C.F. Chou* , 2016, “Multiplexed immunosensing and kinetics monitoring in nanofluidic devices with highly enhanced target capture efficiency”, Biomicrofluidics, 10(3), 034114. (SCIE) (IF: 2.504; SCI ranking: 46.2%,84.8%)

  • [20]     A. Rohani, W. Varhue, K.T. Liao, C.F. Chou, N.S. Swami* , 2016, “Nanoslit design for ion conductivity gradient enhanced dielectrophoresis for ultrafast biomarker enrichment in physiological media”, Biomicrofluidics, 10, 033109. (SCIE) (IF: 2.504; SCI ranking: 46.2%,84.8%)

  • [21]     B.J. Sanghavi, J.A. Moore, J.L. Chávez, J.A. Hagen, N. Kelley-Loughnane, C.F. Chou, N.S. Swami, 2016, “Aptamer-functionalized nanoparticles for surface immobilization-free electrochemical detection of cortisol in a microfluidic device”, BIOSENSORS & BIOELECTRONICS, 78, 244–252. (SCIE) (IF: 10.257; SCI ranking: 5.6%,14.6%,4.5%,7.4%,1.2%)

  • [22]     P. Spuul, P.Y. Chi, C. Billottet, C.F. Chou*, E. Genot* , 2016, “Microfluidic devices for the study of actin cytoskeleton in constricted environments: Evidence for podosome formation in endothelial cells exposed to a confined slit”, METHODS, 94, 65–74. (SCIE) (IF: 3.812; SCI ranking: 22.1%,37%)

  • [23]     Y.H Su, P.C. Chiang, L.J. Cheng, C.H. Lee, N.S. Swami*, C.F. Chou* , 2015, “High aspect ratio nanoimprinted grooves of poly(lactic-co-glycolic acid) control the length and direction of retraction fibers during fibroblast cell division”, Biointerphases, 10, 041008. (SCIE) (IF: 2.043; SCI ranking: 76.3%,66.2%)

  • [24]     B.J. Sanghavi, W. Varhue, A. Rohani, K.T. Liao, L. Bazydlo, C.F. Chou*, N. S. Swami* , 2015, “Ultrafast immunoassays by coupling dielectrophoretic biomarker enrichment on nanoslit molecular dam with electrochemical detection on graphene”, Lab Chip, 15, 4563-4570. (SCIE) (IF: 6.774; SCI ranking: 4.7%,9.3%,26.2%,6.5%,16.9%)

  • [25]     T. Leichlé and C.F. Chou* , 2015, “Biofunctionalized Nanoslit Sensors for Wash-Free and Fast Real-Time Sensing with Spatiotemporally Resolved Kinetics”, Biomicrofluidics, 9, 034103. (SCIE) (IF: 2.504; SCI ranking: 46.2%,84.8%)

  • [26]     C. F. Chou*, P. K. Wei, and Y. L. Chen , 2014, “Preface to Special Topic: Selected Papers from the Advances in Microfluidics and Nanofluidics 2014 Conference in Honor of Professor Hsueh-Chia Chang's 60th Birthday”, Biomicrofluidics, 8, 051901. (SCIE) (IF: 2.504; SCI ranking: 46.2%,84.8%)

  • [27]     K. K. Sriram, C.L. Chang, U. R. Kumar, C.F. Chou*, 2014, “DNA Combing on Low-Pressure Oxygen Plasma Modified Polysilsesquioxane Substrates For Single-Molecule Studies”, Biomicrofluidics, 8, 052102. (SCIE) (IF: 2.504; SCI ranking: 46.2%,84.8%)

  • [28]     J. P. Shen, C. F. Chou* , 2014, “Bacteria under the Physical Constraints of Periodic Micro-Nanofluidic Junctions Reveal Morphological Plasticity and Dynamic Shifting of Min Patterns”, Biomicrofluidics, 8, 041103 (Fast Track Article). (SCIE) (IF: 2.504; SCI ranking: 46.2%,84.8%)

  • [29]     K.K. Sriram, J.W. Yeh, Y.L. Lin, Y.R. Chang, C.F. Chou*, 2014, “Direct Optical Mapping of Transcription Factor Binding Sites on Field-stretched λ-DNA in Nanofluidic Devices”, NUCLEIC ACIDS RESEARCH, 42, e85. (SCIE) (IF: 11.502; SCI ranking: 5.1%)

  • [30]     B. Sanghavi, W. Varhue, J. Chávez, C.F. Chou, N. S. Swami* , 2014, “Electrokinetic preconcentration and detection of neuropeptides at patterned graphene-modified electrodes in a nanochannel”, ANALYTICAL CHEMISTRY, 86 (9), 4120–4125. (SCIE) (IF: 6.785; SCI ranking: 8.1%)

  • [31]     C. Lin, E. H.-L. Chen, L. Y.-L. Lee, R. L. Hsu, F. Y. Luh, L. L. Yang, C. F. Chou, L. D. Huang, C. C. Lin, R. P.-Y. Chen*, 2014, “Comparison of the anti-amyloidogenic effect of O-mannosylation, O-galactosylation, and O-GalNAc glycosylation”, CARBOHYDRATE RESEARCH, 387, 46–53. (SCIE) (IF: 1.841; SCI ranking: 82.5%,61.4%,46.5%)

  • [32]     S. Gautam, C. F. Chou, A. K. Dinda, P. D. Potdar, N. C. Mishra* , 2014, “Fabrication and Characterization of PCL/Gelatin/Chitosan Ternary Nanofibrous Composite Scaffold for Tissue Engineering Applications”, JOURNAL OF MATERIALS SCIENCE, 49, 1076–1089. (SCIE) (IF: 3.553; SCI ranking: 34.4%)

  • [33]     L. Lesser-Rojas, P. Ebbinghaus, G. Vasan, M. L. Chu, A. Erbe*, C. F. Chou*, 2014, “Low-Copy Number Protein Detection by Electrode Nanogap-Enabled Dielectrophoretic Trapping forSurface-enhanced Raman Spectroscopy and Electronic Measurements”, NANO LETTERS, 14(5), 2242–2250. (SCIE) (IF: 11.238; SCI ranking: 10.7%,13.6%,11.3%,8%,7.1%,11.6%)

  • [34]     S. Gautam, C. F. Chou, A. K. Dinda, P. D. Potdar, N. C. Mishra*, 2014, “Surface Modification of Nanofibrous Polycaprolactone/Gelatin Composite Scaffold by Collagen I Grafting for Skin Tissue Engineering”, Materials Science & Engineering C-Materials for Biological Applications, 34, 402–409. (SCIE) (IF: 5.88; SCI ranking: 21.1%)

  • [35]     L. Lesser-Rojas, K. K. Sriram, K.T. Liao, S.C. Lai, P.C. Kuo, M.L. Chu, C.F. Chou*, 2014, “Tandem array of nanoelectronic readers embedded coplanar to a fluidic nanochannel for correlated single biopolymer analysis”, Biomicrofluidics, 8, 016501. (SCIE) (IF: 2.504; SCI ranking: 46.2%,84.8%)

  • [36]     A. Taloni*, J. W. Yeh, C. F. Chou* , 2013, “Scaling Theory of Stretched DNA In Nanoslits”, MACROMOLECULES, 46 (19), 7989–8002. (SCIE) (IF: 5.918; SCI ranking: 7.9%)

  • [37]     V. Chaurey, A. Rohani, Y.H. Su, K.T. Liao, C.F. Chou*, N.S. Swami* , 2013, “Scaling down constriction-based (electrodeless) dielectrophoresis devices for trapping nanoscale bio-particles in physiological media of high-conductivity”, ELECTROPHORESIS, 34, 1097–1104.. (SCIE) (IF: 3.081; SCI ranking: 33.8%,32.6%)

  • [38]     V. Chaurey, F. Block, Y.H. Su, P.C. Chiang, E. Botchwey, C.F. Chou, N.S. Swami*, 2012, “Nanofiber size-dependent sensitivity of fibroblast directionality to the methodology for scaffold alignment”, Acta Biomaterialia, 8, 3982–3990. (SCIE) (IF: 7.242; SCI ranking: 13.2%,9.2%)

  • [39]     Kuo-Tang Liao, Chia-Fu Chou*, 2012, “Nanoscale molecular traps and dams for ultrafast protein enrichment in high-conductivity buffers (Featured in JACS Spotlights)”, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 134 (21), 8742−8745. (SCIE) (IF: 14.612; SCI ranking: 7.3%)

  • [40]     Jia-Wei Yeh, Alessandro Taloni, Yeng-Long Chen, Chia-Fu Chou*, 2012, “Entropy-driven single molecule tug-of-war of DNA at micro-nanofluidic interfaces (Research Highlighted by Nature)”, NANO LETTERS, 12 (3), 1597–1602. (SCIE) (IF: 11.238; SCI ranking: 10.7%,13.6%,11.3%,8%,7.1%,11.6%)

  • [41]     T. Leïchlé, Y.L. Lin, P.C. Chiang, K.T. Liao, S.M. Hu, C.F. Chou* , 2012, “Biosensor-compatible encapsulation for pre-functionalized nanofluidic channels using asymmetric plasma treatment”, SENSORS AND ACTUATORS B-CHEMICAL, 161, 805–810. (SCIE) (IF: 7.1; SCI ranking: 46.2%,84.8%)

  • [42]     P.K. Lin, C.C. Hsieh, Y.L Chen*, C.F. Chou* , 2012, “Effects of Topology and Ionic Strength on Double-Stranded DNA Confined in Nanoslits”, MACROMOLECULES, 45(6), 2920–2927. (SCIE) (IF: 5.918; SCI ranking: 7.9%)

  • [43]     V. Chaurey, C. Polanco, C.F. Chou*, N.S. Swami*, 2012, “Floating-electrode enhanced constriction dielectrophoresis for biomolecular trapping in media of high-conductivity”, Biomicrofluidics, 6, 012806. (SCIE) (IF: 2.504; SCI ranking: 46.2%,84.8%)

  • [44]     V. Chaurey, K.T. Liao, C. Polanco, C.F. Chou*, N.S. Swami*, 2012, “Nano-constriction device for rapid protein pre-concentration through balance of electrokinetic forces”, ELECTROPHORESIS, 33, 1958-1966. (SCIE) (IF: 3.081; SCI ranking: 33.8%,32.6%)

  • [45]     C.C. Wang, Y.C. Kao, P.Y. Chi, C.W. Huang, J.Y. Lin, C.F. Chou, J.Y. Cheng*, C.H. Lee, 2011, “Asymmetric cancer-cell filopodium growth induced by electric-fields in a microfluidic culture chip”, LAB ON A CHIP, 11, 695-699. (SCIE) (IF: 6.774; SCI ranking: 4.7%,9.3%,26.2%,6.5%,16.9%)

  • [46]     Y.L. Chen, P. K. Lin, C.F. Chou , 2010, “Generalized force-extension relation for worm-like chains in slit confinement”, MACROMOLECULES, 43, 10204–10207. (SCIE) (IF: 5.918; SCI ranking: 7.9%)

  • [47]     V. Chaurey, P.C. Chiang, C. Polanco, Y.H. Su, C.F Chou*, N. Swami*, 2010, “Interplay of Electrical Forces for Alignment of Sub-100 nm Electrospun Nanofibers on Insulator Gap Collectors”, LANGMUIR, 26, 19022–19026. (SCIE) (IF: 3.557; SCI ranking: 40.3%,33.9%,34.1%)

  • [48]     N. Swami, C. F. Chou*, V. Ramamurthy, V. Chaurey , 2009, “Enhancing DNA hybridization kinetics through constriction-based dielectrophoresis”, LAB ON A CHIP, 9, 3212. (SCIE) (IF: 6.774; SCI ranking: 4.7%,9.3%,26.2%,6.5%,16.9%)

  • [49]     J. Gu, R. Gupta, C.F. Chou, Q. Wei, F. Zenhausern, 2007, “A simple polysilsesquioxane sealing of nanofluidic channels below 10 nm at room temperature”, LAB ON A CHIP, 7, 1198. (SCIE) (IF: 6.774; SCI ranking: 4.7%,9.3%,26.2%,6.5%,16.9%)

  • [50]     N. Swami, C.F. Chou, R. Terbrueggen , 2005, “Two-potential electrochemical surface probe of DNA immobilization”, LANGMUIR, 21, 1937. (SCIE) (IF: 3.557; SCI ranking: 40.3%,33.9%,34.1%)

  • [51]     L.J. Guo, X. Cheng, C.F. Chou* , 2004, “Fabrication of Size-Controllable Nanofluidic Channels by Nanoimprinting and Its Application for DNA Stretching”, NANO LETTERS, 4, 69-73. (SCIE) (IF: 11.238; SCI ranking: 10.7%,13.6%,11.3%,8%,7.1%,11.6%)

  • [52]     C.F. Chou*, F. Zenhausern , 2003, “Electrodeless Dielectrophoresis for Micro Total Analysis Systems”, IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 22, 62-67.

  • [53]     C.Y. Chao, T.C. Pan, C.F. Chou, J.T. Ho , 2003, “Multiple Electron Diffraction and Two-Dimensional Crystalline Order in Liquid-Crystal Thin Films”, PHYSICAL REVIEW LETTERS, 91, 125504. (SCIE) (IF: 8.385; SCI ranking: 7.1%)

  • [54]     D. Sadler, R. Changrani, P. Roberts, C.F. Chou, F. Zenhausern , 2003, “Thermal Management of BioMEMS: Temperature Control for Ceramic-based PCR and DNA Detection Devices”, IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, 26 (2), 309-316.

  • [55]     C.F. Chou*, R. Changrani, P. Roberts, D. Sadler, S. Lin, A. Mulholland, N. Swami, R. Terbrueggen, F. Zenhausern, 2002, “A Miniaturized Cyclic PCR Device-Modeling and Experiments”, MICROELECTRONIC ENGINEERING, 61/62, 921-925. (SCIE) (IF: 2.305; SCI ranking: 49.2%,68.9%,43.3%,44.5%)

  • [56]     C.F. Chou, J.O. Tegenfeldt, O. Bakajin, S.S. Chan, E.C. Cox, N. Darnton, T.A.J. Duke, R.H. Austin , 2002, “Electrodeless Dielectrophoresis of Single and Double Stranded DNA”, BIOPHYSICAL JOURNAL, 83, 2170. (SCIE) (IF: 3.854; SCI ranking: 21.1%)

  • [57]     J. O. Tegenfeldt, O. Bakajin, C. F. Chou, S. S. Chan, R. H. Austin, W. Fann, L. Liou, E. Chan, T. Duke, and E. C. Cox, 2001, “Near-Field Scanner for Moving Molecules”, PHYSICAL REVIEW LETTERS, 86, 1378-1381. (SCIE) (IF: 8.385; SCI ranking: 7.1%)

  • [58]     O. Bakajin, T. A. J. Duke, J. Tegenfeldt, C. F. Chou, S. S. Chan, R. H. Austin and E. C. Cox , 2001, “Separation of 100 kilobase DNA molecules in 10 seconds”, ANALYTICAL CHEMISTRY, 73, 6053-6056. (SCIE) (IF: 6.785; SCI ranking: 8.1%)

  • [59]     C.F. Chou, R.H. Austin, O. Bakajin, J.O. Tegenfeldt, J.A. Castelino, S.S. Chan, E.C. Cox, H.G. Craighead, N. Darton, T.A.J. Duke, J. Han, S.W. Turner , 2000, “Sorting Biomolecules with Microdevices”, Electrophoresis, 21, 81-90. (SCIE) (IF: 3.081; SCI ranking: 33.8%,32.6%)

  • [60]     C.Y. Chao, T.C. Pan, C.F. Chou, and J.T. Ho , 2000, “Structural Characterization of Surface Hexatic Behavior in Free-Standing 4O.8 Liquid-Crystal Films”, PHYSICAL REVIEW E, 62 (2): R1485-R1488. (SCIE) (IF: 2.296; SCI ranking: 38.2%,16.4%)

  • [61]     C.F. Chou, O. Bakajin, S.W. Turner, T. Duke, S.S. Chan, R.H. Austin, E.C. Cox, and H.G. Craighead , 1999, “Sorting by Diffusion: an Asymmetric Obstacle Course for Continuous Molecular Separation”, PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 96, 13762-13765. (SCIE) (IF: 9.412; SCI ranking: 11.3%)

  • [62]     O.B. Bakajin, T.A.J. Duke, C.F. Chou, S.S. Chan, R.H. Austin, and E.C. Cox , 1998, “Electrohydrodynamic Stretching of DNA in Confined Environments”, PHYSICAL REVIEW LETTERS, 80, 2737-2740. (SCIE) (IF: 8.385; SCI ranking: 7.1%)

  • [63]     C.F. Chou*, A.J. Jin, S.W. Hui, C.C. Huang, and J.T. Ho , 1998, “Multiple-Step Melting in Two-Dimensional Hexatic Liquid-Crystal Films”, SCIENCE, 280, 1424-1426. (SCIE) (IF: 41.846; SCI ranking: 2.8%)

  • [64]     M. Veum, C.C. Huang, C.F. Chou, and V. Surendranath , 1997, “Stability and Phase Transitions of Single-Molecular-Layer Free-Standing Liquid-Crystal Films”, PHYSICAL REVIEW E, 56, 2298-2301. (SCIE) (IF: 2.296; SCI ranking: 38.2%,16.4%)

  • [65]     C.Y. Chao, S.W. Hui, J.E. Maclennan, C.F. Chou, and J.T. Ho , 1997, “Surface-Freezing Transitions and Novel Tilted Hexatic Phases in Smectic Liquid-Crystal Films”, PHYSICAL REVIEW LETTERS, 78, 2581-2584. (SCIE) (IF: 8.385; SCI ranking: 7.1%)

  • [66]     C.Y. Chao, C.F. Chou, J.T. Ho, S.W. Hui, A.J. Jin, and C.C. Huang , 1996, “Nature of Layer-by-Layer Freezing in Free-Standing 4O.8 Films”, PHYSICAL REVIEW LETTERS, 77, 2750-2753. (SCIE) (IF: 8.385; SCI ranking: 7.1%)

  • [67]     A.J. Jin, M. Veum, T. Stoebe, C.F. Chou, J.T. Ho, S.W. Hui, V. Surendranath, and C.C. Huang , 1996, “Nature of the Smectic-A–Hexatic-B–Crystal-B Transitions of One Liquid-Crystal Compound”, PHYSICAL REVIEW E, 53, 3639-3646. (SCIE) (IF: 2.296; SCI ranking: 38.2%,16.4%)

  • [68]     C.F. Chou, J.T. Ho, S.W. Hui, and V. Surendranath , 1996, “Scaling of 6n-Fold Bond-Orientational Order Parameters in a Hexatic Liquid-Crystal Thin Film”, PHYSICAL REVIEW LETTERS, 76, 4556-4559. (SCIE) (IF: 8.385; SCI ranking: 7.1%)

  • [69]     A.J. Jin, M. Veum, T. Stoebe, C.F. Chou, J.T. Ho, S.W. Hui, V. Surendranath, and C.C. Huang , 1995, “Calorimetric and Structural Characterization of Thin Liquid-Crystal Films Exhibiting the Smectic-A–Hexatic-B–Crystal-B Transitions”, PHYSICAL REVIEW LETTERS, 74, 4863-4866. (SCIE) (IF: 8.385; SCI ranking: 7.1%)

Chapters in Books

  • [1]     Chi Pei-Yin, Spuul Pirjo, Tseng Fan-Gang, Genot Elisabeth*, Chou Chia-Fu*, Taloni Alessandro*, 2019, “Cell Migration in Microfluidic Devices: Invadosomes Formation in Confined Environments”, editor(s): Caterina A. M. La Porta and Stefano Zapperi, Advances in Experimental Medicine and Biology, pp. 79-103, Switzerland: Springer Nature Switzerland AG.

發現與突破

(1) 西元年:2020
研究人員(中):周家復、葉佳唯,A. Taloni, K.K. Sriram, 沈介磐,高德佑
研究人員(英):CHOU, CHIA-FU, J.W. Yeh, A. Taloni, K.K. Sriram, J.P. Shen, D.Y. Kao
研究成果名稱(中):奈米侷限性誘導之DNA蛇行運動及其類比於擾動之界面
研究成果名稱(英):Nanoconfinement-induced DNA reptating motion and analogy to fluctuating interfaces
簡要記述(中):糾纏環境中的巨分子被限制為主要沿著約束管蠕動,從而引致所謂的蛇行或管狀運動。儘管近年來高分子物理學有長足進步,已深入了解其型態動力學,但蛇行“管徑”之定量表徵及分析仍是一個懸而未決的問題。本研究使用空間上極度受限的平行板奈米狹縫(高度至小於30 奈米),我們可直接觀察在一維侷限奈米環境下的DNA蛇行運動。通過引入分段式切向向量及其關聯函數,我們首次提供了一種定量的分析方法,來表徵高分子鏈的蛇行並連結其與受侷限度的關係。結果表明,其橫向擾動的幅度(虛擬二維“管”)亦展現和下列現象相似之規度律,如:擾動之界面,接觸線,或電荷密度波等,而其粗糙度指數則取決於狹縫高度。我們的研究結果顯示,在較淺的奈米狹縫中DNA擾動的介面較不粗糙。我們預期此分析方式將成為進一步了解高分子物理與其他非平衡態物理系統之間關聯性的起點。
簡要記述(英):Macromolecules in an entangled environment are constrained to wriggle predominantly along a confining tube, giving rise to the so-called reptation or tube-like motion. While the principles of polymer physics were well developed to understand its conformational dynamics, the quantitative characterization of the tube diameter and resulting reptation remains an open question. Here, using highly confined parallel plate geometry nanoslits down to sub-30 nm, we directly observe reptation in a one-dimensional (1D) confined nano-environment. For the first time, we provide a quantitative analysis scheme, by introducing the segmental tangential vector and its associated correlation function, to characterize the strand reptation and connect it to the confinement degree. Our analysis shows that the amplitude of the transverse fluctuations (the virtual 2D “tube”) exhibits the typical scaling of fluctuating interfaces, contact lines, or charge density waves, with a roughness exponent, which depends on the slit height. Our results are shown to lead to less rough DNA profiles in shallower nanoslits. We anticipate our analysis to be a starting point for a more detailed understanding of the relationship between polymer physics and other nonequilibrium physical systems.
主要相關著作:
J.W. Yeh, A. Taloni, K.K. Sriram, J.P. Shen, D.Y. Kao, C.F. Chou*, 2020, “Nanoconfinement-induced DNA reptating motion and analogy to fluctuating interfaces”, MACROMOLECULES, 53(3), 1001-1013. (SCIE) (IF: 5.918; SCIE ranking: 7.9%)
(2) 西元年:2012
研究人員(中):周家復、葉佳唯、Alessandro Taloni、陳彥龍
研究人員(英):CHOU, CHIA-FU, Jia-Wei Yeh, Alessandro Taloni, Yeng-Long Chen
研究成果名稱(中):微奈米流道介面熵力驅動之單分子DNA拔河
研究成果名稱(英):Entropy-driven single molecule tug-of-war of DNA at micro-nanofluidic interfaces
簡要記述(中):熵驅動的高分子動力學在生物系統中是極其重要的,但在奈米尺度上的熵力及其對奈米侷限度的相依性仍然是不清楚的。在這裡,我們建立了一個由熵力驅動的單分子DNA拔河系統,該系統由一個奈米狹縫橋接兩個微奈米流道的界面組成。由此系統,我們在不需施加外力的情況下,便可研究奈米尺度下,生物分子的熵力及其對奈米侷限度的相依性及其規度律。我們的結果提供了直接的實驗證據表明,熵力祇和分子在奈米尺度的空間侷限(即狹縫高度)相關,而和狹縫長度和在其內的DNA長度無關。我們的研究結果對高分子聚合物在奈米尺度的傳輸現象,單分子分析的系統設計上,及生物科技上均有潛在的應用性。
簡要記述(英):Entropy-driven polymer dynamics at the nanoscale is fundamentally important in biological systems but the dependence of the entropic force on the nanoconfinement remains elusive. Here we established an entropy-driven single molecule tug-of-war (TOW) at two micro-nanofluidic interfaces bridged by a nanoslit, performed the force analysis from a modified worm-like chain in the TOW scenario and the entropic recoiling process, and determined the associated scalings on the nanoconfinement. Our results provide a direct experimental evidence that the entropic forces in these two regimes, though unequal, are essentially constant at defined slit heights, irrespective of the slit lengths and the DNA segments within. Our findings have the implications to polymer transport at the nanoscale, device design for single molecule analysis, and biotechnological applications.
主要相關著作:
Jia-Wei Yeh, Alessandro Taloni, Yeng-Long Chen, Chia-Fu Chou*, 2012, “Entropy-driven single molecule tug-of-war of DNA at micro-nanofluidic interfaces (Research Highlighted by Nature)”, NANO LETTERS, 12 (3), 1597–1602. (SCIE) (IF: 11.238; SCIE ranking: 10.7%,13.6%,11.3%,8%,7.1%,11.6%)
(3) 西元年:2012
研究人員(中):周家復、廖國棠
研究人員(英):CHOU, CHIA-FU, Kuo-Tang Liao
研究成果名稱(中):奈米分子阱和分子壩應用於高導電度緩衝液內超快速之蛋白質富集(濃縮)
研究成果名稱(英):Nanoscale molecular traps and dams for ultrafast protein enrichment in high-conductivity buffers
簡要記述(中):我們提出一個新的分子富集的方法,稱為分子壩,該方法可在生理緩衝液內,以奈米尺度的無電極式介電泳,快速達到蛋白質富集與濃縮。我們以絕緣材料製作了奈米流道,並在其中嵌製30奈米大小的間隙,作為聚焦電場的透鏡,在結合微奈米流道界面時,可將外加電場放大約10萬倍。藉由這個奈米間隙聚焦的強電場和其場梯度,並利用分子壩的效應,我們達到快速濃縮蛋白質的效果,在20秒內便可濃縮至少10萬倍,比以往文獻報告的方法快了幾個數量級。我們的研究開闢了奈米級分子水壩的可能應用,包括以微型化感測平台快速且靈敏的分析蛋白質和發現生物標誌物,或應用於沉澱研究和蛋白質結晶學,並可能進一步擴展到小分子的富集或篩選。
簡要記述(英):We report a new approach, termed molecular dam, to enhance mass transport for protein enrichment in nanofluidic channels by nanoscale electrodeless dielectrophoresis under physiological buffer conditions. Dielectric nanoconstrictions, down to 30nm in size, embedded in nanofluidic device, serve as field focusing lens capable of magnifying the applied field to 100000-fold when combined with a micro-to-nanofluidic step interface. Empowered by this strong field and the associated field gradient occurred at the nanoconstrictions, we demonstrate proteins are enriched by molecular damming effect, faster than the trapping effect, to greater than 100000-fold in 20 seconds, which is orders of magnitude faster than most reported methods. Our study opens up further possibilities of using nanoscale molecular dams in miniaturized sensing plat-forms for rapid and sensitive protein analysis and biomarker discovery, with potential applications in precipitation studies and protein crystallization, and possible extensions to small molecules enrichment or screening.
主要相關著作:
Kuo-Tang Liao, Chia-Fu Chou*, 2012, “Nanoscale molecular traps and dams for ultrafast protein enrichment in high-conductivity buffers (Featured in JACS Spotlights)”, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 134 (21), 8742−8745. (SCIE) (IF: 14.612; SCIE ranking: 7.3%)
Update Personal Data | Update Publication List | Synchronize | Last Updated: 2021-05-27
2
Back To Top