Hsu, Chen-Hsuan / Assistant Research Fellow

pi_image

Contact Information

Education

  • 2014 Ph.D. in Physics, University of California, Los Angeles (UCLA), US
  • 2006 B.Sc., National Tsing Hua University (NTHU), Taiwan

Secretary

Lee, Fu Fang / 886-2-2789-8985

fiona [at] phys.sinica.edu.tw

Research Interest

  • Condensed matter theory
  • Quantum matter
  • Nanoscale systems
  • Topological materials

獎項及殊榮

(1) 國際學術研究獎項 2021 Researcher Incentive Award
(2) 國際學術研究獎項 2021 CEMS Award

Experience

  • 2022 Researcher, Yukawa Institute for Theoretical Physics (YITP), Kyoto University, Japan
  • 2019-2022 Research Scientist, RIKEN Center for Emergent Matter Science, Japan
  • 2014-2019 Postdoctoral Researcher, RIKEN Center for Emergent Matter Science, Japan

Publication

Journal Papers

  • [1]     Chen-Hsuan Hsu*, 2024, “Interaction- and phonon-induced topological phase transitions in double helical liquids”, Nanoscale Horizons, 9, 1725-1731. (SCIE) (IF: 9.7; SCI ranking: 19.9%,14.2%,23.1%)

  • [2]     Yi-Chun Hung*, Baokai Wang, Chen-Hsuan Hsu, Arun Bansil, Hsin Lin, 2024, “Time-reversal soliton pairs in even spin Chern number higher-order topological insulators”, Physical Review B, 110(3), 035125-1-035125-11. (SCIE) (IF: 3.7; SCI ranking: 45.6%,31.3%,35.3%)

  • [3]     Hao-Chien Wang, Chen-Hsuan Hsu*, 2024, “Electrically tunable correlated domain wall network in twisted bilayer graphene”, 2D Materials, 11(3), 035007. (SCIE) (IF: 5.5; SCI ranking: 30.8%)

  • [4]     Chen-Hsuan Hsu*, Daniel Loss, Jelena Klinovaja, 2023, “General scattering and electronic states in a quantum-wire network of moiré systems”, PHYSICAL REVIEW B, 108, L121409-1-L121409-9. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [5]     Chen-Hsuan Hsu*, Peter Stano, Jelena Klinovaja, Daniel Loss, 2021, “Helical Liquids in Semiconductors”, Semiconductor Science and Technology, 36, 123003-1-123003-43. (SCIE) (IF: 2.048; SCI ranking: 61.5%,74.6%,65.2%)

  • [6]     Chen-Hsuan Hsu*, Flavio Ronetti, Peter Stano, Jelena Klinovaja, Daniel Loss, 2020, “Universal conductance dips and fractional excitations in a two-subband quantum wire”, Physical Review Research, 2, 043208-1-043208-10.

  • [7]     Yosuke Sato, Sadashige Matsuo, Chen-Hsuan Hsu, Peter Stano, Kento Ueda, Yuusuke Takeshige, Hiroshi Kamata, Joon Sue Lee, Borzoyeh Shojaei, Kaushini Wickramasinghe, Javad Shabani, Chris Palmstrøm, Yasuhiro Tokura, Daniel Loss, Seigo Tarucha, 2019, “Strong electron-electron interactions of a Tomonaga-Luttinger liquid observed in InAs quantum wires”, Physical Review B, 99, 155304-1-155304-14. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [8]     Peter Stano, Chen-Hsuan Hsu, Leon C. Camenzind, Liuqi Yu, Dominik Zumbühl, Daniel Loss, 2019, “Orbital effects of a strong in-plane magnetic field on a gate-defined quantum dot”, Physical Review B, 99, 085308-1-085308-13. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [9]     Chen-Hsuan Hsu*, Peter Stano, Yosuke Sato, Sadashige Matsuo, Seigo Tarucha , Daniel Loss, 2019, “Charge transport of a spin-orbit-coupled Luttinger liquid”, Physical Review B, 100, 195423-1-195423-17. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [10]     Chen-Hsuan Hsu*, Peter Stano, Jelena Klinovaja, Daniel Loss, 2018, “Effects of nuclear spins on the transport properties of the edge of two-dimensional topological insulators”, Physical Review B, 97, 125432-1-125432-20. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [11]     Peter Stano, Chen-Hsuan Hsu, Marcel Serina, Leon C. Camenzind, Dominik M. Zumbühl, Daniel Loss, 2018, “g-factor of electrons in gate-defined quantum dots in a strong in-plane magnetic field”, Physical Review B, 98, 195314-1-195314-23. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [12]     Chen-Hsuan Hsu*, Peter Stano, Jelena Klinovaja, Daniel Loss, 2018, “Majorana Kramers Pairs in Higher-Order Topological Insulators”, Physical Review Letters, 121, 196801-1-196801-8. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [13]     Chen-Hsuan Hsu*, Peter Stano, Jelena Klinovaja, Daniel Loss, 2017, “Nuclear-spin-induced localization of the edge states in two-dimensional topological insulators”, Physical Review B, 96, 081405-1-081405-5. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [14]     Guang Yang, Chen-Hsuan Hsu, Peter Stano, Jelena Klinovaja, Daniel Loss, 2016, “Long-distance entanglement of spin qubits via quantum Hall edge states”, Physical Review B, 93, 075301-1-075301-15. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [15]     Sudip Chakravarty, Chen-Hsuan Hsu, 2015, “Skyrmions in a density wave state: A mechanism for chiral superconductivity”, Modern Physics Letters B, 29, 1540053-1-1540053-27. (SCIE) (IF: 1.948; SCI ranking: 67.7%,66.7%,35.7%)

  • [16]     Chen-Hsuan Hsu*, Peter Stano, Jelena Klinovaja, Daniel Loss, 2015, “Antiferromagnetic nuclear spin helix and topological superconductivity in C nanotubes”, Physical Review B, 92, 235435-1-235435-21. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [17]     Chen-Hsuan Hsu, Sudip Chakravarty, 2014, “Superconductivity from fractionalized excitations in URu2Si2”, Physical Review B, 90, 134507-1-134507-12. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [18]     Chen-Hsuan Hsu, Sudip Chakravarty, 2013, “Charge-2e skyrmion condensate in a hidden-order state”, Physical Review B, 87, 085114-1-085114-10. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [19]     Chen-Hsuan Hsu, Zhiqiang Wang, Sudip Chakravarty, 2012, “Spin dynamics of possible density wave states in the pseudogap phase of high-temperature superconductors”, Physical Review B, 86, 214510-1-214510-8. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [20]     Yuezhen Niu, Suk Bum Chung, Chen-Hsuan Hsu, Ipsita Mandal, S. Raghu, Sudip Chakravarty, 2012, “Majorana zero modes in a quantum Ising chain with longer-ranged interactions”, Physical Review B, 85, 035110-1-035110-10. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [21]     Chen-Hsuan Hsu, S. Raghu, Sudip Chakravarty, 2011, “Topological density wave states of nonzero angular momentum”, Physical Review B, 84, 155111-1-155111-6. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [22]     B. C. Chang, C. H. Hsu, Y. Y. Hsu, Z. Wei, K. Q. Ruan, X. G. Li, H. C. Ku, 2008, “Anisotropic superconducting properties of the aligned SmLaFeAsOF microcrystalline powder”, EPL (Europhysics Letters), 84, 67014.

發現與突破

  • [1]     西元年:2024
    研究人員(中):徐晨軒
    研究人員(英):HSU, CHEN-HSUAN
    研究成果名稱(中):發現螺旋液體中的新拓樸相變
    研究成果名稱(英):Discovering Novel Phase Transitions in Helical Liquids
    簡要記述(中):在拓樸材料中的螺旋液體,為實現拓樸零模態提供了基礎平台,也為未來的拓樸量子計算提供基礎。我們的理論研究通過非擾動分析證明,電子之間的庫侖交互作用以及電子-聲子的耦合,能夠觸發拓樸相及非拓樸相之間的新相變,這一發現與先前的擾動研究結論不同。鑑於電子-電子交互作用和聲子在自然界中的普遍性,這些研究成果不僅揭示了通過電控制實現拓樸相變的潛力,也凸顯了在實現拓樸量子計算裝置時可能面臨的挑戰。
    簡要記述(英):Helical liquids in topological materials form the foundation for topological zero modes, essential for topological quantum computing. Through our nonperturbative analysis, we demonstrate that Coulomb interactions between electrons and electron-phonon coupling can trigger new transitions between topological and trivial phases. This finding contrasts with earlier perturbative studies, highlighting new conclusions. Given the ubiquitous nature of electron-electron interactions and phonons in these systems, our discoveries not only open avenues for electrically tunable topological transitions but also highlight potential challenges in developing stable devices for topological quantum computing.
    主要相關著作:
    Chen-Hsuan Hsu*, 2024, “Interaction- and phonon-induced topological phase transitions in double helical liquids”, Nanoscale Horizons, 9, 1725-1731. (SCIE) (IF: 9.7; SCI ranking: 19.9%,14.2%,23.1%)


  • [2]     西元年:2023
    研究人員(中):徐晨軒
    研究人員(英):HSU, CHEN-HSUAN, Daniel Loss, Jelena Klinovaja
    研究成果名稱(中):完成量子霍爾現象耦合導線理論描述的三部曲
    研究成果名稱(英):Completion of a Trio of Theoretical Coupled-Wire Descriptions of Quantum Hall Phenomena
    簡要記述(中):在我們最近的研究中,我們加深了對扭曲雙層石墨烯 (twisted bilayer graphene) 中量子導線網路中散射過程的理解。我們根據各項守恆定律,包括電荷、自旋、能量和動量,系統性地構建了各種散射過程,從而全面地描繪量子導線網路。其中更引入了扭曲雙層石墨烯中莫爾 (moiré) 周期性獨有的廣義散射概念。我們的研究揭示了在某些特別的電荷密度下,這些獨有的散射過程會引發非傳統物質態。其中某些情況會產生具有無能隙手徵性邊界態的異常霍爾絕緣體。我們的研究提供了具體且可測試的預測。我們提出使用光譜學和傳輸測量來探測這些邊界態的方法。借鑒量子霍爾系統的先驅工作,我們的研究表明在莫爾系統中實現分數量子異常霍爾效應的可能性。經由我們的研究發表,耦合導線描述的理論框架已完成對量子霍爾相關現象的三部曲,包括量子霍爾 (Kane et al., PRL 2002)、量子自旋霍爾(Klinovaja and Tserkovnyak, PRB 2014),以及量子異常霍爾態 (本研究)。這使我們的工作在凝聚態物理學的更廣泛範圍內佔有一席之地。
    簡要記述(英):In our recent work, we have advanced our understanding of scattering processes in quantum-wire networks within twisted bilayer graphene (TBG). We systematically constructed operators based on conservation laws, including charge, spin, energy, and momentum, leading to a comprehensive characterization of these processes. This effort introduced the concept of generalized umklapp scatterings, unique to the moiré periodicity in TBG.Our research uncovered unconventional states of matter at fractional fillings, marked by fractional excitations. We discovered a new category of scattering processes that produce an insulating bulk with gapless chiral edge modes, reminiscent of phenomena in TBG and similar moiré-based systems. Our study extends to exploring topological phases in moiré systems, offering concrete, testable predictions. We proposed methods for detecting and characterizing edge modes via spectroscopic and transport measures, highlighting the practical significance of our work for both theoretical and experimental aspects. Notably, while initially inspired by TBG, our findings are applicable to various moiré systems forming one-dimensional channels.Drawing on seminal works in fractional quantum Hall systems (Kane et al., PRL 2002), our research suggests the possibility of achieving the (fractional) quantum anomalous Hall effect in moiré systems. The theoretical framework for the coupled-wire description now encompasses quantum Hall, quantum spin Hall (Klinovaja and Tserkovnyak, PRB 2014), and quantum anomalous Hall states (the present work). This positions our work within a wider scope of condensed matter physics.
    主要相關著作:
    Chen-Hsuan Hsu*, Daniel Loss, Jelena Klinovaja, 2023, “General scattering and electronic states in a quantum-wire network of moiré systems”, PHYSICAL REVIEW B, 108, L121409-1-L121409-9. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)


Update Personal Data | Update Publication List | Synchronize | Last Updated: 2024-10-23
2
Back To Top