P609
886-2-2789-6720
huck [at] phys.sinica.edu.tw
P609
886-2-2789-6720
huck [at] phys.sinica.edu.tw
Rao, Cindy / 886-2-2789-8916
(1) | 國內學術研究獎項 | 2005-10 | 教育部第49屆學術獎 | |
(2) | 國內學術研究獎項 | 1995, 1996, 1997, 1998, 1999, | 國科會特約研究計劃主持人 | |
(3) | 國內學術研究獎項 | 1993, 1994, 1995 | 國科會傑出研究獎 | |
(4) | 國內學術研究獎項 | 1989-11 | 吳三連自然科科學獎 | |
(5) | 國內學術研究獎項 | 1989, 1990, 1991 | 國科會傑出研究獎 | |
(6) | 國內學術研究獎項 | 1987, 1988, 1989 | 國科會傑出研究獎 | |
(7) | 國內學術研究獎項 | 1985, 1986, 1987 | 國科會傑出研究獎 |
(1) | 西元年:2010 研究人員(中):胡進錕 研究人員(英):HU, CHIN-KUN, M. S. Li, N. T. Co, G. Reddy, J. E. Straub, and D. Thirumalai 研究成果名稱(中):影響蛋白質群集現象的關鍵因素 研究成果名稱(英):Key Factors for Protein Aggregation 簡要記述(中):胡進錕博士與合作者研究蛋白質群集現象最近有突破性的進展。他們發現影響蛋白質群集現象的關鍵因素,研究論文已經刊於”物理評論通訊(Physical Review Letters, 簡稱PRL)”與”日本物理學會期刊(Journal of the Physical Society of Japan, 簡稱JPSJ)”。這些發現可望有助於揭開蛋白質群集現象的神秘面紗,為預防或治療神經退化性疾病開了一扇希望之門。 神經退化性疾病是指神經結構和功能逐步喪失而造成的疾病,包括阿茲海默症(Alzheimer's disease, 簡稱AD),巴金森症(Parkinson's disease,簡稱PD,也稱為震顫麻痺綜合症),杭丁頓舞蹈症(Huntington's disease,簡稱HD),小腦脊髓萎縮症(Spinocerebellar Atrophy),額顳葉退化症(Frontotemporal lobar degeneration,簡稱FTLD-U)等。這些疾病源於蛋白質在腦部發生群集現象而造成腦神經退化或死亡。例如:AD乃源自蛋白質Aβ40(含40個胺基酸)和Aβ42(含42個胺基酸)群集現象。而HD和小腦脊髓萎縮症乃源自 PolyQ蛋白質(包含許多穀氨醯胺的蛋白質)的群集現象。瞭解造成蛋白質群集現象的關鍵因素是學術上和神經醫學上極重要的問題。 在一篇與波蘭、美國和越南研究人員合作而於2010年11月19日,發表於PRL論文中,胡進錕博士和合作者用晶格模型研究影響群集速率的關鍵因素。他們發現可以由計算單獨一條蛋白質出現在群集形態的機率,決定該蛋白質最容易產生群集現象的溫度。他們也發現群集時間與蛋白質上正負電荷作用強度的相關性,此一發現與實驗數據相符。 在另四篇與國立政治大學應用物理研究所助理教授馬文忠博士合作而於2010年二月、五月和十月發表於JPSJ的論文中,胡博士和馬博士用分子動力學模擬蛋白質的簡化模型在各種情況下的鬆弛和群集現象。他們發現影響群集現象的關鍵因素是和彎曲角(bending angle) 和雙面角(torsion angle)有關的作用力。當二者都是0或是很小時,蛋白質就容易形成群集現象。此一結果可以解釋何以Aβ40和Aβ42會產生群集現象。 簡要記述(英):Dr. Chin-Kun Hu and his collaborators have made a breakthrough discovery about key factors for protein aggregation. The research results have been published in a series of papers at Physical Review Letters (PRL) and Journal of the Physical Society of Japan (JPSJ). Such results are useful for uncovering the mystery of protein aggregation and opening an avenue to guard against or cure neurodegenerative diseases. Neurodegenerative diseases include Alzheimer's disease (AD),Parkinson's disease (PD), Huntington's disease (HD),Spinocerebellar Atrophy,Frontotemporal lobar degeneration (FTLD-U), etc. Such diseases are due to progressive loss of structure or function of neurons, including death of neurons caused by protein aggregation. For example, AD is considered to be related to aggregation of Aβ40 (protein with 40 amino acids) and Aβ42 (protein with 42 amino acids) and HD and Spinocerebellar Atrophy are related to aggregation of PolyQ (protein with a long sequence of glutamine). Understanding the conditions and mechanism of protein aggregation is a very important academic and biomedical research problem. In a paper published at PRL on 19 November 2010, Dr. Hu and collaborators at Poland, Vietnam and USA used a lattice model to study the aggregation rates of proteins. They found that the probability for a protein sequence to appear in the conformation of the aggregated state can be used to determine the temperature at which proteins can aggregate most easily. They also found a correlation between aggregation time and the strength of interactions between charged amino acids, which is consistent with experimental observation. In a series of four papers published in JPSJ in February, May and October 2010, Dr. Wen-Jong Ma (now at Graduate Institute of Applied Physics, National Chengchi University, Taipei) and Dr. Hu used molecular dynamics to study relaxation and aggregation of protein chains under various conditions. They found that when the bending-angle dependent and torsion-angle dependent interactions are zero or very small, then protein chains tend to aggregate at lower temperatures. Such result is useful for understanding aggregation of Aβ40 and Aβ42.
|
|||
(2) | 西元年:2009 研究人員(中):胡進錕 研究人員(英):HU, CHIN-KUN, Armen Allahverdyan 研究成果名稱(中):物理所胡進錕研究員提出新理論 解釋生物多形現象及同域物種形成 研究成果名稱(英):Researchers from Taiwan and Armenia Propose New Theory of Polymorphism and Sympatric Speciation 簡要記述(中):世界上的生物擁有變化萬千的多樣性面貌,即使同種生物外形上也有多樣變化, 這是自然界多采多姿的關鍵。正如同人類血型有O型、A型、B型和AB型,小樹林蝸牛(Grove snail,學名 Cepaea Nemoralist)也有褐、黃、粉紅等不同顏色。而對生物學家來說,這種多形現象(polymorphism)不僅有趣,更具有生物演化的重要學術意涵。因為這些呈現多形的生物可能有相同基因體(如雌雄鱷魚基因體相同);也可能有不同的基因體(如雌雄哺乳類動物基因體不同)。這些都與物種為求適應環境,試圖存活下去,息息相關。 生物學家同時也發現,環境 ( environment ) 是促使同一物種(species)發展多形(morph)的非常重要因素。例如,在春天時與環境顏色相近的褐、粉紅色小樹林蝸牛,不易被獵食,容易存活,而夏、秋天,黃色小樹林蝸牛則存活較多。時序與環境的變化,如何影響多形現象是非常吸引人的學術問題。 本院物理所胡進錕教授與亞美尼亞葉里溫物理研究所的 Armen Allahvendyan 教授,2人共同於2009年2月6日在頂尖物理學專業期刊「物理評論通訊」(Physical Review Letters 102,058102) 發表一篇論文,指出隨時間精細週期變化的環境(fine-grained time-periodic environment)有可能讓原來居於劣勢的物種型態(morph)存活下來,而造成多形現象,這有利於該物種的繁衍。本理論與一項微生物族群的實驗結果相符。 胡進錕研究員解釋,隨時間精細週期變化的環境是指在一生物體的生命期中,環境已有數個週期的變化。例如,小樹林蝸牛生命期約7至8年,它在生命期中經歷7至8次四季的變化,因此它可感受到精細週期變化的環境。胡進錕研究員與Armen Allahvendyan 教授應用演化博弈理論(evolutionary game theory)和Kapiza法(P.L. Kapiza 1894~1984,得1978年諾貝爾物理獎) 研究各種形態生物總數隨時間變化的現象而獲得先前所說的結論。 簡要記述(英):The impact of the environment on adaptation, selection, and evolution is an important subject of biological research. The main mechanism by which adaptation occurs on the population level is by polymorphism and consequently mechanisms of polymorphism attract much attention in various scientific communities, from fields as diverse as ecology, population genetics and biology. On 6 February, 2009, Dr. Armen Allahverdyan of the Yerevan Physics Institute, Yerevan, Armenia and Dr. Chin-Kun Hu of the Institute of Physics published a new theory of polymorphism and sympatric speciation in a leading international physics journal, Physical Review Letters. The article explored a new mechanism of polymorphism related to the influence of a fast, time-dependent (fine-grained) environment. Polymorphism is the term used for two or more clearly different types of phenotype (morphs) that exist in one interbreeding population. One of the most well-known and vivid examples of polymorphism are the human ABO blood groups. Humans with four different blood groups – A, B, AB and O live in one population. The origin of this environmentally-driven polymorphism is related to periodically appearing epidemics of cholera. In normal (cholera-free) periods the O group has a physiological advantage over all other groups, but the other three groups, especially the AB group, are more resistant to cholera. In the context of the current theory 'fast' means that the environment can change many times during an individual's life-time. For example a Grove snail (Cepaea Nemoralist) which lives 7-8 years can experience many seasonal changes. Up until now such a fine-grained environment was not viewed as a potential source of polymorphism, as according to generally accepted common-sense among biologists, individuals exist in an average, static environment, and thus adapt to it. Up until now time-dependence was not considered. However, Allahverdyan and Hu discovered that under certain conditions, weak morphs (i.e., certain groups within the population) can compete and survive in the struggle with strong morphs, since they adjust more flexibly to their time-varying environment, thereby creating a polymorphic state. Moreover, the researchers show that overall fitness during the establishment of this polymorphism can decrease. Paradoxical as it seems, this result agrees with recent experiments on microbial populations subject to a fine-grained environment.
|
|||
(3) | 西元年:2008 研究人員(中):胡進錕、洪耀正 研究人員(英):HU, CHIN-KUN, Yao-Chen Hung 研究成果名稱(中):「瞬間轉換熵」與混沌通訊加密方法 研究成果名稱(英):Novel Method of Chaotic Communications with Potentially Wide-ranging Applications 簡要記述(中):本所「統計與計算物理實驗室」研究員胡進錕教授與物理研究所博士後研究學者洪耀正提出一個嶄新的「瞬間轉換熵」(Temporal Transfer Entropy)觀念,為傳統通訊傳遞方式頻遭破解的窘境,開創嶄新加密方法。這篇論文已於2008年12月12日發表在國際知名期刊《物理評論通訊》(Physical Review Letters) [1],由於此概念應用層面非常廣泛,可望受到國際學術界和產學界的高度重視。傳統的混沌加密方式,是將想要隱藏的資訊,加載於由混沌信號所構築的載波裡。藉由載波紊亂、無序的特性,第三者無從獲悉加密者所欲傳遞的訊息。然而隨著訊號析離技術的發展,這樣的方式已經漏洞百出。 針對這些問題,洪耀正博士和胡進錕教授提出一個新穎的解決之道,亦即利用混沌載波間的因果相關性(Causality)來編撰二元訊息。換句話說,訊息不再包含於混沌載波之中,而是載波與載波間具有方向性的瞬時相關性。為了讓接收者轉譯出訊息,他們基於訊息理論(Information Theory)引入了「瞬間轉換熵」(Temporal Transfer Entropy)的概念,以監控並量取因果相關性的瞬時變化。如此一來,外人眼中沓亂隱晦的數字陣列,卻同時也是知情者眼中意涵豐富的二元符號。 更令人鼓舞的是,這項「瞬間轉換熵」的分析工具,可進一步應用到其它不同領域,諸如醫學、經濟學、以及氣象學等學科。舉例來說,癲癇症患者在進行外科手術切除大腦局部前,必須明確地定位出癲癇發作區間以減少手術對病人腦部的傷害。藉由腦波訊號的紀錄以及即時因果相關性的分析,醫師將可準確掌握發作部位從而降低手術造成的損傷。而藉由此工具分析歷年來溫度變化、二氧化碳濃度變化等數據資料,也有助於釐清造成地球暖化現象的因果關係。 簡要記述(英):Two physicists from the Institute of Physics of Academia Sinica in Taipei, Dr. Yao-Chen Hung and Dr. Chin-Kun Hu, have developed a new method of “chaotic communication,” an application of Chaos Theory aimed at providing secure transmission of information through telecommunications technologies. Their research, published in Physical Review Letters, a leading international physics journal, on 12 December 2008, has potential applications in fields as wide-ranging as brain-surgery and climate change. “In the bestseller ‘The Da Vinci Code,’ symbologist Robert Langdon is stunned to discover a trail of clues to a bizarre murder hidden in the works of Da Vinci – the clues visible for all to see, and yet ingeniously disguised by the painter,” said Dr. Hu, in an attempt to explain the complicated abstract physical concepts that surround his latest paper. “Physics, it seems, can mask its secrets in a similar manner!” Traditionally, the basic idea underpinning chaotic communication has been to mask a weak message onto a strong chaotic carrier. Because of the randomness and disorderliness of the carrier, the intruder fails to uncover the transmitted message. However, since the development of time series analysis, says Hu, such a scheme has become a little antiquated. In the newly published paper, the two Taiwanese physicists have developed a counterintuitive scheme which hides binary messages in causal relationships between coupled chaotic systems. In other words, the message is no longer contained in the carrier, but in the instantaneous causality between carriers. At the receiver, the encrypted message is recovered by a measure termed, ‘temporal transfer entropy’ (TTE), a concept based on information theory. The scheme has been demonstrated to be robust against external noise and some traditional attacks. Most interestingly, the proposed nonlinear measurement, TTE, can be applied to many different fields, such as neurophysiology, economics, and climatology. For example, successful brain surgery in patients with medically intractable epilepsy strongly depends on an accurate definition of the brain volume that evokes seizure; monitoring the causality of possible interactions within the epileptogenic network would be beneficial to locate the epileptic focus and then minimize surgery-induced neurological deficits. (See Matthaus Staniek and Klaus Lebnertz in a Physics Review Letters paper published, 18 April 2008). Moreover, the analysis of variations of temperature, concentration of greenhouse gases, and solar total irradiance, could be of great importance in identifying the exact origins causing global warming. The paper entitled “Chaotic Communication via Temporal Transfer Entropy” was published in Physical Review Letters volume 101, 244102 on 12 December 2008.
|
|||
(4) | 西元年:2007 研究人員(中):胡進錕 研究人員(英):HU, CHIN-KUN 研究成果名稱(中):電腦模擬蛋白質的的展開與再摺疊 研究成果名稱(英):Computer Simulations of Protein Unfolding and Refolding 簡要記述(中):美國哥倫比亞大學Julio M. Fernandez 和 Hongbin Li以原子力顯微鏡研究泛素(ubiquitin)的重新摺疊過程。他們將泛素用原子力顯微鏡拉開,再將拉力降至某一值fq,然後觀察泛素重新摺疊。他們發現重新摺疊的過程與起始條件有關,摺疊所需的時間tF的指數與fq成正比[Science 303,1674(2004)]。中央研究院物理所胡進錕與合作者用鄉信廣模型(Go model)及分子動力學模擬法研究免疫球蛋白氨基酸系列I27用力拉開,再將拉力降至fq的重新摺疊過程,他們也發現重新摺疊的過程與起始條件有關,且摺疊所需的時間tF的指數與fq成正比。此研究成果發表於「美國科學院論文集 [Proc. Natl. Acad. Sci. U.S.A. 103, 93-98 (2006)]」。有關泛素的模擬結果則刊於2007年生物物理期刊 [Biophysical Journal 91, 547-561(2007). ] 簡要記述(英):Mechanical folding trajectories for polyproteins starting from initially stretched conformations generated by single-molecule atomic force microscopy experiments [Fernandez, J.M. & Li, H. (2004) Science 303, 1674-1678] show that refolding, monitored by the end-to-end distance R, occurs in distinct multiple stages. To clarify the molecular nature of folding starting from stretched conformations, we have probed the folding dynamics, upon force quench, for the single 127 domain from the muscle protein titin by using a Cα-Go model. Upon temperature quench, collapse and folding of 127 are synchronous. In contrast, refolding from stretched initial structures not only increases the folding and collapse time scales but also decouples the two kinetic processes. The increase in the folding times is associated primarily with the stretched state to compact random coil transition. Surprisingly, force quench does not alter the nature of the refolding kinetics, but merely increases the height of the free-energy folding barrier. Force quench refolding times scale as tF~t0Fexp(fq∆xf/kBT), where xf~0.6 nm is the location of the average transition state along the reaction coordinate given by end-to-end distance. [Mai Suan Li, Chin-Kun Hu, Dmitri K. Klimov, and D. Thirumalai, Proc. Natl. Acad. Sci. U.S.A. 103, 93-98 (2006)]. Similar results for unfolding and refolding of ubiquitin was published by M. S. Li, M. Kouza, and C.-K. Hu at [Biophysical Journal, 91, 547 (2007)]. |