蘇維彬 / 研究員

pi_image

連絡資訊

學歷

  • 國立清華大學物理學博士

秘書

周泳恩 / 886-2-2789-8364

michelle0831[at]gate.sinica.edu.tw

研究興趣

  • 表面科學
  • 掃描探針顯微術
  • 金屬在半導體的磊晶成長
  • 奈米科學
  • 表面電性結構量測

獎項及殊榮

(1) 國內學術研究獎項 2013-01 中華民國物理學刊優良論文甲等獎
(2) 國內學術研究獎項 2011-06 中研院年輕學者研究著作獎

經歷

  • 本所博士後研究
  • 本所助研究員
  • 本所副研究員

學術著作

期刊論文

  • [1]     Yann Girard *, Sarah Benbouabdellah, Outhmane Chahib, Cyril Chacon, Amandine Bellec, Vincent Repain, Jérôme Lagoute, Yannick J. Dappe, César González, Wei-Bin Su, 2023, “Growth and local electronic properties of Cobalt nanodots underneath graphene on SiC(0001)”, Carbon, 208, 22-32. (SCIE) (IF: 9.594; SCI ranking: 16.7%,12.5%)

  • [2]     Shitha Valsan Korachamkandy, Shin-Ming Lu, Wen-Yuan Chan, Ho-Hsiang Chang, Chih-Hao Lee, Wei-Bin Su*, 2022, “Characterization of apex structures of scanning tunneling microscope tips with field emission resonance energies”, Japanese Journal of Applied Physics, 61, 085001. (SCIE) (IF: 1.48; SCI ranking: 78.8%)

  • [3]     Shitha Valsan Korachamkandy, Shin-Ming Lu, Wei-Bin Su*, Wen-Yuan Chan, Ho-Hsiang Chang, Horng-Tay Jeng, Chih-Hao Lee, and Chia-Seng Chang, 2022, “Probing tip-induced attractive deformation of graphite surfaces through wave function dissipation in field emission resonance”, Journal of Physics Communications, 6, 075010.

  • [4]     Wei-Bin Su*, Shin-Ming Lu, Ho-Hsiang Chang, Horng-Tay Jeng*, Wen-Yuan Chan, Pei-Cheng Jiang, Kung-Hsuan Lin, Chia-Seng Chang, 2022, “Impact of band structure on wave function dissipation in field emission resonance”, Physical Review B, 105(19), 195411. (SCIE) (IF: 4.036; SCI ranking: 38.7%,25.6%,31.9%)

  • [5]     Wei-Bin Su*, Shin-Ming Lu, Horng-Tay Jeng*, Wen-Yuan Chan, Ho-Hsiang Ho, Woei Wu Pai, Hsiang-Lin Liu, Chia-Seng Chang, 2020, “Observing quantum trapping on MoS2 through the lifetimes of resonant electrons: revealing the Pauli exclusion principle”, Nanoscale Advances, 2(12), 5848-5856. (SCIE) (IF: 4.553; SCI ranking: 34.1%,33.6%,51.4%)

  • [6]     Li-Wei Huang, Horng-Tay Jeng, Wei-Bin Su, Chia-Seng Chang*, 2020, “Indirect interactions of metal nanoparticles through graphene”, CARBON, 174, 132. (SCIE) (IF: 9.594; SCI ranking: 16.7%,12.5%)

  • [7]     Pei-Cheng Jiang, Cheng-Hsun-Tony Chang, Chen-Yuan Hsieh, Wei-Bin Su, and Jyh-Shen Tsay*, 2020, “A practical method for fabricating superparamagnetic films and the mechanism involved”, Nanoscale, 12, 14096. (SCIE) (IF: 7.79; SCI ranking: 17.9%,18.5%,27.1%,14.4%)

  • [8]     En-Xiang Chen, Hao-Yu Cheng, Zheng-Gang Chen, Wei-Liang Chen, Monika Kataria, Yu-Ming Chang, Yang-Fang Chen, Wei-Bin Su and Kung-Hsuan Lin*, 2020, “Enhancement of ultrafast photoluminescence from deformed graphene studied by optical localization microscopy”, NEW JOURNAL OF PHYSICS, 22, 013001. (SCIE) (IF: 3.732; SCI ranking: 25.6%)

  • [9]     Cheng-Hsun-Tony Chang, Pei-Cheng Jiang, Yu-Ting Chow, Hsi-Lien Hsiao, Wei-Bin Su, and Jyh-Shen Tsay*, 2019, “Enhancing silicide formation in Ni/ Si(111) by Ag-Si particles at the interface”, SCIENTIFIC REPORTS, 9, 8835. (SCIE) (IF: 4.38; SCI ranking: 23.3%)

  • [10]     Cheng-Hsun-Tony Chang*, Ho-Hsiang Chang, Pei-Cheng Jiang, and Wei-Bin Su, 2018, “Electronic growth of Ag islands on MoS2”, JAPANESE JOURNAL OF APPLIED PHYSICS, 57, 08NB10. (SCIE) (IF: 1.48; SCI ranking: 78.8%)

  • [11]     Shin-Ming Lu, Wen-Yuan Chan, Wei-Bin Su*, Woei Wu Pai, Hsiang-Lin Liu and Chia-Seng Chang, 2018, “Characterization of external potential for field emission resonances and its applications on nanometer-scale measurements”, NEW JOURNAL OF PHYSICS, 20, 043014. (SCIE) (IF: 3.732; SCI ranking: 25.6%)

  • [12]     Wen-Yuan Chan, Shin-Ming Lu, Wei-Bin Su*, Chun-Chieh Liao, Germar Hoffmann, Tsong-Ru Tsai, and Chia-Seng Chang, 2017, “Sharpness-induced energy shifts of quantum well states in Pb islands on Cu(111)”, NANOTECHNOLOGY, 28, 095706. (SCIE) (IF: 3.874; SCI ranking: 41.4%,55.1%,27.5%)

  • [13]     Wei-Bin Su*, Chun-Liang Lin, Wen-Yuan Chan, Shin-Ming Lu, and Chia-Seng Chang, 2016, “Field enhancement factors and self-focus functions manifesting in field emission resonances in scanning tunneling microscopy”, NANOTECHNOLOGY, 27, 175705. (SCIE) (IF: 3.874; SCI ranking: 41.4%,55.1%,27.5%)

  • [14]     D.A. Boyd, W.-H. Lin, C.-C. Hsu, M.L. Teague, C.-C. Chen, Y.-Y. Lo, W.-Y. Chan, W.-B. Su, T.-C. Cheng, C.-S. Chang, C.-I. Wu, and N.-C. Yeh*, 2015, “Single-step deposition of high-mobility graphene at reduced temperatures”, Nature Communications, 6, 6620. (SCIE) (IF: 14.919; SCI ranking: 5.5%)

  • [15]     Kung-Hsuan Lin*, Shao-Wei Weng, Po-Wei Lyu, Tsong-Ru Tsai, and Wei-Bin Su*, 2014, “Observation of optical second harmonic generation from suspended single-layer and bi-layer graphene”, APPLIED PHYSICS LETTERS, 105, 151605. (SCIE) (IF: 3.791; SCI ranking: 29.4%)

  • [16]     Yasuo Yoshida, Hung-Hsiang Yang, Hsu-Sheng Huang, Shu-You Guan, Susumu Yanagisawa, Takuya Yokosuka, Minn-Tsong Lin, Wei-Bin Su, Chia-Seng Chang, Germar Hoffmann, and Yukio Hasegawa, 2014, “Scanning tunneling microscopy/spectroscopy of picene thin films formed on Ag(111)”, JOURNAL OF CHEMICAL PHYSICS, 141, 114701. (SCIE) (IF: 3.488; SCI ranking: 50%,24.3%)

  • [17]     Shao-Wei Weng, Wei-Hsiang Lin, Wei-Bin Su*, En-Te Hwu, Peilin Chen, Tsong-Ru Tsai and Chia-Seng Chang, 2014, “Estimating Young’s modulus of graphene with Raman scattering enhanced by micrometer tip”, NANOTECHNOLOGY, 25, 255703. (SCIE) (IF: 3.874; SCI ranking: 41.4%,55.1%,27.5%)

  • [18]     Wei-Hsiang Lin, Ting-Hui Chen, Jan-Kai Chang, Jieh-I Taur, Yuan-Yen Lo, Wei-Li Lee, Chia-Seng Chang, Wei-Bin Su, and Chih-I Wu*, 2014, “Transferring Graphene Grown by Chemical Vapor Deposition to Any Substrate”, ACS Nano, 8, 1784. (SCIE) (IF: 15.881; SCI ranking: 7.8%,7.4%,6.3%,10.3%)

  • [19]     Hsu-Sheng Huang, Wen-Yuan Chan, Wei-Bin Su*, Germar Hoffmann, and Chia-Seng Chang, 2013, “Measurement of work function difference between Pb/Si(111) and Pb/Ge/Si(111) by high-order Gundlach oscillation”, JOURNAL OF APPLIED PHYSICS, 114, 214308. (SCIE) (IF: 2.546; SCI ranking: 49.4%)

  • [20]     Wen-Yuan Chan, Hsu-Sheng Huang, Wei-Bin Su*, Shin-Ming Lu, Germar Hoffmann, and Chia-Seng Chang, 2013, “Energy spacing between electronic resonances: a physical quantity correlating to diverse phases of the dense Pb overlayers on Si(111)”, JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 32, 011801. (SCIE) (IF: 1.416; SCI ranking: 76.9%,93.5%,80.6%)

  • [21]     Yuan-Yen Lo, Jung-Hung Chang, Germar Hoffmann, Wei-Bin Su, Chih-I Wu*, and Chia-Seng Chang, 2013, “A Comparative Study on the Adsorption Behavior of Pentacene”, JAPANESE JOURNAL OF APPLIED PHYSICS, 52, 101601. (SCIE) (IF: 1.48; SCI ranking: 78.8%)

  • [22]     W. Y. Chan, H. S. Huang, W. B. Su*, G. Hoffmann, S. M. Lu, C. S. Chang, M. K. Wu, and Tien T. Tsong, 2013, “Determining the Thickness of Pb Film Similar to Bulk with Energy Dispersion”, JAPANESE JOURNAL OF APPLIED PHYSICS, 52, 035802. (SCIE) (IF: 1.48; SCI ranking: 78.8%)

  • [23]     W. Y. Chan, H. S. Huang, W. B. Su*, W. H. Lin, H.-T. Jeng, M. K. Wu, and C. S. Chang , 2012, “Field-Induced Expansion Deformation in Pb Islands on Cu(111): Evidence from Energy Shift of Empty Quantum-Well States”, PHYSICAL REVIEW LETTERS, 108, 146102. (SCIE) (IF: 9.161; SCI ranking: 8.1%)

  • [24]     S. M. Lu, W. Y. Chan, H. Y. Chou, Y. P. Chiu, W. B. Su*, P. H. Chu, C. L. Jiang, C. S. Chang, H. L. Hsiao, and Tien T. Tsong, 2012, “Scanning Tunneling Spectroscopy Observation of Electronic Resonances Originating from 1x1 Potential on the Dense Pb Overlayer on Si(111)”, JAPANESE JOURNAL OF APPLIED PHYSICS, 51, 015702. (SCIE) (IF: 1.48; SCI ranking: 78.8%)

  • [25]     S. M. Lu*, H. S. Huang, W. B. Su, P. H. Chu, C. S. Chang, H. L. Hsiao, and Tien T. Tsong, 2011, “Disappearance of Lowest-Order Transmission Resonance in Ag Film of Critical Thickness”, JAPANESE JOURNAL OF APPLIED PHYSICS, 50, 08LB01. (SCIE) (IF: 1.48; SCI ranking: 78.8%)

  • [26]     W. B. Su*, S. M. Lu, C. S. Chang, and Tien T. Tsong, 2011, “Phase Contribution of Image Potential on Empty Quantum Well States in Pb Islands on the Cu(111) Surface - Reply”, PHYSICAL REVIEW LETTERS, 106, 249602. (SCIE) (IF: 9.161; SCI ranking: 8.1%)

  • [27]     C. Chuang, W.Y. Chang, W.H. Chen, J.S. Tsay*, W.B. Su, H.W. Chang, Y.D. Yao, 2011, “Thickness dependent reactivity and coercivity for ultrathin Co/Si(111) films”, THIN SOLID FILMS, 519, 8371-8374. (SCIE) (IF: 2.183; SCI ranking: 76.2%,69.6%,58.8%,62.3%)

  • [28]     H. W. Chang, J. S. Tsay, Y. C. Hung, W. Y. Chan, W. B. Su, C. S. Chang, and Y. D. Yao, 2011, “Investigation of Magnetic Properties and Microstructure of Ultrathin Co Films Grown on Si(111)-7x7 Surface”, JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 11, 2696.

  • [29]     C. L. Lin, M. C. Yang, W. B. Su*, S. P. Lin, S. M. Lu, H. Y. Lin, C. S. Chang, T. Y. Fu, and Tien T. Tsong, 2010, “Work Function Oscillation of Pb Quantum Islands on Cu(111) Surface: Observation by Gundlach Oscillation”, CHINESE JOURNAL OF PHYSICS, 48, 855-862. (SCIE) (IF: 3.237; SCI ranking: 33.7%)

  • [30]     S. M. Lu*, W. B. Su, C. L. Lin, W. Y. Chan, H. L. Hsiao, C. S. Chang, and Tien T. Tsong, 2010, “Electron relaxation in empty quantum-well states of a Pb island on Cu(111) studied by Z-V spectroscopy in scanning tunneling microscopy”, JOURNAL OF APPLIED PHYSICS, 108, 083707-1-083707-5. (SCIE) (IF: 2.546; SCI ranking: 49.4%)

  • [31]     C.C. Hsu, W.H. Lin, Y.S. Ou, W.B. Su, C.S. Chang*, C.I. Wu and Tien T. Tsong, 2010, “Effects of electronic confinement and substrate on the low-temperature growth of Pb islands on Si(1 0 0)-2 × 1 surfaces ”, Surface Science, 604, 1. (SCIE) (IF: 1.942; SCI ranking: 78.4%,65.2%)

  • [32]     W. B. Su, C. S. Chang*, and Tien T. Tsong, 2010, “Quantum size effect on ultra-thin metallic films”, JOURNAL OF PHYSICS D-APPLIED PHYSICS, 43, 013001. (SCIE) (IF: 3.207; SCI ranking: 36.3%)

  • [33]     H. W. Chang*, B. F. Wu, Y. D. Yao, W. B. Su, and C. S. Chang, 2010, “Co Nanoislands on Au(111) and Cu(111) Surfaces Studied by Scanning Tunneling Microscopy and Spectroscopy ”, JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 10, 4663..

  • [34]     M. C. Yang, C. L. Lin, W. B. Su*, S. P. Lin, S. M. Lu, H. Y. Lin, C. S. Chang, W. K. Hsu, Tien T. Tsong, 2009, “Phase Contribution of Image Potential on Empty Quantum Well States in Pb Islands on the Cu(111) Surface”, Physical Review Letters, volume 102, p.196102-1-p.196102-4. (SCIE) (IF: 9.161; SCI ranking: 8.1%)

  • [35]     C. L. Lin, S. M. Lu, W. B. Su*, H. T. Shih, B. F. Wu, Y. D. Yao, C. S.Chang, Tien T. Tsong, 2007, “Manifestation of Work Function Difference in High Order Gundlach Oscillation”, Physical Review Letters, volume 99, p.216103-1-p.216103-4. (SCIE) (IF: 9.161; SCI ranking: 8.1%)

  • [36]     W. B. Su*, S. M. Lu, C. L. Lin, H. T. Shih, C. L. Jiang, C. S. Chang, and Tien T. Tsong, 2007, “Interplay between transmission background and Gundlach oscillation in scanning tunneling spectroscopy”, Physical Review B, 75, 1954061-1954064. (SCIE) (IF: 4.036; SCI ranking: 38.7%,25.6%,31.9%)

  • [37]     H. W. Chang*, J. S. Tsay, Y. C. Hung, F. T. Yuan, W. Y. Chan, W. B. Su, C. S. Chang, Y. D. Yao, 2007, “Magnetic properties and microstructure of ultrathin Co/Si(111) films”, Journal of Applied Physics, 101, 09D124. (SCIE) (IF: 2.546; SCI ranking: 49.4%)

  • [38]     S. M. Lu, M. C. Yang, W. B. Su*, C. L. Jiang, T. Hsu, C. S. Chang, and Tien T. Tsong, 2007, “Strength modulation of quantum-well states in Pb islands with periodic distortions on Si(111)”, Physical Review B, 75, 1134021-1134024. (SCIE) (IF: 4.036; SCI ranking: 38.7%,25.6%,31.9%)

  • [39]     W. B. Su*, S. M. Lu, C. L. Jiang, H. T. Shih, C. S. Chang, and Tien T. Tsong, 2006, “Stark Shift of Transmission Resonance in Scanning Tunneling Spectroscopy”, Physical Review B, 74, 32767. (SCIE) (IF: 4.036; SCI ranking: 38.7%,25.6%,31.9%)

  • [40]     H. W. Chang*, F. T. Yuan, Y. D. Yao, W. Y. Cheng, W. B. Su, C. S. Chang, C. W. Lee, W. C. Cheng, 2006, “Step edge growth of Co nanoislands on Cu(111) surface”, Journal of Applied Physics, 100, 32767. (SCIE) (IF: 2.546; SCI ranking: 49.4%)

  • [41]     S. M. Lu, H. T. Shih, C. L. Jiang, W. B. Su*, C. S. Chang, and Tien T. Tsong, 2006, “Determining the Film Thickness and Probing the Interface Structure with Characteristic Scanning Tunneling Spectroscopy”, Chinese Journal of Physics, 44(4), 309-315. (SCIE) (IF: 3.237; SCI ranking: 33.7%)

  • [42]     W. B. Su*, S. M. Lu, H. T. Shih, C. L. Jiang, C. S. Chang, and Tien T. Tsong, 2006, “Manifestation of quantum size effect in transmission resonance”, JOURNAL OF PHYSICS-CONDENSED MATTER, 18, 6299-6305. (SCIE) (IF: 2.333; SCI ranking: 59.4%)

  • [43]     W. B. Su*, H. Y. Lin, Y. P. Chiu, H. T. Shih, T. Y. Fu, Y. W. Chen, C. S. Chang, and Tien T. Tsong, 2005, “Correlation between morphological transition and preferred thickness of Pb and Ag islands on Si(111)7X7”, Physical Review B, 71((7): Art. No. 073304). (SCIE) (IF: 4.036; SCI ranking: 38.7%,25.6%,31.9%)

  • [44]     W. B. Su*, S. H. Chang, H. Y. Lin, Y. P. Chiu, T. Y. Fu, C. S. Chang, and Tien T. Tsong, 2003, “Formation of multilayer two-dimensional Pb Islands on Si(111)7x7 at low temperature: From nucleation to growth”, Physical Review B, 68((3): Art. No. 033405). (SCIE) (IF: 4.036; SCI ranking: 38.7%,25.6%,31.9%)

  • [45]     W. B. Jian, W. B. Su, C. S. Chang*, and T. T. Tsong, 2003, “Vertical friedel oscillations in interface-induced surface charge modulations of ultrathin quantum islands”, Physical Review Letters, 90((19): Art. No. 196603). (SCIE) (IF: 9.161; SCI ranking: 8.1%)

專書內之論文

  • [1]     蘇維彬,2009,〈掃描穿隧顯微術〉,伍秀菁、汪若文編,《奈米檢測技術》,頁432-447,台灣:財團法人國家實驗研究院儀器科技研究中心。

  • [2]     Chia-Seng Chang*, Ya-Ping Chiu, Wei-Bin Su, and Tien-Tzou Tsong, 2009, “Surface Planar Metal Clusters”, editor(s): Klaus D. Sattler, HANDBOOK OF NANOPHYSICS: Clusters and Fullerenes, pp. 17-1, USA: Taylor & Francis Group.

發現與突破

  • [1]     西元年:2016
    研究人員(中):蘇維彬、林俊良、鄭文源、呂欣明、張嘉升
    研究人員(英):SU, WEI-BIN, Chun-Liang Lin, Wen-Yuan Chan, Shin-Ming Lu, and Chia-Seng Chang
    研究成果名稱(中):顯現於掃描穿隧顯術中的場發射共振的場增強因子與自我聚焦功能
    研究成果名稱(英):Field enhancement factors and self-focus functions manifesting in field emission resonances in scanning tunneling microscopy
    簡要記述(中):我們發現掃描穿隧顯微術中的場發射共振中存在著場增強因子與自我聚焦功能等兩種物理現象。前者影響場發射共振的數目,增強因子愈高,共振的數目會愈多。後者則使掃描穿隧顯微術中的探針在遠離表面時依然可使影像保有奈米的空間解析度,可成為奈米尺度的顯影技術。
    簡要記述(英):Field emission (FE) resonance (or Gundlach oscillation) in scanning tunneling microscopy (STM) is a phenomenon in which the FE electrons emitted from the microscope tip couple into the quantized standing-wave states within the STM tunneling gap. Although the occurrence of FE resonance peaks can be semi-quantitatively described using the triangular potential well model, it cannot explain the experimental observation that the number of resonance peaks may change under the same emission current. This study demonstrates that the aforementioned variation can be adequately explained by introducing a field enhancement factor that is related to the local electric field at the tip apex. The peak number of FE resonances increases with the field enhancement factor. The peak intensity of the FE resonance on the reconstructed Au(111) surface varies in the face-center cubic, hexagonal-close-packed, and ridge regions, thus providing the contrast in the mapping through FE resonances. The mapping contrast is demonstrated to be nearly independent of the tip-sample distance, implying that the FE electron beam is not divergent because of a self-focus function intrinsically involved in the STM configuration.
    主要相關著作:
    Wei-Bin Su*, Chun-Liang Lin, Wen-Yuan Chan, Shin-Ming Lu, and Chia-Seng Chang, 2016, “Field enhancement factors and self-focus functions manifesting in field emission resonances in scanning tunneling microscopy”, NANOTECHNOLOGY, 27, 175705. (SCIE) (IF: 3.874; SCI ranking: 41.4%,55.1%,27.5%)


  • [2]     西元年:2014
    研究人員(中):蘇維彬
    研究人員(英):SU, WEI-BIN
    研究成果名稱(中):利用微米尺度探針增強的拉曼散射估計石墨烯之楊氏模數
    研究成果名稱(英):Estimating Young’s modulus of graphene with Raman scattering enhanced by micrometer tip
    簡要記述(中):我們利用懸浮石墨烯研究探針增強拉曼散射。我們發現石墨烯的拉曼訊號可以被微米尺寸的金探針針尖所增強,這與一般認為探針增強拉曼散射只會由奈米尺寸的針尖所引發不同。我們在探針上外加電壓並利用探針增強拉曼散射,可觀察到懸浮石墨烯因靜電力的吸引而產生形變。從形變的量測可進而估計石墨烯的楊氏模數。
    簡要記述(英):We demonstrate that the Raman intensities of G and 2D bands of a suspended graphene can be enhanced using a gold tip with an apex size of 2.3 μm. The enhancement decays with the tip-graphene distance exponentially and remains detectable at a distance of 1.5 μm. Raman
    mappings show that the enhanced area is comparable to the apex size. Application of a bias voltage to the tip can attract the graphene so that Raman signals are intensified. The exponential enhancement-distance relationship enables the measurement of the graphene deformation, and
    the Young’s modulus of graphene is estimated to be 1.48 TPa.
    主要相關著作:
    Shao-Wei Weng, Wei-Hsiang Lin, Wei-Bin Su*, En-Te Hwu, Peilin Chen, Tsong-Ru Tsai and Chia-Seng Chang, 2014, “Estimating Young’s modulus of graphene with Raman scattering enhanced by micrometer tip”, NANOTECHNOLOGY, 25, 255703. (SCIE) (IF: 3.874; SCI ranking: 41.4%,55.1%,27.5%)


  • [3]     西元年:2012
    研究人員(中):蘇維彬、鄭文源、黃旭昇、林偉翔、鄭弘泰、吳茂昆、張嘉升
    研究人員(英):SU, WEI-BIN, W. Y. Chan, H. S. Huang, W. H. Lin, H.-T. Jeng, M. K. Wu, and C. S. Chang
    研究成果名稱(中):強電場引發的金屬薄膜膨脹效應
    研究成果名稱(英):Field-induced expansion deformation effect in metallic films
    簡要記述(中):我們利用超高真空低溫掃描穿隧顯微儀與能譜術,觀察在強電場作用下金屬薄膜中量子井能態的能量偏移。隨著電場強度的增加,我們發現大部分的量子井能態會顯現兩種能量偏移模式。第一種是單純的往高能量移動的偏移模式,第二種則是先往低能量再往高能量的偏移模式。此外我們也發現較高能量的量子井能態傾向顯現第一種模式,但隨著薄膜厚度的增加,會逐漸變成顯現第二種模式。這種厚度相依的現象反映表面原子會因電場作用而向外位移,進而帶動薄膜中原子的移動而產生膨脹效應,並且膨脹量會與薄膜厚度成正比。此發現開啟了在奈米尺度下利用量子井能態量測金屬薄膜的楊氏係數的可行性。研究成果論文已發表在《物理評論通訊》(Physical Review Letters 108, 146102 (2012) )。
    簡要記述(英):We use low-temperature ultra high vacuum uses scanning tunneling microscopy and spectroscopy to observe the energy shift of quantum well states in metallic film under strong electric field. It is found that, with an increase of the electric field, the behavior of the energy shift can be grouped into two different modes for most QW states. In the first mode, the state energy moves toward high energy monotonically. In the second mode, the state energy shifts to a lower energy initially and then turns around to a higher energy. Moreover, we have observed that the QW states of higher energy behave in preference to the first mode, but they gradually change to the second mode as the Pb island becomes thicker. By measuring the energy shift at different electric field, This thickness-dpendent behavior reflects that the surface atoms can be displaced outward by the electric field, which can subsequently induce the movement of atoms in the film to establish an expansion deformation. It is also observed that the expansion is proportional to the film thickness. This finding opens up a possibility to measure the Young’s modulus of metallic film in the nano-meter scale. The paper has been published in Physical Review Letters 108, 146102 (2012)

    主要相關著作:
    W. Y. Chan, H. S. Huang, W. B. Su*, W. H. Lin, H.-T. Jeng, M. K. Wu, and C. S. Chang , 2012, “Field-Induced Expansion Deformation in Pb Islands on Cu(111): Evidence from Energy Shift of Empty Quantum-Well States”, PHYSICAL REVIEW LETTERS, 108, 146102. (SCIE) (IF: 9.161; SCI ranking: 8.1%)


  • [4]     西元年:2009
    研究人員(中):蘇維彬、楊敏麒,林俊良,張嘉升,鄭天佐
    研究人員(英):SU, WEI-BIN, M. C. Yang, C. L. Lin, C. S. Chang, T. T. Tsong
    研究成果名稱(中):鏡像位能對成長於銅(111)面鉛島中未填滿量子井態的相位貢獻之研究
    研究成果名稱(英):Phase Contribution of Image Potential on Empty Quantum Well States in Pb Islands on the Cu(111) Surface
    簡要記述(中):先前利用掃描穿隧顯微術(STM)觀察金屬薄膜中量子井態的研究,都關注在費米能階附近+-2 eV能量範圍的量子井態。這些先前的研究顯示利用量子力學中的方形位能井模型可以清楚了解這能量範圍的量子井態。我們利用STM中的Z-V能譜術觀察鉛薄膜中於費米能階以上2-5 eV的未填滿量子井態。我們發現在這能量範圍的量子井態的能階會受到鏡像位能的影響,造成量子井態無法單純用方形位能井解釋。我們利用相位累積模型並在模型中引進鏡像位能的相位,成功解釋較高能量的量子井態的行為。此外,我們從相位累積模型的結果得到一有趣且重要的結論:在鉛薄膜外會存在一量子區域,鏡像位能在此區域會消失。由於這量子區域,當電子在金屬表面時,鏡像位能才不會發散成無窮大。此成果已發表在Physical Review Letters 102, 196102 (2009)。
    簡要記述(英):Previous studies on the quantum-well (QW) states in metal films by using scanning tunneling microscopy (STM) focused on the QW states appearing in the energy range of +-2 eV around the Fermi level. These studies have shown that QW states in this energy range can be well described by the model of the square potential well in quantum mechanics. We use Z-V spectroscopy in STM to study the empty QW states of higher energies that are in the range of 2-5 eV above Fermi level for the Pb/Cu(111) system. Our observation shows that the QW states in this energy range significantly deviated from the description of square potential well. We introduce a phase factor contributed by the image potential in the phase accumulation (PA) model to calculate the energy levels of higher energy QW states. The calculated results are in good agreement with the experimental measurement, revealing that the higher energy empty QW states are indeed influenced by the image potential. Moreover, based on the PA model, we obtain an interesting and important point of view that there exists a quantum regime above the Pb surface in which the image potential is vanished. Owing to this quantum regime, the image potential will not become the infinity when the electron is at the metal surface. This paper has been published in Physical Review Letters 102, 196102 (2009).
    主要相關著作:
    M. C. Yang, C. L. Lin, W. B. Su*, S. P. Lin, S. M. Lu, H. Y. Lin, C. S. Chang, W. K. Hsu, Tien T. Tsong, 2009, “Phase Contribution of Image Potential on Empty Quantum Well States in Pb Islands on the Cu(111) Surface”, Physical Review Letters, volume 102, p.196102-1-p.196102-4. (SCIE) (IF: 9.161; SCI ranking: 8.1%)


  • [5]     西元年:2007
    研究人員(中):蘇維彬、林俊良、呂欣明、張嘉升、鄭天佐
    研究人員(英):SU, WEI-BIN, C. L. Lin, S. M. Lu, C. S. Chang, T. T. Tsong
    研究成果名稱(中):功函數差異於高階昆拉赫振盪峰之呈現
    研究成果名稱(英):Manifestation of Work Function Difference in High Order Gundlach Oscillation
    簡要記述(中):當金屬薄膜的厚度在奈米的尺度時,薄膜的電性結構會受到量子尺寸效應的影響,進而使金屬薄膜的功函數隨厚度而變化。此課題在奈米科學上有其重要性,因為人們可以藉由量測功函數進而理解薄膜的電性結構。功函數是金屬中的電子要離開金屬所需克服的能量,一般可以利用光電子能譜量測。然而此技術是以光激發出電子,所用光源會涵蓋整個薄膜,因此薄膜的厚度必須要均勻,否則所量測的結果是多種厚度的功函數的平均值。所以薄膜的成長必須要是一層接一層的模式,才適合用光電子能譜,然而有很多薄膜系統的成長是不均勻的。為了克服這個限制,可以利用局部探測技術如掃描穿隧顯微儀,此技術不需要薄膜是均勻的成長。人們可以利用掃描穿隧顯微儀量測電子穿隧所面對的位能障礙,此物理量會與功函數相關。然而利用此方法量測的功函數的誤差高達0.3電子伏特,其精確度遠低於光電子能譜。

    我們發現利用掃描穿隧顯微儀中的高階昆拉赫振盪的尖峰特徵可以對金屬薄膜的功函數作精確量測,其誤差可低於0.02電子伏特,精確度直逼光電子能譜。由於這是一技術上的突破,所以此成果發表在物理評論通訊(Phys. Rev. Lett. 99, 216103, (2007))。由於此技術具有高精確度,因此可以量測出某些奈米結構的功函數的微細差異,進而理解奈米結構不同的電性以及其中的物理,因此我們的發現為奈米科學的研究提供了新的方法。


    簡要記述(英):When the thickness of a metal film is reduced to the nanometer size, its electronic structure will predominantly be governed by the quantum size effect, causing the work function to vary with the film thickness. This issue is of importance in nanoscience because one can realize the electronic structure of the thin film by measuring the work function. In general, one can measure the work function by using photoemission spectroscopy. However, owing to that it is a broad beam technique, it demands the metal film being grown in a layer-by-layer mode; otherwise what has been measured is just an average result over the films of various thicknesses. In order to overcome this limitation, a local probe technique such as scanning tunneling microscopy and spectroscopy (STM and STS) is an option without the need of a uniform film. Using STM, one can obtain the work function of the metal surface by measuring the apparent barrier height. Nevertheless, the general measured error with this method can be as high as 0.3 eV, much inferior to the precision achievable by the broad beam technique.
    We have found that the work function of the thin film can be precisely measured by using the Gundlach oscillation in STS. The precision of the measurement can be better than 0.02 eV, which is much better than that of detecting apparent barrier height with STM and is comparable to the photoemission results. This result has been published in Phys. Rev. Lett. 99, 216103, (2007). Since this technique has a high precision, one can use it to detect the subtle variation of the work function for some nanostructures. Therefore, Gundlach oscillation in STS can be a new way for the research of the nanoscience
    主要相關著作:
    C. L. Lin, S. M. Lu, W. B. Su*, H. T. Shih, B. F. Wu, Y. D. Yao, C. S.Chang, Tien T. Tsong, 2007, “Manifestation of Work Function Difference in High Order Gundlach Oscillation”, Physical Review Letters, volume 99, p.216103-1-p.216103-4. (SCIE) (IF: 9.161; SCI ranking: 8.1%)


個人資料維護 | 著作目錄維護同步更新 | 最後更新日期 : 2023-03-29
2
Back To Top