P603
886-2-2789-6725
cheny2 [at] phys.sinica.edu.tw
P603
886-2-2789-6725
cheny2 [at] phys.sinica.edu.tw
Tseng, Yu-Ping / 886-2-2789-6754
(1) | 國際學術研究獎項 | 2020-02 | Invited talk, 2020 TMS annual meeting, San Diego, California, 2/23–27, 2020 | |
(2) | 國內學術研究獎項 | 2019-12 | 科技部2019未來科技突破獎 | 本院物理研究所陳洋元研究員所帶領的研究團隊,以開發薄型熱電晶片,利用微小溫差產生之電力做為微機電系統之輔助電源,獲科技部頒發「2019未來科技突破獎」,成果並將12/5~12/8 台北世貿一館「2019未來科技展」展出。 The research team led by research fellow Dr. Yang-Yuan Chen of the Institute of Physics developed thin thermoelectric chips, using the power ge |
(3) | 國際學術研究獎項 | 2019-02 | Invited talk, Symposium for the Promotion of Applied Research Collaboration in Asia, Okinawa, Japan, 2/28-3/3, 2019 | |
(4) | 國內學術研究獎項 | 2019-01-23 | 台灣熱電學會第一屆理事長 | |
(5) | 國內學術研究獎項 | 2019-01 | Invited talk, Annual Meeting of the Physical Society of Taiwan, 1/23-25, 2019 | |
(6) | 國際學術研究獎項 | 2018-10 | Invited talk, The 3rd Asian Conference on Thermoelectrics (ACT3), Taiwan, 10/7-9, 2018 | |
(7) | 國內學術研究獎項 | 2018 | Academia Sinica Outstanding Research Award,研究績效優等 | |
(8) | 國際學術研究獎項 | 2017-02 | Invited talk, 2017 TMS annual meeting in San Diego, California, USA, 2/26-3/2, 2017 | |
(9) | 國內學術研究獎項 | 2017 | Academia Sinica Outstanding Research Award,研究績效優等 | |
(10) | 國際學術研究獎項 | 2016-05 | Invited talk, The 35th International Conference & The 1st Asian Conference on Thermoelectricis, Wuhan, China, 5/29-6/2, 2016 | |
(11) | 國內學術研究獎項 | 2016 | Academia Sinica Outstanding Research Award,研究績效優等 | |
(12) | 國內學術研究獎項 | 2015 | Academia Sinica Outstanding Research Award,研究績效優等 | |
(13) | 國內學術研究獎項 | 2014 | Academia Sinica Outstanding Research Award,研究績效優等 | |
(14) | 國內學術研究獎項 | 2013 | Academia Sinica Outstanding Research Award,研究績效優等 | |
(15) | 國內學術研究獎項 | 2012 | Academia Sinica Outstanding Research Award,研究績效優等 | |
(16) | 國內學術研究獎項 | 2011 | Academia Sinica Outstanding Research Award,研究績效優等 | |
(17) | 國內學術研究獎項 | 2010 | Outstanding Alumnus / Soochow University東吳大學傑出校友 | |
(18) | 國內學術研究獎項 | 2010 | Academia Sinica Outstanding Research Award,研究績效優等 | |
(19) | 國內學術研究獎項 | 2009 | Academia Sinica Outstanding Research Award,研究績效優等 |
(1) | 西元年:2019 研究人員(中):陳洋元、余世勛 ,歐敏男, 周明奇, 研究人員(英):CHEN, YANG-YUAN, Shih-Hsun Yu, Min-Nan Ou*, Mitch M. C. Chou* 研究成果名稱(中):高品質 CuxBi2Se3 單晶零價銅參雜與超導之關係 研究成果名稱(英):The zero Cu valence and Superconductivity in high quality CuxBi2Se3 crystal 簡要記述(中):在這項工作中,研究了Cu摻雜劑在Bi2Se3中超導性發展中的作用。基於沿C軸觀察到的晶格增加,通過XRD,SEM-EDS和TEM分析驗證了Bi2Se3的范德瓦爾(vdW)間隙中插入的Cu原子的存在。此外,通過X射線光電子和歐接電子光譜,發現Cu的化學態為零價。同時,我們的拉曼數據也顯示了相同的結果:vdW間隙中的Cu嵌入削弱了Cu0.1Bi2Se3晶體中五重層的結合。電阻和磁化率在一系列Cu摻雜的Bi2Se3中顯示出在3-3.4 K附近的超導轉變。在優化的10%Cu摻雜Bi2Se3中觀察到TC = 3.4 K的最大值和最大84%的磁屏蔽率。這些結果暗示,超導準粒子的形成與Cu的電荷轉移無關,而是由插入在范德瓦爾間隙中的Cu的內應力所支持。在比熱中觀察到的超導躍遷表明CuxBi2Se3中的超導性是非常規的。這研究對銅摻雜劑在Bi2Se3中引起的超導所扮演的角色為,銅並未與Bi2Se3產稱化學鍵,是以金屬形態存在於Bi2Se3中,說明於C軸產生之晶格膨脹,或存在介面才是超導的主要成因,這對長期以來介面才是產生超導的主要機制提供了一個強有力的證明。 簡要記述(英):In this work, the role of Cu dopants in the development of superconductivity in Bi2Se3 is investigated. A series of CuxBi2Se3 (x=0-0.3) crystals is grown using the Bridgman method and electrochemical techniques. Based on the observable lattice increases along the c axis, the existence of Cu atoms intercalated in the van der Waals (vdW) gaps in Bi2Se3 is verified by XRD, SEM-EDS and TEM analysis. Furthermore, the chemical state of the Cu is found to be zero valence by characterization of the X-ray photoelectron and Auger electron spectra. The absence of Cu1+ and Cu2+ in EELS near-edge fine structure is confirmed as well. Meanwhile, our Raman data also show the same result: the intercalation of Cu in the vdW gap which weakens the binding of the quintuple layers in the Cu0.1Bi2Se3 crystal. The electric resistance and magnetic susceptibility show a superconducting transition near 3-3.4 K in the series of Cu doped Bi2Se3. A sharp superconducting transition with the highest value of TC = 3.4 K and a largest magnetic shielding fraction of 84% is observed in the optimized 10% Cu doped Bi2Se3. These results imply that the formation of superconducting quasiparticles is not related to the charge transfer of Cu, but is supported by the internal stress of Cu intercalated in the van der Waals gap. The SC transition observed in the specific heat implies that the superconductivity in CuxBi2Se3 is unconventional.
|
|||
(2) | 西元年:2016 研究人員(中):陳洋元、魏百駿、陳洋元 研究人員(英):CHEN, YANG-YUAN, Pai-Chun Wei, S. Bhattacharya, J. He, S. Neeleshwar, R. Podila, Y. Y. Chen* and A. M. Rao* 研究成果名稱(中):熱電材料硒化錫晶體之真實熱傳導係數 研究成果名稱(英):The intrinsic thermal conductivity of SnSe 簡要記述(中):2014 年美國西北大學 Zhao et al 等人於自然期刊發表了硒化錫晶體超低之熱傳導係數 (<0.4 W /mKat 923 K) 與很高的熱電優質參數 (ZT2.6 at 923 K)。由中央研究院物理研究所陳洋元博士帶領的研究團隊,隨即長出硒化錫之單晶後 經過的精密的實驗量測後 我們發現在923 K ZT 僅有1 左右 我們仔細比對雙方之數據後發現Zhao et al 等人的硒化錫之樣品並非真正之單晶 其密度(5.4 g/cm)約只有真正單晶密度(6.2 g/cm)的 87%。這說明了西北大學 Zhao et al 等人於自然期刊發表的結果並非真正硒化錫晶體應有之物理特性。發現美國西北大學 Zhao et al的硒化錫晶體有問題後我們將此一發現與我們完整之數據提報給Nature 期刊 證明Zhao et al 的結果確實有問題。於此一研究我們長出了世界第一個真正完美的SnSe 單晶 也量測出此單晶之本徵熱傳導係數 對了解目前最熱門之熱電材料-硒化錫之研究做出了重大之貢獻。 簡要記述(英):In 2014 Zhao et al. 1 at Northwestern University reported that they have found an ultralow thermal conductivity (<0.4W/m K at 923 K) and high thermoelectric figure of merit (ZT2.6±0.3 at 923 K) in SnSe crystals, and have the results published in Nature (17 April VOL 508, Nature 375).The material is shortly studied by the Dr. Chen group in the institute of physics. We deduce that their samples are not fully dense (only 87% of the theoretical value 6.2 g/cm) and thus not truly single crystalline, implying that their reported thermal conductivities are not intrinsic to SnSe. In this work, we have grown the best SnSe single crystal in the world, and reported the intrinsic thermal conductivity of SnSe. This research work offers a better understanding of the SnSe crystal, and warrants further investigation into intrinsic thermal transport in SnSe single crystals and its use as a thermoelectric material.
|
|||
(3) | 西元年:2015 研究人員(中):陳洋元、熊德智, 牟中瑜,李定國, 陳洋元 研究人員(英):CHEN, YANG-YUAN, Te-Chih Hsiung, Chung-Yu Mou, Ting-Kuo Leea, and Yang-Yuan Chen 研究成果名稱(中):拓樸絕緣體BiSbTeSe表面傳輸與熱電優質係數強化 研究成果名稱(英):Surface-Dominated Transport and Enhanced Thermoelectric Figure of Merit in Topological Insulator Bi1.5Sb0.5Te1.7Se1.3 簡要記述(中):本研究團隊將具拓樸絕緣體特性的Bi1.5Sb0.5Te1.7Se1.3(BSTS)奈米線成功地提升熱電優質,與塊材材料相比較之下,奈米線的熱電優值大幅度提升一個數量級,從 ZT=0.028 到0.26。此顯著的增加主要是歸功於奈米線內部導電率,傳導機制與熱活化載子的增加。拓樸絕緣體為一熱門的新穎材料,國內外的研究機構都致力於其中。本研究團隊利用奈米線來當作研究拓樸領域的主軸,除了以往拓樸相關特性之量測,此研究尚能利用奈米線去觀察於拓樸絕緣體能隙中化學位能的變化,且進一步的去研究表面能態對於熱電性質與熱電優質之影響。 本研究應該是第一個研究拓樸絕緣體熱電性質的論文,另外我們發現在奈米尺度下,材料的傳輸機制會有很大的不同,包括電、熱傳導率。相信此突破性的奈米線研究成果,對於未來學術研究或工業中奈米尺度的材料發展與磁性應用提供了長遠的助益。 簡要記述(英):We report the observation of an order of magnitude enhancement of the thermoelectric figure of merit (ZT = 0.36) in topological insulator Bi1.5Sb0.5Te1.7Se1.3 nanowires at 300 K as compared with the bulk specimen (ZT = 0.028). The enhancement was primarily due to an order of magnitude increase in the electrical conductivity of the surface-dominated transport and thermally activated charge carriers in the nanowires. Magnetoresistance analysis revealed the presence of Dirac electrons and determined that the Fermi level was near the conduction band edge. This may be the first thermoelectric measurement of samples with a chemical potential in the gap of a topological insulator without gate tuning, and provides an opportunity to study the contribution of surface states to the Seebeck coefficient and resistivity without concern for the complex effect of band bending.
|
|||
(4) | 西元年:2010 研究人員(中):陳洋元、陳正龍,郭玲如,張經霖,胡宇光,黃政廣,李欣瑜,陳科華,林樹均,黃靜端,陳洋元 研究人員(英):CHEN, YANG-YUAN, Cheng-Lung Chen*, Ling-Ru Guo, Yang-Yuan Chen*, Yeh-Kuang Hwu, Ching-Lin Chang, Shin-Yu Lee, Kowa Chen,Su-Jien Lin and Jing-Duan Huang 研究成果名稱(中):以金奈米棒之表面激發電漿殺死癌細胞之光熱療法之研究 研究成果名稱(英):In situ real-time investigation of cancer cell photothermolysis mediated by excited gold nanorod surface plasmons 簡要記述(中):本論文以雷射雙光子激發金奈米棒之表面電漿,研究其產生的光熱效(photothermolysis),如何殺死癌細胞。我們將金奈米棒植入老鼠之乳腺癌細胞(EMT-6),經由雙光子雷射顯微鏡,可同步觀察到癌細胞受到雷射光照射後,其形貌的變化與胞膜被螢光染劑穿透的過程。利用生物體在670 ~880 nm近紅外光波段有最深的穿透性,我們以化學合成法中的晶種成長技術製備金奈米棒,並準確地控制其長短軸比例為3.92,使其長軸最大吸收峰值落在800 nm,達到雷射激發金奈米棒之最佳效果。由於初步合成的金奈米棒表面覆有毒性十六烷基三甲基溴化(CTAB)界面活性劑,為了改善金奈米棒與生物的相容性,並進一步應用於影像及治療藥劑上,我們以無毒性的聚磺苯乙稀(PSS)高分子置換上述具毒性的十六烷基-界面活性劑。實驗發現,由於金奈米棒在近紅外線波段有強烈的表面電漿共振特性,因此可清楚地看到細胞內由金奈米棒受雙光子雷射激發過程而產生的螢光點。這個技術非常有利於即時性的雙光子顯微影像觀察,並可監控金奈米棒產生的光熱效應與如何殺死癌細胞。本研究發現,細胞的穿孔及胞膜瞬間破裂是由於金奈米棒的光熱效應,而引發局部高溫氣化膨脹,導致癌細胞破裂死亡。此一癌細胞內空泡破裂動態過程(Cavitation dynamic)取決於激發能量的大小,且是細胞膜穿孔或瞬間嚴重瓦解的原因。同時發現,癌細胞內金奈米棒的數量越多,殺死癌細胞所需的能量越小。以一個細胞攝入10-30個團簇(一個團簇約含30-100個金奈米棒)為例,注入的光能量密度約93 mJ/cm2,可有效地破壞細胞並使其在非常短時間內(約4分鐘),以炸碎方式死亡。當光能量密度降底到約18 mJ/cm2時,細胞攝入的金奈米棒團簇數量則需提高到60-100個方能使細胞以漸進惡化的方式死亡。經由此一研究可了解奈米材料在癌細胞光熱解作用的機制與過程,並有助於光熱療法應用在臨床上。 簡要記述(英):The photothermolysis of living EMT-6 breast tumor cells triggered by gold nanorods (AuNRs) with twophoton irradiation was conducted in situ and under real-time observation. The morphology and plasma membrane permeability of the cells were key indicators to the phenomena. AuNRs with an aspect ratio of 3.92, and a longitudinal absorption peak at 800 nm were synthesized with a seed-mediated method. The nanorods surfaces were further modified with polystyrenesulfonate (PSS) for biocompatibility. The prepared nanorods displayed excellent two-photon photoluminescence imaging. In situ real-time results revealed cavities internal to the cells were created from thermal explosions triggered by AuNRs localized photothermal effect. The cavitation dynamic is energy dependent and responsible for the perforation or sudden rupture of the plasma membrane. The energy threshold for cell therapy depended significantly on the number of nanorods taken up per cell. For an ingested AuNR cluster quantity Nw10–30 per cell, it is found that energy fluences E larger-than 93 mJ/cm2 led to effective cell destruction in the crumbled form within a very short period. As for a lower energy level E 18 mJ/cm2 with N w 60–100, a noninstant, but progressive cell deterioration, is observed.
|
|||
(5) | 西元年:2008 研究人員(中):陳洋元、歐敏男、 楊宗哲、S. R. Harutyunyan、陳洋元、陳啟東、賴水金 研究人員(英):CHEN, YANG-YUAN, M. N. Ou, T. J. Yang, S. R. Harutyunyan, 研究成果名稱(中):單根奈米線熱電傳輸行為的研究,登上國際期刊的封面,已被下載超過一千多次 研究成果名稱(英):Electrical and thermal transport in single nickel nanowire 簡要記述(中):Much attention has been focused on nanoscale materials in recent years due to their great importance in fundamental low-dimensional physics as well as in fabrication of nanoscale devices. This paper presents the study of electrical and thermal transport of a suspended nickel (Ni) nanowire. The thermal conductivity and electrical resistivity were measured in the temperature range 15- 300 K by means of the “self heating 3ω” technique. The temperature dependence of the thermal conductivity and the Lorenz number strongly differ from that of the bulk. At temperatures 75 < T < 300 K Wiedemann-Franz (WF) law holds, whereas at temperatures T < 75 K the WF law is violated, indicating that thermal current in this material is suppressed more than electrical current. The results are explained by combined effect of confined dimension, enhanced disorder and grown contribution of N-processes. This study is significant in developing magnetic semiconductor devices. The work was published in Applied Physics Letter (APL) with its figure as the cover image in Feb. 2008 [1]. It was download 535 times ranked top 4 for over 400 papers in the month. Based on editor’s report on Jan 21, 2009 the paper was download already over 1000 times by the end of 2008. It greatly promotes Taiwan’s international visibility. 簡要記述(英):研究團隊成功地將一根磁性的鎳奈米線懸吊在矽基板上,並測量出它的導電與導熱率,發現其傳輸行為與一般材料大異其趣,實驗顯示熱流比電流在奈米線中受到更大的壓制,這是一非常嶄新的發現,對再生能源熱電材料的開發是一重大的突破。奈米線肉眼是看不到的,因此從製造到量測的過程,都要借助掃描電子顯微鏡的觀察與定位。研究團隊能將此一懸吊的奈米線以電子顯微圖像清楚地呈現在世人的眼前,並成功地量測出其熱電性質是非常不容易的,研究團隊為此整整花了一年的時間才克服萬難完成此項工作。此研究成果除被刊登於國際知名之應用物理通訊(Applied Physics Letter)外,其插圖並被選為2008年二月的期刊封面。此論文在當月即被下載535次,為近四百餘篇論文中名列前四名。依據期刊編輯2009年一月二十一日的統計報告,迄2008年底此論文已被下載閱讀達1033次,可見此一研究成果如何受到國際上的重視,由於被大量的下載傳播,大大提升了台灣科學界在國際上的能見度。 此一奈米線熱、電傳輸行為的研究,相信對台灣依重甚深的半導體工業,奈米化的推展與磁性的應用提供了深遠的助益。 |
|||
(6) | 西元年:2008 研究人員(中):陳洋元、陳洋元、陳正龍、董崇禮、周尚威、陳家俊、張經霖 研究人員(英):CHEN, YANG-YUAN, M.S. Seehra,P.Dutta, S.Neeleshwar,Y. Y. Chen,C. L. 研究成果名稱(中):「室溫磁性半導體」的發現,被自然出版集團選為網頁頭條,稱為亞洲暨太平洋地區最佳研究成果。 研究成果名稱(英):Size-Controlled Ex-nihilo Ferromagnetism in Capped CdSe Quantum Dots 簡要記述(中):從我們日常生活的認知,半導體材料並不具有磁性;其熱、電傳輸行為也不會因樣品尺寸大小而有所改變。惟在奈米尺度的範疇中,新穎的物理性質逐一被發現並認證,過去的很多認知在奈米世界中不再正確。 對於製備自旋電子半導體元件來說,最有興趣的是尋找具有室溫鐵磁性的半導體材料。過去在一些半導體中也常被觀察到具有「室溫鐵磁性」的特性,惟一般都認為此磁性是來至材料中的磁性雜質而不是材料本身的特性。 目前由中央研究院陳洋元博士與淡江大學、印度和美國的研究團隊發現,鎘硒(CdSe)半導體的奈米晶體在室溫下具鐵磁性,此一「室溫鐵磁半導體」的嶄新發現,除被刊登於國際知名的期刊-先進材料(Advanced Materials)外[1],也被自然出版集團(Nature Publishing Group)在其網頁頭條,稱此為亞洲暨太平洋地區研究人員的最佳研究成果。此鎘硒奈米晶體的鐵磁性,據信是由覆蓋於奈米晶體外層的介面活性劑-三辛基氧化磷,使鎘原子上產生了4d軌道的電洞與磁矩,進而產生了鐵磁性。鎘硒是在同類半導體中,第一個被發現具有「室溫鐵磁性」的奈米晶體。 此研究工作的重要性在於藉由適當的表面重組,不需要摻雜任何其他的磁性元素,半導體也會具有鐵磁性的特性。此一研究成果將半導體帶到電子與磁性的範疇,推動半導體工業進入電子自旋此一嶄新的領域。 簡要記述(英):Materials that exhibit room temperature ferromagnetism (RTFM) have high potential for the realization of spintronic devices. A collaboration of researchers of the Academia Sinica in Taiwan with colleagues in India and United States have demonstrated the synthesis of nanocrystals of a nominally non magnetic semiconductor that exhibit ferromagnetism at several degrees above room temperature1. The paper was also selected by Nature Publishing Group (NPG) Asia Materials website for highlights the best research published in the field by researchers in the Asia-Pacific region. In the case of their CdSe nanocrystals the ferromagnetism is definitely an intrinsic property. The nanocrystals are capped by TOPO (Tri-n-octylphosphine) which is also nonmagnetic. No clusters of magnetic impurities are therefore involved. The researchers believe that the RTFM arises from electronic effects at the crystal surfaces due to the presence of the TOPO. It is explained by Dr. Chen that since the electronegativity of oxygen is much larger than that of Cd, the charge transfer from Cd to TOPO depletes the 4d10 full band of Cd, creating holes and producing a net magnetic moment for Cd atoms bonded to TOPO. The ferromagnetism in the nanocrystals is the first in its kind. “The importance of the work is that with appropriate surface modification, i.e., capping with TOPO for our case, the semiconductor quantum dots exhibit RTFM with no need of magnetic dopants”. |