Chen, Yeng-Long / Research Fellow

pi_image

Contact Information

Education

  • Ph.D. University of Illinois at Urbana-Champaign, 2003
  • M.S. University of Illinois at Urbana-Champaign, 2001
  • B.S. California Institute of Technology, 1998

Secretary

Rao, Cindy / 886-2-2789-8916

cindy14 [at] gate.sinica.edu.tw

Research Interest

  • Polymer physics
  • Computer simulations of bio-macromolecule physics in confinement
  • Microscopic liquid state theory of colloidal and nano- particles
  • Thermodynamics of nanoparticle - polymer mixtures
  • Dynamics of complex fluids

獎項及殊榮

(1) 國內學術研究獎項 2011, 2012, 2013, 2014, 2015 AS Career Development Award
(2) 其他國際學術研究獎項 2007-10 C.N. Yang Visiting Scholar, CUHK
(3) 其他國際學術研究獎項 2006-08 2006年美國李氏傳統基金會獎(Li Foundation Heritage Prize)

Experience

  • NIH Genomics Science Training Program, 2003-2005
  • Postdoctoral Researcher, University of Wisconsin-Madison, 2003-2005

Publication

Journal Papers

  • [1]     C.-T. Liao, A.-J. Liu, Y.-L. Chen*, 2022, “Flow-induced “waltzing” red blood cells: microstructural reorganization and the corresponding rheological response”, SCIENCE ADVANCES, 8, eabq5248. (SCIE) (IF: 14.143; SCI ranking: 6.8%)

  • [2]     F.-W. Wang, Y.-J. Chen, J.-R. Huang, Y-L. Chen*, 2022, “Probing the stoichiometry dependence of enzyme-catalyzed junction zone network formation in aiyu pectin gel via a reaction kinetics model”, POLYMERS, 14, 4631. (SCIE) (IF: 4.329; SCI ranking: 19.8%)

  • [3]     T.-H. Yen*, Y.-L. Chen*, 2022, “Analysis of Gas Nano-Clusters in Water using All-atom Molecular Dynamics”, LANGMUIR, 38, 13195. (SCIE) (IF: 3.882; SCI ranking: 39.1%,44.4%,41.1%)

  • [4]     P.M. Wu*, C.-Y. Chung, Y.-R. Chen, Y.H.Su, K.S. Chang-Liao, P.W. Chi, T. Paul, Y.-J. Chen, Y.-L. Chen, S. F. Wang, P. Badgujar, B.-N. Chen, C.-L. Cheng and M.-K. Wu, 2022, “Vibrational and electrochemical studies of pectin—a candidate towards environmental friendly lithium-ion battery development”, PNAS Nexus, 1, 1. (SCIE)

  • [5]     Fan-Wei Wang, Michela Geri, Yun-Ju Chen, Jung-Ren Huang, Gareth H. McKinley,*, Yeng-Long Chen*, 2022, “Rheo-chemistry of gelation in aiyu (fig) jelly”, FOOD HYDROCOLLOIDS, 123, 107001. (SCIE) (IF: 9.147; SCI ranking: 6.8%,3.5%)

  • [6]     Tsu-Hsu Yen,* Chia-He Lin, and Yeng-Long Chen*, 2021, “Effects of Gas Adsorption and Surface Conditions on Interfacial Nanobubbles”, LANGMUIR, 37, 2759. (SCIE) (IF: 3.882; SCI ranking: 39.1%,44.4%,41.1%)

  • [7]     Supriya Roy and Yeng-Long Chen*, 2021, “Rich phase transitions in strongly confined polymer–nanoparticle mixtures: Nematic ordering, crystallization, and liquid–liquid phase separation”, Journal of Chemical Physics, 154, 024901. (SCIE) (IF: 3.488; SCI ranking: 50%,24.3%)

  • [8]     Chih-Tang Liao, Yeng-Long Chen*, 2019, “Shear-induced non-monotonic viscosity dependence for model red blood cell suspensions in microvessels”, BIOMICROFLUIDICS, 13, 064115. (SCIE) (IF: 2.8; SCI ranking: 59%,58.3%,72.9%,29.4%)

  • [9]     Lee, Seonghyun; Lee, Yelin; Kim Yongkyun; Wang Cong; Park, Jungyul; Jung, Gun; Chen, Yenglong; Chang, Rakwoo; Ikeda, Shuji; Sugiyama, Hiroshi; Jo, Kyubong*, 2019, “Nanochannel-Confined TAMRA-Polypyrrole Stained DNA Stretching by Varying the Ionic Strength from Micromolar to Millimolar Concentrations”, POLYMER, 11, 15. (SCIE) (IF: 4.43; SCI ranking: 17.6%)

  • [10]     C.-W. Lee, Y.-L. Chiang, J.-T. Liu, Y.-X. Chen, C.-H. Lee,* Y.-L. Chen,* and I.-S. Hwang*, 2018, “Emerging Roles of Air Gases in Lipid Bilayers”, SMALL, 14, 1802133. (SCIE) (IF: 13.281; SCI ranking: 10.1%,8.6%,7.4%,12.1%,6.9%,10.1%)

  • [11]     Y.-R. Pan, C.-C. Chen, Y.-T. Chan, H.-J. Wang, F.-T. Chien, Y.-L. Chen, J.-L. Liu, and M.-H. Yang*, 2018, “STAT3-coordinated migration facilitates the dissemination of diffuse of large B-cell lymphomas”, NATURE COMMUNICATIONS, 9, 3696. (SCIE) (IF: 14.919; SCI ranking: 5.5%)

  • [12]     S. Roy, D. Luzhbin, and Y.-L. Chen* , 2018, “Investigation of nematic to smectic phase transition and dynamical properties of strongly confined semiflexible polymers using Langevin dynamics”, SOFT MATTER, 14, 7382. (SCIE) (IF: 3.679; SCI ranking: 46.9%,43.8%,26.7%,28.6%)

  • [13]     T.-A. Lee, W.-H. Liao, Y.-F. Wu, Y.-L. Chen, and Y.-C. Tung*, 2018, “Electrofluidic Circuit-Based Microfluidic Viscometer for Analysis of Newtonian and Non-Newtonian Liquids under Different Temperatures”, ANALYTICAL CHEMISTRY, 90, 2371. (SCIE) (IF: 6.986; SCI ranking: 9.2%)

  • [14]     Yi-Xian Chen, Yeng-Long Chen*, and Tsu-Hsu Yen*, 2018, “Investigating Interfacial Effects on Surface Nanobubbles without Pinning Using Molecular Dynamics Simulation”, LANGMUIR, 34, 15360. (SCIE) (IF: 3.882; SCI ranking: 39.1%,44.4%,41.1%)

  • [15]     Y.-F. Wu, P.-S. Hsu*, C.-S. Tsai, K. Pan, and Y.-L. Chen* , 2018, “Significantly increased low shear rate viscosity, blood elastic modulus, and RBC aggregation in adults following cardiac surgery”, SCIENTIFIC REPORTS, 8, 7173. (SCIE) (IF: 4.38; SCI ranking: 23.3%)

  • [16]     Wei Chien, Yeng-Long Chen*, 2017, “Confinement, Curvature, and Attractive Interaction Effects on Polymer Surface Adsorption”, JOURNAL OF CHEMICAL PHYSICS, 147, 064901. (SCIE) (IF: 3.488; SCI ranking: 50%,24.3%)

  • [17]     F.-T. Chien, P.-K. Lin, W. Chien, C.-H. Hung, M. –H. Yu, C.-F. Chou, Y.-L. Chen*, 2017, “Crowding-facilitated macromolecular transport in attractive micropost arrays”, SCIENTIFIC REPORTS, 7, 1340. (SCIE) (IF: 4.38; SCI ranking: 23.3%)

  • [18]     Chih-Tang Liao, Yi-Fan Wu, Wei Chien, Jung-Ren Huang, Yeng-Long Chen*, 2017, “Modeling shear-induced particle ordering and deformation in a dense soft particle suspension”, Journal of Physics: Condensed Matter, 29(43), 435101.

  • [19]     Wei Chien and Yeng-Long Chen*, 2016, “Abnormal polymer transport in crowded attractive micropost arrays”, SOFT MATTER, 12,7696. (SCIE) (IF: 3.679; SCI ranking: 46.9%,43.8%,26.7%,28.6%)

  • [20]     Dmytro A. Luzhbin and Yeng-Long Chen*, 2016, “Shifting the Isotropic–Nematic Transition in Very Strongly Confined Semiflexible Polymer Solutions”, MACROMOLECULES, 49 (16), 6139–6147. (SCIE) (IF: 5.985; SCI ranking: 8.8%)

  • [21]     S.H. Au, B.D. Storey, J.C. Moore, Q. Tang,Y.-L. Chen, S. Javaid, A.F. Sarioglu, R. J. Sullivan, M.W. Madden, R. O’Keefe, D.M. Langenau, D.A. Haber, S. Maheswaran, S.L. Stott and M. Toner* , 2016, “Clusters of circulating tumor cells traverse capillary-sized vessels”, PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 113(8),4947. (SCIE) (IF: 11.205; SCI ranking: 11%)

  • [22]     2. G.-J. Liao, F.-T. Chien, D. Luzhbin, and Y.-L. Chen* , 2015, “Entropic attraction: Polymer compaction and expansion induced by nano-particles in confinement”, JOURNAL OF CHEMICAL PHYSICS, 142, 174904. (SCIE) (IF: 3.488; SCI ranking: 50%,24.3%)

  • [23]     Z. Peng*, Y.-L. Chen, H. Lu, Z. Pan, H.-C. Chang , 2015, “Mesoscale simulations of two model systems in biophysics: from red blood cells to DNAs”, Computational Particle Mechanics, 1, 339. (SCIE) (IF: 2.105; SCI ranking: 47.2%,58.8%)

  • [24]     Z. Liu, J. Liu, R. Wang*, and Y.-L. Chen*, 2014, “Conformation-dependent translocation of a star polymer through a nanochannel ”, Biomicrofluidics, 8, 054107. (SCIE) (IF: 2.8; SCI ranking: 59%,58.3%,72.9%,29.4%)

  • [25]     J. Lee, S. Kim, H. Jeong, G.Y. Jung, R. Chang*, Y.-L. Chen*, and K. Jo*, 2014, “Nanoslit confined DNA at low ionic strengths ”, ACS Macro Letters, 3, 926. (SCIE) (IF: 6.903; SCI ranking: 7.7%)

  • [26]     I. Stachiv*, J. Zapomel, Y.-L. Chen* , 2014, “Simultaneous determination of the elastic modulus and density / thickness of ultrathin films utilizing micro-/nanoresonators under applied axial force”, JOURNAL OF APPLIED PHYSICS, 115, 12430. (SCIE) (IF: 2.546; SCI ranking: 49.4%)

  • [27]     YL Chen*, 2014, “Inertia-and deformation-driven migration of a soft particle in confined shear and Poiseuille flow”, RSC Advances, 4, 17908. (SCIE) (IF: 3.361; SCI ranking: 45.3%)

  • [28]     YL Chen*, YH Lin, JF Chang, P Lin, 2014, “Dynamics and Conformation of Semiflexible Polymers in Strong Quasi-1D and-2D Confinement”, MACROMOLECULES, 47,1199. (SCIE) (IF: 5.985; SCI ranking: 8.8%)

  • [29]     Yeng-Long Chen, 2013, “Electro-entropic effects on DNA relaxation in a sub-persistence length nanochannel”, Biomicrofluidics, 7,054119. (SCIE) (IF: 2.8; SCI ranking: 59%,58.3%,72.9%,29.4%)

  • [30]     Jia-Wei Yeh, Alessandro Taloni, Yeng-Long Chen, Chia-Fu Chou, 2012, “Single Molecule Tug- of- War of DNA at Micro-Nanofluidic Interfaces”, NANO LETTERS, 12, 1597. (SCIE) (IF: 11.189; SCI ranking: 11.2%,13.6%,9.5%,14%,9.4%,15.9%)

  • [31]     Po-keng Lin, Chih-Chen Hsieh, Yeng-Long Chen*, Chia-Fu Chou*, 2012, “ The Effects of Topology and Ionic Strength on Double-Stranded DNA Confined in Nanoslits”, MACROMOLECULES, 45 , 2920. (SCIE) (IF: 5.985; SCI ranking: 8.8%)

  • [32]     I. Stachiv, A. I. Fedorchenko, and Y.-L. Chen*, 2012, “Mass detection by means of the vibrating nanomechanical resonators”, APPLIED PHYSICS LETTERS, 100, 093110. (SCIE) (IF: 3.791; SCI ranking: 29.4%)

  • [33]     Govind A. Hegde, Jen-fang Chang, Yeng-long Chen*, and Rajesh Khare*, 2011, “Structural and Dynamic Properties of Ring Polymers in Solution: A Comparison between Molecular Dynamics, Multiple Particle Collision Dynamics and Lattice Boltzmann Simulations”, J CHEM PHYS, 135,184901. (SCIE) (IF: 3.488; SCI ranking: 50%,24.3%)

  • [34]     P.-K. Lin, J.-F. Chang, Y.-L. Chen* , 2011, “Partial hydrodynamic screening of confined linear and circular ds-DNA dynamics”, PHYSICAL REVIEW E, 84,031917. (SCIE) (IF: 2.529; SCI ranking: 35.3%,14.5%)

  • [35]     A. Hammack, Y.-L. Chen, J. Kreft* , 2011, “Role of dissolved salts in thermophoresis of DNA: Lattice Boltzmann based simulations”, PHYSICAL REVIEW E, 83,031915. (SCIE) (IF: 2.529; SCI ranking: 35.3%,14.5%)

  • [36]     Y.-L. Chen*, P.-K. Lin, and C.F. Chou , 2010, “Generalized force-extension relation for worm-like chains in slit confinement”, Macromolecules, ma102268b. (SCIE) (IF: 5.985; SCI ranking: 8.8%)

  • [37]     C.-W. Hsu and Y.-L. Chen*, 2010, “Migration and fractionation of deformable particles in microchannel”, J. Chem. Phys, 133, 034906. (SCIE) (IF: 3.488; SCI ranking: 50%,24.3%)

  • [38]     S. Ramakrishnan*, S. A. Shah, L. Ruggeri, Y. L. Chen, K. S. Schweizer, and C. F. Zukoski , 2009, “Collective Diffusion in Colloid-Polymer Suspensions: Relative Role of Thermodynamics and Hydrodynamics”, Langmuir, 25, 10507. (SCIE) (IF: 3.882; SCI ranking: 39.1%,44.4%,41.1%)

  • [39]     Kyubong Jo, Yeng-Long Chen, Juan J. de Pablo and David C. Schwartz, 2009, “Elongation and migration of single DNA molecules in microchannels using oscillatory shear flows”, LAB ON A CHIP, 9, 2348. (SCIE) (IF: 6.799; SCI ranking: 9%,10.3%,20.7%,7.8%,31.8%)

  • [40]     Po-Keng Lin, Keng-hui Lin,Chi-Cheng Fu, K.-C. Lee,Pei-Kuen Wei, Woei-Wu Pai, Pei-Hsi Tsao, Y.-L. Chen* and W. S. Fann*, 2009, “One-Dimensional Dynamics and Transport of DNA Molecules in a Quasi-Two-Dimensional Nanoslit”, Macromolecules, 42, 1770. (SCIE) (IF: 5.985; SCI ranking: 8.8%)

  • [41]     J.K. Kreft, Y.-L. Chen*, and H.-C. Chang, 2008, “Conformation and trapping rate of DNA at a convergent stagnation point”, Phys. Rev. E, 77, 030801(R). (SCIE) (IF: 2.529; SCI ranking: 35.3%,14.5%)

  • [42]     R. Wang, Y.-L. Chen, J. Hu, and G. Xue , 2008, “Depletion-induced surface alignment of asymmetric diblock copolymer in selective solvents”, J. Chem. Phys., 129, 044907. (SCIE) (IF: 3.488; SCI ranking: 50%,24.3%)

  • [43]     Y.-L. Chen*, H. Ma, M.D. Graham, J.J. de Pablo, 2007, “Modeling DNA in confinement: A comparison between Brownian dynamics and lattice Boltzmann method”, Macromolecules, 40, 5978. (SCIE) (IF: 5.985; SCI ranking: 8.8%)

  • [44]     J.K. Kreft and Y.-L. Chen, 2007, “Simulations of DNA thermal diffusion in a microchannel”, Phys. Rev. E, 76,021912. (SCIE) (IF: 2.529; SCI ranking: 35.3%,14.5%)

  • [45]      P.-K. Lin, C.-C. Fu., Y.-L. Chen, Y.-R. Chen, P.-K. Wei, C.H. Kuan and W.S. Fann, 2007, “Static Conformation and Dynamics of Single DNA Molecules Confined in Nanoslits”, Phys. Rev. E, 76, 011806. (SCIE) (IF: 2.529; SCI ranking: 35.3%,14.5%)

  • [46]     R. Wang, Z. Jiang, G. Xue and Chen, Yeng-Long, 2006, “ Surface-induced phase transition of asymmetric diblock copolymer in selective solvents”, J. Phys. Chem. B, 110, 22726. (SCIE) (IF: 2.991; SCI ranking: 57.4%)

  • [47]     Y.-L. Chen, V. Kobelev, K.S. Schweizer, 2005, “Barrier Hopping, Viscous Flow, and Kinetic Gelation in Nanoparticle-Polymer Suspensions”, Phys. Rev. E, 71, 041405. (SCIE) (IF: 2.529; SCI ranking: 35.3%,14.5%)

  • [48]     Y.-L. Chen, K. Jo, D.C. Schwartz, M.D. Graham, J.J. de Pablo , 2005, “DNA Molecules in Microfluidic Oscillatory Flow”, Macromolecules, 38, 6608. (SCIE) (IF: 5.985; SCI ranking: 8.8%)

  • [49]     M. Doxastakis, Y.-L. Chen , J.J. de Pablo , 2005, “Potential of mean force between two small colloids in a solution of nonadsorbing polymers”, J. Chem. Phys., 123, 034901. (SCIE) (IF: 3.488; SCI ranking: 50%,24.3%)

  • [50]     Y.-L. Chen, M.D. Graham, J.J. de Pablo, G.C. Randall, M. Gupta, and P.S. Doyle , 2004, “Conformation and Dynamics of Single DNA in Parallel-Plate Slit Microchannels”, Phys. Rev. E, 70, 060901(R). (SCIE) (IF: 2.529; SCI ranking: 35.3%,14.5%)

  • [51]     S. Ramakrishnan, Y.-L. Chen, K.S. Schweizer*, and C.F. Zukoski* , 2004, “Gel Structure and Elastic Properties of Polymer-Colloid Mixtures”, Phys. Rev. E, 70, 040401(R). (SCIE) (IF: 2.529; SCI ranking: 35.3%,14.5%)

  • [52]     Y.-L. Chen, K.S. Schweizer*, 2004, “Liquid State Theory of Structure, Thermodynamics, and Phase Separation in Suspensions of Rod Polymers and Hard Spheres”, JOURNAL OF PHYSICAL CHEMISTRY B, 108, 6687. (SCIE) (IF: 2.991; SCI ranking: 57.4%)

  • [53]     Y.-L. Chen, K.S. Schweizer*, 2004, “Microscopic Theory of Gelation and Elasticity in Polymer-Particle Suspensions”, J. Chem. Phys., 120, 7212. (SCIE) (IF: 3.488; SCI ranking: 50%,24.3%)

  • [54]     M. Doxastakis, Y.-L. Chen, O. Guzmán, and J.J. de Pablo*, 2004, “Polymer-Particle Mixtures: Depletion and Packing Effects”, J. Chem. Phys, 120, 9335. (SCIE) (IF: 3.488; SCI ranking: 50%,24.3%)

  • [55]     S.A. Shah, Y.-L. Chen, S. Ramakrishnan, K.S. Schweizer*, and C.F. Zukoski* , 2003, “Microstructure of Dense Colloid-Polymer Suspensions and Gels”, JOURNAL OF PHYSICS-CONDENSED MATTER, 15, 4751. (SCIE) (IF: 2.333; SCI ranking: 59.4%)

  • [56]     S.A. Shah, Y.-L. Chen, C. F. Zukoski*, and K.S. Schweizer* , 2003, “Phase Behavior and Concentration Fluctuations in Suspensions of Hard Spheres and Near Ideal Polymers”, J. Chem. Phys., 118, 3350. (SCIE) (IF: 3.488; SCI ranking: 50%,24.3%)

  • [57]     Y.-L. Chen, M. Fuchs, and K.S. Schweizer* , 2003, “Phase Separation in Colloid-Polymer Suspensions: Role of Solvent Quality, Physical Mesh, and Nonlocal Entropic Repulsion”, J. Chem. Phys., 118, 3880. (SCIE) (IF: 3.488; SCI ranking: 50%,24.3%)

  • [58]     4. S.A. Shah, S. Ramakrishnan, Y.-L. Chen, K.S. Schweizer*, and C.F. Zukoski* , 2003, “Scattering Studies of the Structure of Colloid-Polymer Suspensions and Gels”, Langmuir, 19, 5128. (SCIE) (IF: 3.882; SCI ranking: 39.1%,44.4%,41.1%)

  • [59]     S.A. Shah, Y.-L. Chen, K.S. Schweizer*, and C.F. Zukoski*, 2003, “Viscoelasticity and Rheology of Depletion Flocculated Gels and Fluids”, J. Chem. Phys., 119, 8747. (SCIE) (IF: 3.488; SCI ranking: 50%,24.3%)

  • [60]     Y.-L. Chen and K.S. Schweizer* , 2002, “Collective Structure and Dynamics in Dense Colloid-Rod Polymer Suspension”, LANGMUIR, 18, 7354. (SCIE) (IF: 3.882; SCI ranking: 39.1%,44.4%,41.1%)

  • [61]     Y.-L. Chen, K.S. Schweizer*, 2002, “Depletion Interaction In Suspensions of Spheres And Rod Polymers”, J CHEM PHYS, 117, 1351. (SCIE) (IF: 3.488; SCI ranking: 50%,24.3%)

發現與突破

  • [1]     西元年:2021
    研究人員(中):陳彥龍、Fan-Wei Wang, Michela Geri, Yun-Ru Chen, Jung-Ren Huang, Gareth McKinley
    研究人員(英):CHEN, YENG-LONG, Fan-Wei Wang, Michela Geri, Yun-Ru Chen, Jung-Ren Huang, Gareth McKinley
    研究成果名稱(中):愛玉膠化物理化學的流變性質演化
    研究成果名稱(英):Rheo-chemistry of Aiyu Gelation
    簡要記述(中):愛玉是台灣人的夏季甜點,由台灣獨特種植的愛玉種子製成。 與許多果膠不同,製作愛玉膠只需愛玉子與水混合,無需烹飪或添加酸。 這種簡單、獨特的性質源由於果膠聚合物的酶促活化、與鈣離子瞬態交聯以及形成穩定的鈣連接區塊交聯的複雜相互作用。我們使用先進的流變學和電子顯微鏡和反應動力學技術來了解愛玉粘彈性在凝膠化過程中的演化。我們發現了凝膠化過程中彈性和粘性曲線的拐點。這可能歸因於果膠聚合物與鈣離子結合位點形成長連接交聯區的化學及物理性質。 我們的團隊正在探索如何更好地控制愛玉凝膠的軟硬度品質和使用壽命。 此外,我們也正在計畫開發相關未來生物材料的應用。
    簡要記述(英):Aiyu is a popular summer dessert made from aiyu seeds uniquely cultivated in Taiwan. Unlike many pectin gels, making aiyu gels need only mixing with water, without cooking or adding acids. This simple, unique characteristic derives from the complex interplay of enzymatic activation of pectin polymers, transient binding with calcium ions, and stable cooperative calcium binding to form stable junction zone crosslinks. We employed advanced rheometry, electron microscopy , and reaction kinetics modeling techniques to understand how aiyu viscoelasticity progresses during gelation. We discovered a previously unreported phenomenon, reflected in an inflection point in the storage and loss moduli during gelation, that may be attributed to the formation of long junction zone crosslinks. Our team is exploring how to better control the quality and lifetime of the aiyu gel. Furthermore, we aim to develop future applications for biomaterials.


  • [2]     西元年:2018
    研究人員(中):陳彥龍、黃英碩, 李超煌
    研究人員(英):CHEN, YENG-LONG, Ing-Shouh Hwang, Chau-Hwang Lee
    研究成果名稱(中):水中空氣分子在脂質雙層的新角色
    研究成果名稱(英):Emerging roles of air gases in lipid bilayers
    簡要記述(中):物理所陳彥龍與黃英碩及應科中心李超煌帶領其同仁發現,溶在水中的空氣分子會聚集在脂質雙層膜內,影響脂質雙層膜的力學性質及穩定性。研究團隊利用差動共焦以及螢光顯微術量測脂囊泡膜,加上原子力顯微術量測支撐性脂雙層膜,相較在一般實驗條件下所製備的脂質雙層膜,去除氣體的水溶液中所形成的脂質雙層膜較軟且不穩定;而高濃度氮氣的水溶液中可觀察到脂質雙層膜的彎曲剛性與穩定性皆有提升,三元脂質膜的相分離現象則更為遲緩。分子動力模擬印證溶解在水中的氧和氮,會聚集在脂質雙層膜內,尤其氮分子停留在脂質雙層膜中的時間更長,對脂質尾端有更高的親和力是提高脂膜剛性的主因,可以定性解釋實驗所觀察到脂質雙層膜的彎曲剛性如何隨著氣體分子的濃度變化而改變。這些發現對於脂質雙層膜及細胞膜具有基礎而廣泛的影響,也意涵溶於水中的空氣分子可能對水溶液中很多其他物理化學及生物系統的性質及自組裝行為有某種程度的影響。
    簡要記述(英):Chia-Wei Lee, Ya-Ling Chiang, Ji-Ting Liu, Yi-Xian Chen, Chau-Hwang Lee*, Yeng-Long Chen*, and Ing-Shouh Hwang*

    Small 14, 1802133 (2018)

    Ing-Shouh Hwang, Yeng-Long Chen of Institute of Physics, and Chau-Hwang Lee of Research Center for Applied Sciences, together with their co-workers, report enrichment of dissolved air gases in lipid bilayers, which affects the mechanical properties and stability of lipid bilayers in aqueous solutions. Experimental measurements were based on differential confocal microscopy and fluorescence microscopy on giant unilamellar lipid vesicles, and atomic force microscopy on supported lipid bilayers. In comparison to lipid bilayers in ambient solutions (without gas control), the bilayers in degassed solutions are softer and less stable. High concentrations of nitrogen increase the bending moduli and stability of the lipid bilayers and impede phase separation in ternary lipid bilayers. Molecular dynamic simulations verified the enrichment of nitrogen and oxygen inside the lipid bilayer in supersaturated solutions. The simulations found that nitrogen accumulate in the lipid bilayer, and higher nitrogen affinity to the lipid tails accounts for increased bending rigidity. This confirms experimental observations of increased lipid bilayer bending moduli with increasing gas concentration. These findings have fundamental and wide implications for phenomena related to lipid bilayers and cell membranes. The results also imply that dissolved air gases may affect the properties and self-assembly behaviors in other physical, chemical, and biological systems in solutions.


  • [3]     西元年:2017
    研究人員(中):陳彥龍
    研究人員(英):CHEN, YENG-LONG, Chih-Tang Liao, Yi-Fan Wu, Wei Chien, Jung-Ren Huang
    研究成果名稱(中):探討高濃度軟顆粒懸浮液的微觀結構與流變性質
    研究成果名稱(英):Modeling shear-induced particle ordering and deformation in a dense soft particle suspension
    簡要記述(中):此研究利用模擬的方式探討高濃度軟顆粒懸浮液的微觀結構與流變性質之間的物理關係。 我們研究了在狹窄空隙中,外加剪切流如何造成顆粒的形變與微觀結構的改變,以及相應的流變性質變化。模擬的結果與實驗吻合:軟顆粒懸浮體的微觀結構隨著外加剪切流的增加而從無序到有序又變成無序的排列,其懸浮液的粘滯係數也隨之降低。模擬的結果預測了在適當的外加剪切流與下,高濃度懸浮顆粒會有長波長的蛇行運動,這現象可能是由於顆粒的曲折運動造成的。
    簡要記述(英):This work provides new insights into the relationship between particle microstructure and suspension rheology of concentrated deformable particle suspensions. Our group examined how shear-induced particle ordering and deformation relate to rheological behavior for dense soft particle suspensions confined in a narrow gap under steady external shear. We found that advanced computational modeling techniques are able to capture experimentally observed shear-induced transition from amorphous liquid to hexagonally arrayed patterns. Correspondingly, the suspension viscosity decreases as the particles become ordered. Our method also predicts that long wavelength particle slithering motion emerges for sufficiently dense suspensions, likely due to particle zigzag movements.
    主要相關著作:
    Chih-Tang Liao, Yi-Fan Wu, Wei Chien, Jung-Ren Huang, Yeng-Long Chen*, 2017, “Modeling shear-induced particle ordering and deformation in a dense soft particle suspension”, Journal of Physics: Condensed Matter, 29(43), 435101.


  • [4]     西元年:2016
    研究人員(中):陳彥龍
    研究人員(英):CHEN, YENG-LONG, S.H. Au, B.D. Storey, J.C. Moore, Q. Tang,Y.-L. Chen, S. Javaid, A.F. Sarioglu, R. J. Sullivan, M.W. Madden, R. O’Keefe, D.M. Langenau, D.A. Haber, S. Maheswaran, S.L. Stott and M. Toner*
    研究成果名稱(中):物理模型可解釋循環腫瘤細胞集群成功或失敗的通過毛細管。
    研究成果名稱(英):Physical modeling explains whether circulating tumor cell cluster break-up, become stuck, or pass through a micro-capillary.
    簡要記述(中):癌症轉移是全世界癌症死亡率的主要原因。該過程是腫瘤細胞通過血管壁(稱為外滲),並通過血流遠播散循環腫瘤細胞(稱為CTC)。物理研究所陳彥龍副研究員與哈佛大學醫學院合作研究發現CTC集群穿過血管壁毛細孔的機制。陳副研究員發展了一個物理模型可解釋循環腫瘤細胞集群通過一個小的毛細管中轉的成功或失敗。此研究發現,細胞間粘附力控制集群是否在過程中解體, 卡住,或單行排列的通過毛細管。這表示未來可發展利用改變細胞間粘附力的策略來降低轉移的概率。

    全文: doi:10.1073/pnas.1524448113

    簡要記述(英):Cancer metastasis is the leading cause of cancer mortality worldwide. The process is driven by circulating tumor cells (CTCs) that traverse through blood vessel walls (known as extravasation) and are disseminated far from the original tumor through blood flow. Yeng-Long Chen (YLC) from the Institute of Physics worked in a collaborative study with the Toner Group at Harvard Medical School to discover a mechanism for CTC clusters to traverse small capillaries in the blood vessel wall. YLC developed a computation model to successfully capture the success or failure of CTC cluster transit through a small capillary. It is found that inter-cellular adhesion forces control whether the cluster break-up, becomes stuck, or pass through the capillary single-file. This suggests future strategies to change inter-cellular adhesion to reduce the probability of metastases.

    Full text : doi:10.1073/pnas.1524448113

    主要相關著作:
    S.H. Au, B.D. Storey, J.C. Moore, Q. Tang,Y.-L. Chen, S. Javaid, A.F. Sarioglu, R. J. Sullivan, M.W. Madden, R. O’Keefe, D.M. Langenau, D.A. Haber, S. Maheswaran, S.L. Stott and M. Toner* , 2016, “Clusters of circulating tumor cells traverse capillary-sized vessels”, PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 113(8),4947. (SCIE) (IF: 11.205; SCI ranking: 11%)


  • [5]     西元年:2013
    研究人員(中):陳彥龍
    研究人員(英):CHEN, YENG-LONG
    研究成果名稱(中):納米通道內DNA分子的構象,力學和電熵效應
    研究成果名稱(英):Electro-entropic excluded volume effects on DNA looping and relaxation in nanochannels
    簡要記述(中):DNA分子是一鏈狀分子, 其輪廓長度可達到數百微米至毫米。在如病毒或細胞核高侷限環境內,DNA分子的物理性質會有大的改變。本研究探討了納米通道DNA分子的物理性質。 本研究發現了DNA的弛豫時間(表徵分子運動時間)與通道尺寸成反立方比。這一發現表明了侷限的尺度限制了分子動力學機制,並也可以及影響分子間的反應動力學。

    另外,分子間的靜電相互作用也可改變鏈構象和動力學。對於在弱靜電作用下較細的鏈分子,鏈結構可在細管道內形成如髮夾環的形態,且會有相當長的弛豫時間。相對的、在強靜電作用下較寬的鏈分子則抑制髮夾環的形成。
    簡要記述(英):DNA molecules are chain-like molecules with contour length reaching hundreds of microns to millimeters. Strong confinements such as in a virus or cell nucleus affect the physical properties of DNA molecules. This study investigated the confinement-induced mode-filtering phenomena of entropically restricted DNA molecules in square nanochannels. The DNA relaxation time, characterizing the molecular motion, is found to decrease cubically with the channel size. The finding shows that the confinement length scales restricts molecular dynamics mechanisms and influenced inter-molecular reaction kinetics.

    It is also found that the inter-molecular electrostatic interactions resulting in an effectively larger molecule significantly alter the chain conformation and dynamics in strong confinement. For thinner chains, looped chain configurations are found in channels with height comparable to the persistence length, with very slow relaxation compared to un-looped chains. Larger effective chain widths inhibit the formation of hairpin loops.
    主要相關著作:
    Yeng-Long Chen, 2013, “Electro-entropic effects on DNA relaxation in a sub-persistence length nanochannel”, Biomicrofluidics, 7,054119. (SCIE) (IF: 2.8; SCI ranking: 59%,58.3%,72.9%,29.4%)


  • [6]     西元年:2012
    研究人員(中):陳彥龍、葉佳唯、Alessandro Taloni、周家復
    研究人員(英):CHEN, YENG-LONG, Jia-Wei Yeh, Alessandro Taloni, Chia-Fu Chou
    研究成果名稱(中):奈米流道引致之單分子DNA拔河
    研究成果名稱(英):Entropic tug-of-war with DNA in a nanofluidic device
    簡要記述(中):單分子DNA穿隧奈米尺寸大小的流道,需克服因自由度減少而造成的熵能屏障,此行為在生物現象中扮演重要的角色。例如病毒傳送核酸DNA到宿主細胞。我們和周家復研究員的研究團隊利用微奈米製程與封裝技術,並結合高解析螢光顯微術為基礎,利用電控的方式操作單分子DNA使其跨越微奈米流道介面所形成的熵屏障,形成特殊且有趣的單一DNA左臂對右臂的拔河現象。參考我們先前發展DNA在納米流道的(力-擴展)關係,我們計算了熵驅動的拔河力量,以及力和通道高度的關係。
    簡要記述(英):Double stranded DNA molecules have a persistence length of approximately 50nm. Confining DNA molecules in nanochannels smaller than 100 nm strongly affects their physical properties and restricts DNA configuration entropy. Using the large difference of DNA entropy in nano- and micro-channels, we and our collaborators constructed a nanofluidic device with two micro-to-nano interfaces. The parts of a DNA molecule in the microchannel would "exert" effect forces that pulls on the DNA from both micro-nano interfaces, leading to a tug-of-war.

    Using the force-extension relation we previously developed (Chen et al, Macromolecules 2010), we determined the tug-of-war forces and how it depends on the channel height. This study provides new insight into the entropy-driven DNA motion for DNA translocation and DNA transcription inside the cell.


    主要相關著作:
    Jia-Wei Yeh, Alessandro Taloni, Yeng-Long Chen, Chia-Fu Chou, 2012, “Single Molecule Tug- of- War of DNA at Micro-Nanofluidic Interfaces”, NANO LETTERS, 12, 1597. (SCIE) (IF: 11.189; SCI ranking: 11.2%,13.6%,9.5%,14%,9.4%,15.9%)


  • [7]     西元年:2010
    研究人員(中):陳彥龍、許家瑋
    研究人員(英):CHEN, YENG-LONG, Chia-Wei Hsu
    研究成果名稱(中):軟粒子於微流管內之流体力學
    研究成果名稱(英):Migration of soft deformable particles in microflow
    簡要記述(英):We used a hybrid particle dynamics - fluid dynamics simulation method to determine the migration of soft particles in micro-capillary. It is discovered that the particle deformation couples with the flow dynamic to "push" the particles to the center fast stream. This explains the non-Newtonian rheology of soft particle suspensions.
    主要相關著作:
    C.-W. Hsu and Y.-L. Chen*, 2010, “Migration and fractionation of deformable particles in microchannel”, J. Chem. Phys, 133, 034906. (SCIE) (IF: 3.488; SCI ranking: 50%,24.3%)


Update Personal Data | Update Publication List | Synchronize | Last Updated: 2023-03-29
2
Back To Top