楊廸倫 / 助研究員

pi_image

連絡資訊

學歷

  • 杜克大學物理博士 2014
  • 國立台灣大學物理系學士 2007

秘書

沈彩雲 / 886-2-2789-8386

samcy[at]phys.sinica.edu.tw

研究興趣

  • 量子場論
  • 相對論性運動論
  • 相對論性流體力學
  • 高能核子碰撞
  • 手徵及自旋傳輸

經歷

  • 慶應義塾大学 理工学部 助教(有期), 2019-2021
  • 京都大学基礎物理学研究所 特任助教, 2018-2019
  • 理化学研究所 国際/基礎科学特別研究員, 2015-2018
  • 克里特大學博士後研究員, 2014-2015
  • 中原大學博士後研究員, 2014-2014

學術著作

期刊論文

  • [1]     Naoki Yamamoto, Di-Lun Yang*, 2024, “Chiral kinetic theory with self-energy corrections and neutrino spin Hall effect”, PHYSICAL REVIEW D, 109, 056010. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [2]     Avdhesh Kumar*, Di-Lun Yang, Philipp Gubler, 2024, “Spin alignment of vector mesons by second-order hydrodynamic gradients”, PHYSICAL REVIEW D, 109, 054038. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [3]     Shuo Fang*, Shi Pu, Di-Lun Yang, 2024, “Spin polarization and spin alignment from quantum kinetic theory with self-energy corrections”, PHYSICAL REVIEW D, 109, 034034. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [4]     Cong Yi, Xiang-Yu Wu, Di-Lun Yang, Jian-Hua Gao, Shi Pu*, Guang-You Qin, 2024, “Probing vortical structures in heavy-ion collisions at RHIC-BES energies through helicity polarization”, PHYSICAL REVIEW C, 109, L011901. (SCIE) (IF: 3.199; SCI ranking: 31.6%)

  • [5]     Naoki Yamamoto, Di-Lun Yang*, 2023, “Effective Chiral Magnetic Effect from Neutrino Radiation”, PHYSICAL REVIEW LETTERS, 131, 012701. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [6]     Avdhesh Kumar, Berndt Müller, Di-Lun Yang*, 2023, “Spin alignment of vector mesons by glasma fields”, PHYSICAL REVIEW D, 108, 016020. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [7]     Avdhesh Kumar, Berndt Müller, Di-Lun Yang*, 2023, “Spin polarization and correlation of quarks from the glasma”, PHYSICAL REVIEW D, 107, 076025. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [8]     Kohei Kamada, Naoki Yamamoto*, Di-Lun Yang, 2023, “Chiral effects in astrophysics and cosmology”, PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, 129, 104016. (SCIE) (IF: 12.425; SCI ranking: 10.5%,10.3%)

  • [9]     Patrick Copinger*, Koichi Hattori, Di-Lun Yang, 2023, “Euler-Heisenberg Lagrangian under an axial gauge field”, PHYSICAL REVIEW D, 107, 056016. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [10]     Yoshimasa Hidaka, Shi Pu, Qun Wang*, Di-Lun Yang, 2022, “Foundations and applications of quantum kinetic theory”, PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, 127, 103989. (SCIE) (IF: 12.425; SCI ranking: 10.5%,10.3%)

  • [11]     Philipp Gubler*, Naoki Yamamoto, Di-Lun Yang, 2022, “Chiral gravitational waves from thermalized neutrinos in the early Universe”, JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 09, 025. (SCIE) (IF: 7.28; SCI ranking: 14.5%,17.2%)

  • [12]     Shuo Fang, Shi Pu, Di-Lun Yang*, 2022, “Quantum kinetic theory for dynamical spin polarization from QED-type interaction”, PHYSICAL REVIEW D, 106, 016002. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [13]     Jin Matsumoto, Naoki Yamamoto*, Di-Lun Yang, 2022, “Chiral plasma instability and inverse cascade from nonequilibrium left-handed neutrinos in core-collapse supernovae”, PHYSICAL REVIEW D, 105, 123029. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [14]     Di-Lun Yang*, 2022, “Quantum kinetic theory for spin transport of quarks with background chromo-electromagnetic fields”, JOURNAL OF HIGH ENERGY PHYSICS, 06, 140. (SCIE) (IF: 6.376; SCI ranking: 20.7%)

  • [15]     Kazuya Mameda*, Naoki Yamamoto, Di-Lun Yang, 2022, “Photonic spin Hall effect from quantum kinetic theory in curved spacetime”, PHYSICAL REVIEW D, 105, 096019. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [16]     Cong Yi, Shi Pu*, Jian-Hua Gao, Di-Lun Yang, 2022, “Hydrodynamic helicity polarization in relativistic heavy ion collisions”, PHYSICAL REVIEW C, 105, 044911. (SCIE) (IF: 3.199; SCI ranking: 31.6%)

  • [17]     Berndt Müller, Di-Lun Yang*, 2022, “Anomalous spin polarization from turbulent color fields”, PHYSICAL REVIEW D, 105, L011901. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [18]     Naoki Yamamoto, Di-Lun Yang*, 2021, “Magnetic field induced neutrino chiral transport near equilibrium”, PHYSICAL REVIEW D, 104, 123019. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [19]     Cong Yi, Shi Pu*, Di-Lun Yang, 2021, “Reexamination of local spin polarization beyond global equilibrium in relativistic heavy ion collisions”, PHYSICAL REVIEW C, 104, 064901. (SCIE) (IF: 3.199; SCI ranking: 31.6%)

  • [20]     Naoki Yamamoto*, Di-Lun Yang, 2021, “Helical magnetic effect and the chiral anomaly”, PHYSICAL REVIEW D, 103, 125003. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [21]     Koichi Hattori, Yoshimasa Hidaka, Naoki Yamamoto, Di-Lun Yang*, 2021, “Wigner functions and quantum kinetic theory of polarized photons”, JOURNAL OF HIGH ENERGY PHYSICS, 02, 001. (SCIE) (IF: 6.376; SCI ranking: 20.7%)

  • [22]     Hidetoshi Taya*, Aaron Park, Sungtae Cho, Philipp Gubler, Koichi Hattori, Juhee Hong, Xu-Guang Huang, Su Houng Lee, Akihiko Monnai, Akira Ohnishi, Makoto Oka, Di-Lun Yang, 2020, “Signatures of the vortical quark-gluon plasma in hadron yields”, Physical Review C, 102, 021901(R). (SCIE) (IF: 3.199; SCI ranking: 31.6%)

  • [23]     Di-Lun Yang*, Koichi Hattori, Yoshimasa Hidaka, 2020, “Effective quantum kinetic theory for spin transport of fermions with collisional effects”, Journal of High Energy Physics, 07, 070. (SCIE) (IF: 6.376; SCI ranking: 20.7%)

  • [24]     Naoki Yamamoto, Di-Lun Yang*, 2020, “Chiral Radiation Transport Theory of Neutrinos”, ASTROPHYSICAL JOURNAL, 895, 56. (SCIE) (IF: 5.521; SCI ranking: 20.3%)

  • [25]     Koichi Hattori, Yoshimasa Hidaka, Di-Lun Yang*, 2019, “Axial Kinetic Theory and Spin Transport for Fermions with Arbitrary Mass”, Physical Review D, 100(9), 096011. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [26]     Yoshitaka Hatta*, Abha Rajan, Di-Lun Yang, 2019, “Near threshold and photoproduction at JLab and RHIC”, Physical Review D, 100, 014032. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [27]     Yoshitaka Hatta*, Di-Lun Yang, 2018, “Holographic production near threshold and the proton mass problem”, Physical Review D, 98(7), 074003. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [28]     Di-Lun Yang*, 2018, “Side-jump induced spin-orbit interaction of chiral fluids from kinetic theory”, Physical Review D, 98, 076019. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [29]     Yoshimasa Hidaka, Di-Lun Yang*, 2018, “Nonequilibrium chiral magnetic/vortical effects in viscous fluids”, Physical Review D, 98, 016012. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [30]     Yoshimasa Hidaka, Shi Pu, Di-Lun Yang*, 2018, “Nonlinear responses of chiral fluids from kinetic theory”, Physical Review D, 97, 016004. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [31]     Yoshimasa Hidaka, Shi Pu, Di-Lun Yang*, 2017, “Relativistic chiral kinetic theory from quantum field theories”, Physical Review D, 95, 091901(R). (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [32]     Ioannis Iatrakis, Elias Kiritsis, Chun Shen, Di Lun Yang*, 2017, “Holographic photon production in heavy ion collisions”, Journal of High Energy Physics, 04, 035. (SCIE) (IF: 6.376; SCI ranking: 20.7%)

  • [33]     Di-Lun Yang*, Berndt Müller, 2016, “Shear viscosities of photons in strongly coupled plasmas”, PHYSICS LETTERS B, 760, 565-570. (SCIE) (IF: 4.95; SCI ranking: 27.5%,21.1%,31%)

  • [34]     Shi Pu, Di-Lun Yang*, 2016, “Transverse flow induced by inhomogeneous magnetic fields in the Bjorken expansion”, Physical Review D, 93, 054042. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [35]     Yoshitaka Hatta*, Bo Wen Xiao, Di-Lun Yang, 2016, “Non-boost-invariant solution of relativistic hydrodynamics in 1+3 dimensions”, Physical Review D, 93, 016012. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [36]     Berndt Müller, Di-Lun Yang*, 2015, “Viscous leptons in the quark gluon plasma”, Physical Review D, 91, 125010. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [37]     Elena Caceres, Arnab Kundu*, Juan F. Pedraza, Di-Lun Yang, 2015, “Weak field collapse in AdS: introducing a charge density”, Journal of High Energy Physics, 06, 111. (SCIE) (IF: 6.376; SCI ranking: 20.7%)

  • [38]     Shi Pu, Shang-Yu Wu, Di-Lun Yang*, 2015, “Chiral Hall effect and chiral electric waves”, PHYSICAL REVIEW D, 91, 025011. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [39]     Shi Pu, Shang-Yu Wu, Di-Lun Yang*, 2014, “Holographic chiral electric separation effect”, PHYSICAL REVIEW D, 89, 085024. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [40]     Elena Caceres, Arnab Kundu, Di-Lun Yang*, 2014, “Jet quenching and holographic thermalization with a chemical potential”, Journal of High Energy Physics, 03, 73. (SCIE) (IF: 6.376; SCI ranking: 20.7%)

  • [41]     Berndt Mueller, Shang-Yu Wu, Di-Lun Yang*, 2014, “Elliptic flow from thermal photons with magnetic field in holography”, PHYSICAL REVIEW D, 89(2), 026013. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [42]     Shang Yu Wu*, Di-Lun Yang, 2013, “Holographic photon production with magnetic field in anisotropic plasmas”, Journal of High Energy Physics, 08, 032. (SCIE) (IF: 6.376; SCI ranking: 20.7%)

  • [43]     Berndt Müller, Di-Lun Yang*, 2013, “Light probes in a strongly coupled anisotropic plasma”, Physical Review D, 87(4), 046004. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [44]     Thomas Mehen, Di-Lun Yang*, 2012, “The role of charmed meson loops in charmonium decays”, PHYSICAL REVIEW D, 85, 014002. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [45]     Berndt Müller, Di-Lun Yang*, 2011, “ Production by Magnetic Excitation of ​”, JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 39, 015007. (SCIE) (IF: 3.519; SCI ranking: 26.3%,37.9%)

  • [46]     Jiunn-Wei Chen*, Mei Huang, Yen-Han Li, Eiji Nakano, Di-Lun Yang, 2008, “Phase transitions and perfectness of fluids in weakly coupled real scalar field theories”, PHYSICS LETTERS B, 670(1), 18-21. (SCIE) (IF: 4.95; SCI ranking: 27.5%,21.1%,31%)

學術會議(研討會)論文

  • [1]     Berndt Mueller, Di-Lun Yang, 2022, “Spin Alignment from Turbulent Color Fields”, A37 pages, paper presented at Quark Matter 2022, Krakow, Poland: Jagiellonian University in Kraków, Institute of Nuclear Physics Polish Academy of Science, AGH University of Science and Technology, 2022-04-04 ~ 2022-04-10.

發現與突破

  • [1]     西元年:2023
    研究人員(中):楊廸倫、山本直希
    研究人員(英):YANG, DI-LUN, Naoki Yamamoto
    研究成果名稱(中):源自微中子輻射的有效手徵磁效應
    研究成果名稱(英):Effective Chiral Magnetic Effect from Neutrino Radiation
    簡要記述(中):臺灣中央研究院物理所的楊廸倫博士和日本慶應義塾大學的山本直希教授,基於電磁和弱相互作用的不同時間尺度提出系統化的冪次計數,爲接近平衡的電子和遠離平衡的微中子開發出了一種適用於手徵動力學理論的分析方法。據此他們推導出有效的手徵磁效應(CME),由一般非平衡狀態下微中子輻射所誘發的平行於磁場的電流和能量流,與傳統的CME不同,它的存在無需手徵化學位能。他們應用此理論至核心坍縮超新星的所謂增益區,發現持續的微中子輻射可大幅增強有效CME並導致磁場和流體動能的逆向能量串級和在數量級上觀察到的脈衝星踢。這個理論架構也可能適用於其他涉及非平衡微中子的稠密物質系統。
    簡要記述(英):Core-collapse supernova explosions with the observed explosion energy, pulsar kicks for neutron stars with large velocities, and the origin of strong and stable magnetic fields in magnetars are three long-standing puzzles in astrophysics. It has been recently proposed that the inclusion of chiral effects for left-handed neutrinos and electrons, which interact through the weak interaction that globally breaks parity symmetry, could result in dynamically enhanced magnetic fields, momentum asymmetry for pulsar kicks, and the inverse cascade qualitatively favoring supernova explosions such that the three puzzles may be potentially explained in a consistent theoretical framework. The essential ingredient for such a scenario is the electric and energy currents along magnetic fields, known as the chiral magnetic effect (CME). In most literature, the CME is obtained in quasi-equilibrium conditions with a chiral chemical potential characterizing chiral imbalance, which is, however, an unpractical condition in core-collapse supernovae with nonequilibrium neutrino radiation. It is thus indispensable to generalize the conventional CME to an out-of-equilibrium state applicable to core-collapse supernovae.Dr. Di-Lun Yang from the Institute of Physics, Academia Sinica, Taiwan, and Prof. Naoki Yamamoto from Keio University, Japan, develop a novel approach to chiral kinetic theories for electrons close to equilibrium and neutrinos away from equilibrium based on a systematic power counting scheme for different timescales of electromagnetic and weak interactions. They derive an effective CME for the charge current and energy current parallel to the magnetic field from general nonequilibrium neutrino radiation, distinct from the conventional CME requiring a chiral chemical potential. Moreover, they apply this framework to the so-called gain region of core-collapse supernovae. They find that persistent neutrino emission in time can substantially enhance the effective CME, which could engender the inverse cascade of magnetic and fluid kinetic energies and pulsar kicks with the observed magnitudes. This theoretical framework may also be applied to other dense-matter systems involving nonequilibrium neutrinos.This study has been published in Phys. Rev. Lett. 131, 012701 (2023)
    主要相關著作:
    Naoki Yamamoto, Di-Lun Yang*, 2023, “Effective Chiral Magnetic Effect from Neutrino Radiation”, PHYSICAL REVIEW LETTERS, 131, 012701. (SCIE) (IF: 9.185; SCI ranking: 9.3%)


  • [2]     西元年:2017
    研究人員(中):楊廸倫
    研究人員(英):YANG, DI-LUN, Yoshimasa Hidaka, Shi Pu, "Di-Lun Yang"*
    研究成果名稱(中):由量子場論推導之相對論性手徵動力學理論
    研究成果名稱(英):The derivation of relativistic chiral kinetic theory from quantum field theories
    簡要記述(中):在由無質量的韋爾費米子組成的手徵物質中,存在著由量子效應引起的反常輸運現象,如手徵反常和自旋鎖定引起的側跳,與由大質量費米子形成的正常物質的情況不同。為了研究非平衡條件下的這種現象,以前從與貝里相位聯繫的半經典方法中構建了無碰撞手徵動力學理論(CKT)。然而,為了解決CKT的不足,如洛倫茲不變量和包含碰撞的問題,從量子場理論中進行第一原理推導是勢在必行的。2017年,基於量子場理論的Wigner函數方法推導出了同時包含背景電磁場和碰撞的共變CKT,它體現了與洛倫茲不變量相關的修正框架變換,並系統地構造了帶有量子修正的碰撞項。這一理論框架作為構建量子動力學理論的突破口,在許多後續工作中得到進一步擴展,並應用於研究各種物理系統的手徵效應。
    簡要記述(英):In chiral matter composed of massless Weyl fermions, there exist anomalous transport phenomena induced by quantum effects, such as the chiral anomaly and side jumps due to spin locking, as opposed to the case in normal matter formed by massive fermions. To study such phenomena in non-equilibrium conditions, the collisionless chiral kinetic theory (CKT) was previously constructed from a semi-classical approach associated with the Berry phase. However, to resolve the insufficiency of the CKT such as the issues of Lorentz invariance and inclusion of collisions, a first-principle derivation from quantum field theories was imperative and desired. In 2017, the covariant CKT with simultaneous inclusions of background electromagnetic fields and collisions was derived from the Wigner-function approach based on quantum field theories, which manifests the modified frame transformation pertinent to Lorentz invariance and systematically constructs the collision term with quantum corrections. This theoretical framework as a breakthrough of the construction for quantum kinetic theories has been further extended in many follow-up works and applied to study chiral effects in various physical systems.References : Y. Hidaka, S. Pu, and D.-L. Yang, Relativistic Chiral Kinetic Theory from Quantum Field Theories, Phys. Rev.D95, 091901 (2017).


個人資料維護 | 著作目錄維護同步更新 | 最後更新日期 : 2024-08-17
2
Back To Top