安納托里 / 助研究員

pi_image

連絡資訊

P712

2789-8389

anatoli [at] gate.sinica.edu.tw

個人網頁

學歷

  • 2012 - 2015:PhD in Physics, Karlsruhe Institute of Technology (KIT), Germany,
  • 2004 – 2011: Diploma (Dipl.-Phys.) in Physics, Ruhr-University Bochum, Germany
  • 2002 – 2008: Diploma (Dipl.-Ing.) in Electrical Engineering and Information Science, Ruhr-University Bochum, Germany

秘書

沈彩雲 / 886-2-2789-8386

研究興趣

經歷

學術著作

期刊論文

  • [1]     Fedynitch A., Huber M., accepted, “Data-driven hadronic interaction model for atmospheric lepton flux calculations”, PHYSICAL REVIEW D. (SCIE) (IF: 5.296; SCI ranking: 22.1%,20.7%)

  • [2]     Hsiu-Hsien Lin et al., 2022, “BURSTT: Bustling Universe Radio Survey Telescope in Taiwan”, Publications of the Astronomical Society of the Pacific, 134(1039), 094106. (SCIE) (IF: 5.445; SCI ranking: 20.6%)

  • [3]     Abbasi R. et al., 2022, “Low energy event reconstruction in IceCube DeepCore”, The European Physical Journal C, 82(9), 807. (SCIE) (IF: 4.59; SCI ranking: 27.6%)

  • [4]     Abbasi R. et al., 2022, “Density of GeV muons in air showers measured with IceTop”, Physical Review D, 106(3), 032010. (SCIE) (IF: 5.296; SCI ranking: 22.1%,20.7%)

  • [5]     Albert A. et al., 2022, “Search for Spatial Correlations of Neutrinos with Ultra-high-energy Cosmic Rays”, The Astrophysical Journal, 934(2), 164. (SCIE) (IF: 5.877; SCI ranking: 14.7%)

  • [6]     Abbasi R. et al., 2022, “Search for neutrino emission from cores of active galactic nuclei”, Physical Review D, 106(2), 022005. (SCIE) (IF: 5.296; SCI ranking: 22.1%,20.7%)

  • [7]     Abbasi R. et al., 2022, “Framework and tools for the simulation and analysis of the radio emission from air showers at IceCube”, Journal of Instrumentation, 17(06), P06026. (SCIE) (IF: 1.415; SCI ranking: 78.1%)

  • [8]     Abbasi R. et al., 2022, “Strong Constraints on Neutrino Nonstandard Interactions from TeV-Scale <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>ν</mml:mi><mml:mi>μ</mml:mi></mml:msub></mml:math> Disappearance at IceCube”, Physical Review Letters, 129(1), 011804. (SCIE) (IF: 9.161; SCI ranking: 8.1%)

  • [9]     Abbasi R. et al., 2022, “Search for GeV-scale dark matter annihilation in the Sun with IceCube DeepCore”, Physical Review D, 105(6), 062004. (SCIE) (IF: 5.296; SCI ranking: 22.1%,20.7%)

  • [10]     Abbasi R. et al., 2022, “Evidence for neutrino emission from the nearby active galaxy NGC 1068”, Science, 378(6619), 538-543. (SCIE) (IF: 47.728; SCI ranking: 2.7%)

  • [11]     Abbasi R. et al., 2022, “Graph Neural Networks for low-energy event classification & reconstruction in IceCube”, Journal of Instrumentation, 17(11), P11003. (SCIE) (IF: 1.415; SCI ranking: 78.1%)

  • [12]     Abbasi R. et al., 2022, “Searches for Neutrinos from Gamma-Ray Bursts Using the IceCube Neutrino Observatory”, The Astrophysical Journal, 939(2), 116. (SCIE) (IF: 5.877; SCI ranking: 14.7%)

  • [13]     Abbasi R. et al., 2022, “Search for Astrophysical Neutrinos from 1FLE Blazars with IceCube”, The Astrophysical Journal, 938(1), 38. (SCIE) (IF: 5.877; SCI ranking: 14.7%)

  • [14]     Abbasi R. et al., 2022, “Search for Unstable Sterile Neutrinos with the IceCube Neutrino Observatory”, Physical Review Letters, 129(15), 151801. (SCIE) (IF: 9.161; SCI ranking: 8.1%)

  • [15]     Abbasi R. et al., 2022, “Searching for High-energy Neutrino Emission from Galaxy Clusters with IceCube”, The Astrophysical Journal Letters, 938(2), L11. (SCIE) (IF: 7.413; SCI ranking: 11.8%)

  • [16]     Abbasi R. et al., 2022, “Improved Characterization of the Astrophysical Muon–neutrino Flux with 9.5 Years of IceCube Data”, The Astrophysical Journal, 928(1), 50. (SCIE) (IF: 5.877; SCI ranking: 14.7%)

  • [17]     Fedynitch A., Woodley W., Piro M.-C., 2022, “On the Accuracy of Underground Muon Intensity Calculations”, The Astrophysical Journal, 928(1), 27. (SCIE) (IF: 5.877; SCI ranking: 14.7%)

  • [18]     Abbasi R. et al., 2022, “Search for High-energy Neutrino Emission from Galactic X-Ray Binaries with IceCube”, ASTROPHYSICAL JOURNAL LETTERS, 930, L24. (SCIE) (IF: 7.413; SCI ranking: 11.8%)

  • [19]     Albrecht Johannes, Cazon Lorenzo, Dembinski Hans, Fedynitch Anatoli, Kampert Karl-Heinz, Pierog Tanguy, Rhode Wolfgang, Soldin Dennis, Spaan Bernhard, Ulrich Ralf, Unger Michael, 2022, “The Muon Puzzle in cosmic-ray induced air showers and its connection to the Large Hadron Collider”, Astrophysics and Space Science, 367(3), 27. (SCIE) (IF: 1.83; SCI ranking: 63.2%)

  • [20]     Aartsen M. G. et al., 2021, “Detection of a particle shower at the Glashow resonance with IceCube”, Nature, 591(7849), 220-224. (SCIE) (IF: 49.962; SCI ranking: 1.4%)

  • [21]     Globus Noémie, Fedynitch Anatoli, Blandford Roger D., 2021, “Polarized Radiation and the Emergence of Biological Homochirality on Earth and Beyond”, The Astrophysical Journal, 910(2), 85. (SCIE) (IF: 5.877; SCI ranking: 14.7%)

  • [22]     Aartsen M. G. et al., 2020, “eV-Scale Sterile Neutrino Search Using Eight Years of Atmospheric Muon Neutrino Data from the IceCube Neutrino Observatory”, Physical Review Letters, 125(14), 141801. (SCIE) (IF: 9.161; SCI ranking: 8.1%)

  • [23]     Aartsen M. G. et al., 2020, “Searching for eV-scale sterile neutrinos with eight years of atmospheric neutrinos at the IceCube Neutrino Telescope”, Physical Review D, 102(5), 052009. (SCIE) (IF: 5.296; SCI ranking: 22.1%,20.7%)

  • [24]     Riehn Felix, Engel Ralph, Fedynitch Anatoli, Gaisser Thomas K., Stanev Todor, 2020, “Hadronic interaction model sibyll 2.3d and extensive air showers”, Physical Review D, 102(6), 063002. (SCIE) (IF: 5.296; SCI ranking: 22.1%,20.7%)

  • [25]     Rudolph Annika, Heinze Jonas, Fedynitch Anatoli, Winter Walter, 2020, “Impact of the Collision Model on the Multi-messenger Emission from Gamma-Ray Burst Internal Shocks”, The Astrophysical Journal, 893(1), 72. (SCIE) (IF: 5.877; SCI ranking: 14.7%)

  • [26]     Bhatt Maulik, Sushch Iurii, Pohl Martin, Fedynitch Anatoli, Das Samata, Brose Robert, Plotko Pavlo, Meyer Dominique M.-A., 2020, “Production of secondary particles in heavy nuclei interactions in supernova remnants”, Astroparticle Physics, 123, 102490. (SCIE) (IF: 2.724; SCI ranking: 44.1%,44.8%)

  • [27]     Heinze J, Biehl D, Fedynitch A, Boncioli D, Rudolph A, Winter W, 2020, “Systematic parameter space study for the UHECR origin from GRBs in models with multiple internal shocks”, Monthly Notices of the Royal Astronomical Society, 498(4), 5990-6004. (SCIE) (IF: 5.287; SCI ranking: 23.5%)

  • [28]     Heinze Jonas, Fedynitch Anatoli, Boncioli Denise, Winter Walter, 2019, “A New View on Auger Data and Cosmogenic Neutrinos in Light of Different Nuclear Disintegration and Air-shower Models”, The Astrophysical Journal, 873(1), 88. (SCIE) (IF: 5.877; SCI ranking: 14.7%)

  • [29]     Fedynitch Anatoli, Riehn Felix, Engel Ralph, Gaisser Thomas K., Stanev Todor, 2019, “Hadronic interaction model sibyll 2.3c and inclusive lepton fluxes”, Physical Review D, 100(10), 103018. (SCIE) (IF: 5.296; SCI ranking: 22.1%,20.7%)

  • [30]     Palladino Andrea, Fedynitch Anatoli, Rasmussen Rasmus W., Taylor Andrew M., 2019, “IceCube neutrinos from hadronically powered gamma-ray galaxies”, Journal of Cosmology and Astroparticle Physics, 2019(09), 004-004. (SCIE) (IF: 5.839; SCI ranking: 16.2%,13.8%)

  • [31]     Morejon L., Fedynitch A., Boncioli D., Biehl D., Winter W., 2019, “Improved photomeson model for interactions of cosmic ray nuclei”, Journal of Cosmology and Astroparticle Physics, 2019(11), 007-007. (SCIE) (IF: 5.839; SCI ranking: 16.2%,13.8%)

  • [32]     Rodrigues Xavier, Gao Shan, Fedynitch Anatoli, Palladino Andrea, Winter Walter, 2019, “Leptohadronic Blazar Models Applied to the 2014–2015 Flare of TXS 0506+056”, The Astrophysical Journal, 874(2), L29. (SCIE) (IF: 5.877; SCI ranking: 14.7%)

  • [33]     Biehl D., Boncioli D., Fedynitch A., Winter W., 2018, “Cosmic ray and neutrino emission from gamma-ray bursts with a nuclear cascade”, Astronomy & Astrophysics, 611, A101.

  • [34]     Gao Shan, Fedynitch Anatoli, Winter Walter, Pohl Martin, 2018, “Modelling the coincident observation of a high-energy neutrino and a bright blazar flare”, Nature Astronomy, 3(1), 88-92. (SCIE) (IF: 14.437; SCI ranking: 5.9%)

  • [35]     Rodrigues Xavier, Fedynitch Anatoli, Gao Shan, Boncioli Denise, Winter Walter, 2018, “Neutrinos and Ultra-high-energy Cosmic-ray Nuclei from Blazars”, The Astrophysical Journal, 854(1), 54. (SCIE) (IF: 5.877; SCI ranking: 14.7%)

  • [36]     Biehl Daniel, Fedynitch Anatoli, Palladino Andrea, Weiler Tom J., Winter Walter, 2017, “Astrophysical neutrino production diagnostics with the Glashow resonance”, Journal of Cosmology and Astroparticle Physics, 2017(01), 033-033. (SCIE) (IF: 5.839; SCI ranking: 16.2%,13.8%)

  • [37]     Boncioli Denise, Fedynitch Anatoli, Winter Walter, 2017, “Nuclear Physics Meets the Sources of the Ultra-High Energy Cosmic Rays”, Scientific Reports, 7(1), 4882. (SCIE) (IF: 4.38; SCI ranking: 23.3%)

  • [38]     Argüelles C.A., de Wasseige G., Fedynitch A., Jones B.J.P., 2017, “Solar atmospheric neutrinos and the sensitivity floor for solar dark matter annihilation searches”, Journal of Cosmology and Astroparticle Physics, 2017(07), 024-024. (SCIE) (IF: 5.839; SCI ranking: 16.2%,13.8%)

  • [39]     Aartsen M. G. et al., 2016, “Characterization of the atmospheric muon flux in IceCube”, Astroparticle Physics, 78, 1-27. (SCIE) (IF: 2.724; SCI ranking: 44.1%,44.8%)

  • [40]     Aartsen M. G. et al., 2016, “Search for astrophysical tau neutrinos in three years of IceCube data”, Physical Review D, 93(2), 022001. (SCIE) (IF: 5.296; SCI ranking: 22.1%,20.7%)

  • [41]     Aartsen M. G. et al., 2016, “THE SEARCH FOR TRANSIENT ASTROPHYSICAL NEUTRINO EMISSION WITH ICECUBE-DEEPCORE”, The Astrophysical Journal, 816(2), 75. (SCIE) (IF: 5.877; SCI ranking: 14.7%)

  • [42]     Aartsen M. G. et al., 2015, “THE DETECTION OF A SN IIn IN OPTICAL FOLLOW-UP OBSERVATIONS OF ICECUBE NEUTRINO EVENTS”, The Astrophysical Journal, 811(1), 52. (SCIE) (IF: 5.877; SCI ranking: 14.7%)

  • [43]     Aartsen M. G. et al., 2015, “A COMBINED MAXIMUM-LIKELIHOOD ANALYSIS OF THE HIGH-ENERGY ASTROPHYSICAL NEUTRINO FLUX MEASURED WITH ICECUBE”, The Astrophysical Journal, 809(1), 98. (SCIE) (IF: 5.877; SCI ranking: 14.7%)

  • [44]     Aartsen M. G. et al., 2015, “Evidence for Astrophysical Muon Neutrinos from the Northern Sky with IceCube”, Physical Review Letters, 115(8), 081102. (SCIE) (IF: 9.161; SCI ranking: 8.1%)

  • [45]     Aartsen M. G. et al., 2015, “Measurement of the Atmospheric<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>ν</mml:mi><mml:mi>e</mml:mi></mml:msub></mml:math>Spectrum with IceCube”, Physical Review D, 91(12), 122004. (SCIE) (IF: 5.296; SCI ranking: 22.1%,20.7%)

  • [46]     Aartsen M. G. et al., 2015, “SEARCHES FOR TIME-DEPENDENT NEUTRINO SOURCES WITH ICECUBE DATA FROM 2008 TO 2012”, The Astrophysical Journal, 807(1), 46. (SCIE) (IF: 5.877; SCI ranking: 14.7%)

  • [47]     Aartsen M. G. et al., 2015, “Searches for small-scale anisotropies from neutrino point sources with three years of IceCube data”, Astroparticle Physics, 66, 39-52. (SCIE) (IF: 2.724; SCI ranking: 44.1%,44.8%)

  • [48]     Aartsen M. G. et al., 2015, “SEARCH FOR PROMPT NEUTRINO EMISSION FROM GAMMA-RAY BURSTS WITH ICECUBE”, The Astrophysical Journal, 805(1), L5. (SCIE) (IF: 5.877; SCI ranking: 14.7%)

  • [49]     Aartsen M. G. et al., 2015, “Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data”, Physical Review D, 91(7), 072004. (SCIE) (IF: 5.296; SCI ranking: 22.1%,20.7%)

  • [50]     Aartsen M. G. et al., 2015, “Flavor Ratio of Astrophysical Neutrinos above 35 TeV in IceCube”, Physical Review Letters, 114(17), 171102. (SCIE) (IF: 9.161; SCI ranking: 8.1%)

  • [51]     Aartsen M. G. et al., 2015, “Development of a general analysis and unfolding scheme and its application to measure the energy spectrum of atmospheric neutrinos with IceCube”, The European Physical Journal C, 75(3), 116. (SCIE) (IF: 4.59; SCI ranking: 27.6%)

  • [52]     Aartsen M. G. et al., 2015, “Search for dark matter annihilation in the Galactic Center with IceCube-79”, The European Physical Journal C, 75(10), 492. (SCIE) (IF: 4.59; SCI ranking: 27.6%)

  • [53]     Aartsen M. G. et al., 2015, “Atmospheric and astrophysical neutrinos above 1 TeV interacting in IceCube”, Physical Review D, 91(2), 022001. (SCIE) (IF: 5.296; SCI ranking: 22.1%,20.7%)

  • [54]     Aartsen M. G. et al., 2015, “Multipole analysis of IceCube data to search for dark matter accumulated in the Galactic halo”, The European Physical Journal C, 75(1), 20. (SCIE) (IF: 4.59; SCI ranking: 27.6%)

  • [55]     Aartsen M. G. et al., 2015, “The IceProd framework: Distributed data processing for the IceCube neutrino observatory”, Journal of Parallel and Distributed Computing, 75, 198-211. (SCIE) (IF: 3.734; SCI ranking: 17.3%)

  • [56]     Fedynitch A., Krasny M.W., Płaczek W., 2015, “Background to Higgs-boson Searches from Internal Conversions of Off-shell Photons Associated with -boson Production at the LHC”, Acta Physica Polonica B, 46(5), 983. (SCIE) (IF: 0.748; SCI ranking: 87.2%)

  • [57]     Aartsen M. G. et al., 2014, “Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data”, Physical Review Letters, 113(10), 101101. (SCIE) (IF: 9.161; SCI ranking: 8.1%)

  • [58]     Aartsen M. G. et al., 2014, “Search for non-relativistic magnetic monopoles with IceCube”, The European Physical Journal C, 74(7), 2938. (SCIE) (IF: 4.59; SCI ranking: 27.6%)

  • [59]     Aartsen M. G. et al., 2014, “Observation of the cosmic-ray shadow of the Moon with IceCube”, Physical Review D, 89(10), 102004. (SCIE) (IF: 5.296; SCI ranking: 22.1%,20.7%)

  • [60]     Aartsen M. G. et al., 2014, “Search for neutrino-induced particle showers with IceCube-40”, Physical Review D, 89(10), 102001. (SCIE) (IF: 5.296; SCI ranking: 22.1%,20.7%)

  • [61]     Aartsen M. G. et al., 2014, “Energy reconstruction methods in the IceCube neutrino telescope”, Journal of Instrumentation, 9(03), P03009-P03009. (SCIE) (IF: 1.415; SCI ranking: 78.1%)

  • [62]     Aartsen M. G. et al., 2014, “Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 59-string configuration”, Physical Review D, 89(6), 062007. (SCIE) (IF: 5.296; SCI ranking: 22.1%,20.7%)

  • [63]     Abbasi R. et al., 2014, “IceCube sensitivity for low-energy neutrinos from nearby supernovae (<i>Corrigendum</i>)”, Astronomy & Astrophysics, 563, C1.

  • [64]     Aartsen M. G. et al., 2014, “Improvement in fast particle track reconstruction with robust statistics”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 736, 143-149.

  • [65]     Aartsen M. G. et al., 2014, “Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube”, Physical Review D, 90(10), 102002. (SCIE) (IF: 5.296; SCI ranking: 22.1%,20.7%)

  • [66]     Aartsen M. G. et al., 2014, “SEARCHES FOR EXTENDED AND POINT-LIKE NEUTRINO SOURCES WITH FOUR YEARS OF ICECUBE DATA”, The Astrophysical Journal, 796(2), 109. (SCIE) (IF: 5.877; SCI ranking: 14.7%)

  • [67]     Aartsen M. G. et al., 2013, “Measurement of Atmospheric Neutrino Oscillations with IceCube”, Physical Review Letters, 111(8), 081801. (SCIE) (IF: 9.161; SCI ranking: 8.1%)

  • [68]     Aartsen M. G. et al., 2013, “Measurement of the cosmic ray energy spectrum with IceTop-73”, Physical Review D, 88(4), 042004. (SCIE) (IF: 5.296; SCI ranking: 22.1%,20.7%)

  • [69]     Aartsen M. G. et al., 2013, “First Observation of PeV-Energy Neutrinos with IceCube”, Physical Review Letters, 111(2), 021103. (SCIE) (IF: 9.161; SCI ranking: 8.1%)

  • [70]     Aartsen M. G. et al., 2013, “Measurement of South Pole ice transparency with the IceCube LED calibration system”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 711, 73-89.

  • [71]     Aartsen M. G. et al., 2013, “Measurement of the Atmospheric<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>ν</mml:mi><mml:mi>e</mml:mi></mml:msub></mml:math>Flux in IceCube”, Physical Review Letters, 110(15), 151105. (SCIE) (IF: 9.161; SCI ranking: 8.1%)

  • [72]     Aartsen M. G. et al., 2013, “All-particle cosmic ray energy spectrum measured with 26 IceTop stations”, Astroparticle Physics, 44, 40-58. (SCIE) (IF: 2.724; SCI ranking: 44.1%,44.8%)

  • [73]     Aartsen M. G. et al., 2013, “Search for Dark Matter Annihilations in the Sun with the 79-String IceCube Detector”, Physical Review Letters, 110(13), 131302. (SCIE) (IF: 9.161; SCI ranking: 8.1%)

  • [74]     Aartsen M. G. et al., 2013, “Search for Galactic PeV gamma rays with the IceCube Neutrino Observatory”, Physical Review D, 87(6), 062002. (SCIE) (IF: 5.296; SCI ranking: 22.1%,20.7%)

  • [75]     Aartsen M. G. et al., 2013, “An improved method for measuring muon energy using the truncated mean of dE/dx”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 703, 190-198.

  • [76]     Aartsen M. G. et al., 2013, “OBSERVATION OF COSMIC-RAY ANISOTROPY WITH THE ICETOP AIR SHOWER ARRAY”, The Astrophysical Journal, 765(1), 55. (SCIE) (IF: 5.877; SCI ranking: 14.7%)

  • [77]     Aartsen M. G. et al., 2013, “Cosmic ray composition and energy spectrum from 1–30 PeV using the 40-string configuration of IceTop and IceCube”, Astroparticle Physics, 42, 15-32. (SCIE) (IF: 2.724; SCI ranking: 44.1%,44.8%)

  • [78]     Abbasi R. et al., 2013, “IceTop: The surface component of IceCube”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 700, 188-220.

  • [79]     Aartsen M. G. et al., 2013, “IceCube search for dark matter annihilation in nearby galaxies and galaxy clusters”, Physical Review D, 88(12), 122001. (SCIE) (IF: 5.296; SCI ranking: 22.1%,20.7%)

  • [80]     Aartsen M. G. et al., 2013, “Probing the origin of cosmic rays with extremely high energy neutrinos using the IceCube Observatory”, Physical Review D, 88(11), 112008. (SCIE) (IF: 5.296; SCI ranking: 22.1%,20.7%)

  • [81]     Aartsen M. G. et al., 2013, “SEARCH FOR TIME-INDEPENDENT NEUTRINO EMISSION FROM ASTROPHYSICAL SOURCES WITH 3 yr OF IceCube DATA”, The Astrophysical Journal, 779(2), 132. (SCIE) (IF: 5.877; SCI ranking: 14.7%)

  • [82]     Aartsen M. G. et al., 2013, “Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector”, Science, 342(6161), 1242856. (SCIE) (IF: 47.728; SCI ranking: 2.7%)

  • [83]     Abbasi R. et al., 2013, “Lateral distribution of muons in IceCube cosmic ray events”, Physical Review D, 87(1), 012005. (SCIE) (IF: 5.296; SCI ranking: 22.1%,20.7%)

  • [84]     Abbasi R. et al., 2013, “Search for relativistic magnetic monopoles with IceCube”, Physical Review D, 87(2), 022001. (SCIE) (IF: 5.296; SCI ranking: 22.1%,20.7%)

  • [85]     Abbasi R. et al., 2013, “SEARCHES FOR HIGH-ENERGY NEUTRINO EMISSION IN THE GALAXY WITH THE COMBINED ICECUBE-AMANDA DETECTOR”, The Astrophysical Journal, 763(1), 33. (SCIE) (IF: 5.877; SCI ranking: 14.7%)

  • [86]     Abbasi R. et al., 2012, “Search for ultrahigh-energy tau neutrinos with IceCube”, Physical Review D, 86(2), 022005. (SCIE) (IF: 5.296; SCI ranking: 22.1%,20.7%)

  • [87]     Abbasi R. et al., 2012, “The design and performance of IceCube DeepCore”, Astroparticle Physics, 35(10), 615-624. (SCIE) (IF: 2.724; SCI ranking: 44.1%,44.8%)

  • [88]     Abbasi R. et al., 2012, “An absence of neutrinos associated with cosmic-ray acceleration in γ-ray bursts”, Nature, 484(7394), 351-354. (SCIE) (IF: 49.962; SCI ranking: 1.4%)

  • [89]     Abbasi R. et al., 2012, “Searches for periodic neutrino emission from binary systems with 22 and 40 strings of IceCube.”, The Astrophysical Journal, 748(2), 118. (SCIE) (IF: 5.877; SCI ranking: 14.7%)

  • [90]     Abbasi R. et al., 2012, “Multiyear search for dark matter annihilations in the Sun with the AMANDA-II and IceCube detectors”, Physical Review D, 85(4), 042002. (SCIE) (IF: 5.296; SCI ranking: 22.1%,20.7%)

  • [91]     Abbasi R. et al., 2012, “Searching for soft relativistic jets in core-collapse supernovae with the IceCube optical follow-up program”, Astronomy & Astrophysics, 539, A60.

  • [92]     Scott P. et al., 2012, “Use of event-level neutrino telescope data in global fits for theories of new physics”, Journal of Cosmology and Astroparticle Physics, 2012(11), 057-057. (SCIE) (IF: 5.839; SCI ranking: 16.2%,13.8%)

  • [93]     Abbasi R. et al., 2012, “OBSERVATION OF ANISOTROPY IN THE GALACTIC COSMIC-RAY ARRIVAL DIRECTIONS AT 400 TeV WITH ICECUBE”, The Astrophysical Journal, 746(1), 33. (SCIE) (IF: 5.877; SCI ranking: 14.7%)

  • [94]     Abbasi R. et al., 2012, “Background studies for acoustic neutrino detection at the South Pole”, Astroparticle Physics, 35(6), 312-324. (SCIE) (IF: 2.724; SCI ranking: 44.1%,44.8%)

  • [95]     Fedynitch Anatoli, Becker Tjus Julia, Desiati Paolo, 2012, “Influence of hadronic interaction models and the cosmic ray spectrum on the high energy atmospheric muon and neutrino flux”, Physical Review D, 86(11), 114024. (SCIE) (IF: 5.296; SCI ranking: 22.1%,20.7%)

  • [96]     Abbasi R. et al., 2011, “OBSERVATION OF ANISOTROPY IN THE ARRIVAL DIRECTIONS OF GALACTIC COSMIC RAYS AT MULTIPLE ANGULAR SCALES WITH IceCube”, The Astrophysical Journal, 740(1), 16. (SCIE) (IF: 5.877; SCI ranking: 14.7%)

  • [97]     Abbasi R. et al., 2011, “Search for dark matter from the Galactic halo with the IceCube Neutrino Telescope”, Physical Review D, 84(2), 022004. (SCIE) (IF: 5.296; SCI ranking: 22.1%,20.7%)

  • [98]     Abbasi R. et al., 2011, “Limits on Neutrino Emission from Gamma-Ray Bursts with the 40 String IceCube Detector”, Physical Review Letters, 106(14), 141101. (SCIE) (IF: 9.161; SCI ranking: 8.1%)

  • [99]     Abbasi R. et al., 2011, “TIME-INTEGRATED SEARCHES FOR POINT-LIKE SOURCES OF NEUTRINOS WITH THE 40-STRING IceCube DETECTOR”, The Astrophysical Journal, 732(1), 18. (SCIE) (IF: 5.877; SCI ranking: 14.7%)

  • [100]     Abbasi R. et al., 2011, “NEUTRINO ANALYSIS OF THE 2010 SEPTEMBER CRAB NEBULA FLARE AND TIME-INTEGRATED CONSTRAINTS ON NEUTRINO EMISSION FROM THE CRAB USING ICECUBE”, The Astrophysical Journal, 745(1), 45. (SCIE) (IF: 5.877; SCI ranking: 14.7%)

  • [101]     Abbasi R. et al., 2011, “TIME-DEPENDENT SEARCHES FOR POINT SOURCES OF NEUTRINOS WITH THE 40-STRING AND 22-STRING CONFIGURATIONS OF ICECUBE”, The Astrophysical Journal, 744(1), 1. (SCIE) (IF: 5.877; SCI ranking: 14.7%)

  • [102]     Abbasi R. et al., 2011, “Erratum: Constraints on the extremely-high energy cosmic neutrino flux with the IceCube 2008-2009 data [Phys. Rev. D<b>83</b>, 092003 (2011)]”, Physical Review D, 84(7), 092003. (SCIE) (IF: 5.296; SCI ranking: 22.1%,20.7%)

  • [103]     Abbasi R. et al., 2011, “First search for atmospheric and extraterrestrial neutrino-induced cascades with the IceCube detector”, Physical Review D, 84(7), 072001. (SCIE) (IF: 5.296; SCI ranking: 22.1%,20.7%)

  • [104]     Abbasi R. et al., 2011, “Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 40-string detector”, Physical Review D, 84(8), 082001. (SCIE) (IF: 5.296; SCI ranking: 22.1%,20.7%)

  • [105]     Abbasi R. et al., 2011, “Constraints on high-energy neutrino emission from SN 2008D”, Astronomy & Astrophysics, 527, A28.

  • [106]     Abbasi R. et al., 2011, “Measurement of the atmospheric neutrino energy spectrum from 100 GeV to 400 TeV with IceCube”, Physical Review D, 83(1), 012001. (SCIE) (IF: 5.296; SCI ranking: 22.1%,20.7%)

  • [107]     Abbasi R. et al., 2010, “The energy spectrum of atmospheric neutrinos between 2 and 200 TeV with the AMANDA-II detector”, Astroparticle Physics, 34(1), 48-58. (SCIE) (IF: 2.724; SCI ranking: 44.1%,44.8%)

  • [108]     Abbasi R. et al., 2010, “Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube”, Physical Review D, 82(11), 112003. (SCIE) (IF: 5.296; SCI ranking: 22.1%,20.7%)

  • [109]     Noemie Globus, Anatoli Fedynitch, and Roger D. Blandford, Unpublished, “Treasure Maps for Detections of Extreme Energy Cosmic Rays”, ApJ.

發現與突破

  • [1]     西元年:2022
    研究人員(中):安納托里
    研究人員(英):FEDYNITCH, ANATOLI
    研究成果名稱(中):銀河系附近活躍星系NGC 1068 的微中子發射證據
    研究成果名稱(英):Evidence for neutrino emission from the nearby active galaxy NGC 1068
    簡要記述(中):立方體微中子觀測站(IceCube Neutrino Observatory) 是一個位於南極、公里立方的探測器。在十多年的努力之後,這個實驗發現了第一 個持續性的天文微中子來源。這個突破性的發現是藉由降低了事件重建中的不確定性 ,而我在其中提供了背景模型。此研究發表於《Science》。
    簡要記述(英):The IceCube Neutrino Observatory is a cubic-kilometer scale telescope located at the South Pole in Antarctica. The experiment discovered the first persistent astrophysical neutrino source after more than a decade of operation. This breakthrough was achieved due to improved systematic uncertainties in event reconstruction. I contributed to the background modeling. The work has been published in the journal "Science".
    主要相關著作:
    Abbasi R. et al., 2022, “Evidence for neutrino emission from the nearby active galaxy NGC 1068”, Science, 378(6619), 538-543. (SCIE) (IF: 47.728; SCI ranking: 2.7%)


個人資料維護 | 著作目錄維護同步更新 | 最後更新日期 : 2023-02-22
2
Back To Top