灰野禎一 / 研究員

pi_image

連絡資訊

R414

haino [at] phys.sinica.edu.tw
Sadakazu.Haino [at] cern.ch

學歷

  • 東京大學

秘書

劉翠霞 / 886-2-2789-6777

tracy[at]phys.sinica.edu.tw

研究興趣

  • 粒子物理
  • 重力波

獎項及殊榮

(1) 國內學術研究獎項 2016, 2017, 2018, 2019, 2020 Career Development Award, 中研院前瞻計畫
(2) 國內學術研究獎項 2015-06 Academia Sinica Research Award for Junior Research Investigators 中研院年輕學者研究著作獎

經歷

  • 2019- 中央研究院 物理研究所 研究員
  • 2014-2019 中央研究院 物理研究所 副研究員
  • 2012-2014 國立中央大學 助理教授
  • 2005-2012 博士後研究員 INFN Perugia

學術著作

期刊論文

  • [1]     T. Akutsu et al. KAGRA collaboration, 2023, “Correction to: Input optics systems of the KAGRA detector during O3GK”, Progress of Theoretical and Experimental Physics, 2023(5), 2. (SCIE) (IF: 7.492; SCI ranking: 14%,13.8%)

  • [2]     M. Aguilar et al. AMS Collaboration, 2023, “Properties of Cosmic-Ray Sulfur and Determination of the Composition of Primary Cosmic-Ray Carbon, Neon, Magnesium, and Sulfur: Ten-Year Results from the Alpha Magnetic Spectrometer”, Physical Review Letters, 130(21), 211002-1-211002-9. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [3]     M. Aguilar et al. AMS Collaboration, 2023, “Temporal Structures in Electron Spectra and Charge Sign Effects in Galactic Cosmic Rays”, Physical Review Letters, 130(16), 161001-1-161001-11. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [4]     H. Abe et al. KAGRA collaboration, 2023, “Noise subtraction from KAGRA O3GK data using Independent Component Analysis”, Classical and Quantum Gravity, 40(8), 085015. (SCIE) (IF: 3.853; SCI ranking: 34.8%,32.6%,34.5%,52.6%)

  • [5]     R. Abbott et al. LIGO Scientific Collaboration, Virgo Collaboration and KAGRA Collaboration, 2023, “Population of Merging Compact Binaries Inferred Using Gravitational Waves through GWTC-3”, Physical Review X, 13(1), 011048. (SCIE) (IF: 14.417; SCI ranking: 7%)

  • [6]     T. Akutsu et al. KAGRA collaboration, 2022, “Input optics systems of the KAGRA detector during O3GK”, Progress of Theoretical and Experimental Physics, 2023(2), 166. (SCIE) (IF: 7.492; SCI ranking: 14%,13.8%)

  • [7]     R. Abbott et al. LIGO Scientific Collaboration, Virgo Collaboration and KAGRA Collaboration, 2022, “All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO and Advanced Virgo O3 data”, Physical Review D, 106, 102008. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [8]     R. Abbott et al. LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration, 2022, “Search for gravitational waves from Scorpius X-1 with a hidden Markov model in O3 LIGO data”, Physical Review D, 106(6), 062002. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [9]     R. Abbott et al. LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration, 2022, “Search for continuous gravitational wave emission from the Milky Way center in O3 LIGO-Virgo data”, Physical Review D, 106(4), 042003. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [10]     R. Abbott et al. LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration, 2022, “All-sky, all-frequency directional search for persistent gravitational waves from Advanced LIGO’s and Advanced Virgo’s first three observing runs”, Physical Review D, 105(12), 122001. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [11]     H. Abe et al. KAGRA collaboration, 2022, “Performance of the KAGRA detector during the first joint observation with GEO 600 (O3GK)”, Progress of Theoretical and Experimental Physics, ptac093, 93. (SCIE) (IF: 7.492; SCI ranking: 14%,13.8%)

  • [12]     M. Aguilar et al. AMS Collaboration, 2022, “Properties of Daily Helium Fluxes”, Physical Review Letters, 128(23), 231102. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [13]     R. Abbott et al. The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration, 2022, “All-sky search for gravitational wave emission from scalar boson clouds around spinning black holes in LIGO O3 data”, Physical Review D, 105(10), 102001. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [14]     H. Abe et al. KAGRA collaboration, 2022, “The Current Status and Future Prospects of KAGRA, the Large-Scale Cryogenic Gravitational Wave Telescope Built in the Kamioka Underground”, Galaxies, 10(3), 63. (SCIE)

  • [15]     R. Abbott et al. LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration, 2022, “Constraints on dark photon dark matter using data from LIGO’s and Virgo’s third observing run”, Physical Review D, 105(6), 063030. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [16]     R. Abbott et al. LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration, 2022, “Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data”, Physical Review D, 105(2), 022002-1-022002-42. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [17]     R. Abbott et al. The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration, 2021, “All-sky search for short gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run”, Physical Review D, 104(12), 122004-1-122004-24. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [18]     M. Aguilar et al. AMS Collaboration, 2021, “Periodicities in the Daily Proton Fluxes from 2011 to 2019 Measured by the Alpha Magnetic Spectrometer on the International Space Station from 1 to 100 GV”, Physical Review Letters, 127(27), 271102-1-271102-8. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [19]     R. Abbott et al. LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration, 2021, “All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run”, Physical Review D, 104(10), 102001-1-102001-17. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [20]     R. Abbott et al. LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration, 2021, “All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data”, Physical Review D, 104(8), 082004. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [21]     M. Aguilar et al. AMS Collaboration, 2021, “Erratum: Properties of a New Group of Cosmic Nuclei: Results from the Alpha Magnetic Spectrometer on Sodium, Aluminum, and Nitrogen [Phys. Rev. Lett. <b>127</b>, 021101 (2021)]”, Physical Review Letters, 127(15), 159901-1. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [22]     M. Aguilar et al. AMS Collaboration, 2021, “Properties of a New Group of Cosmic Nuclei: Results from the Alpha Magnetic Spectrometer on Sodium, Aluminum, and Nitrogen”, Physical Review Letters, 127(2), 021101. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [23]     R. Abbott et al. LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration, 2021, “Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo’s first three observing runs”, Physical Review D, 104(2), 022005. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [24]     R. Abbott et al. LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration, 2021, “Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo’s third observing run”, Physical Review D, 104(2), 022004. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [25]     R. Abbott et al. LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration, 2021, “Constraints on Cosmic Strings Using Data from the Third Advanced LIGO–Virgo Observing Run”, Physical Review Letters, 126(24), 241102. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [26]     Ushiba Takafumi, Akutsu Tomotada, Araki Sakae, Bajpai Rishabh, Chen Dan, Craig Kieran, Enomoto Yutaro, Hagiwara Ayako, Haino Sadakazu, Inoue Yuki, Izumi Kiwamu, Kimura Nobuhiro, Kumar Rahul, Michimura Yuta, Miyoki Shinji, Murakami Iwao, Namai Yoshikazu, Nakano Masayuki, Ohashi Masatake, Okutomi Koki, Shishido Takaharu, Shoda Ayaka, Somiya Kentaro, Suzuki Toshikazu, Takada Suguru, Takahashi Masahiro, Takahashi Ryutaro, Terashima Shinichi, Tomaru Takayuki, Travasso Flavio, Ueda Ayako, Vocca Helios, Yamada Tomohiro, Yamamoto Kazuhiro, Zeidler Simon, 2021, “Cryogenic suspension design for a kilometer-scale gravitational-wave detector”, Classical and Quantum Gravity, 38(8), 085013. (SCIE) (IF: 3.853; SCI ranking: 34.8%,32.6%,34.5%,52.6%)

  • [27]     T. Akutsu et al. KAGRA collaboration, 2021, “Vibration isolation systems for the beam splitter and signal recycling mirrors of the KAGRA gravitational wave detector”, Classical and Quantum Gravity, 38(6), 065011. (SCIE) (IF: 3.853; SCI ranking: 34.8%,32.6%,34.5%,52.6%)

  • [28]     AMS collaboration, 2021, “AMS collaboration:The Alpha Magnetic Spectrometer (AMS) on the international space station: Part II — Results from the first seven years .”, Physics Reports, 894, 1-116. (SCIE)

  • [29]     T. Akutsu et al. KAGRA collaboration, 2021, “Overview of KAGRA: Calibration, detector characterization, physical environmental monitors, and the geophysics interferometer”, Progress of Theoretical and Experimental Physics, 2021(5), 018. (SCIE) (IF: 7.492; SCI ranking: 14%,13.8%)

  • [30]     M. Aguilar et al. AMS Collaboration, 2021, “Properties of Heavy Secondary Fluorine Cosmic Rays: Results from the Alpha Magnetic Spectrometer”, Physical Review Letters, 126(8), 081102-1. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [31]     M. Aguilar et al. AMS Collaboration, 2021, “Properties of Iron Primary Cosmic Rays: Results from the Alpha Magnetic Spectrometer”, Physical Review Letters, 126(4), 041104-1-041104-8. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [32]     KAGRA Collaboration, LIGO Scientific Collaboration, and Virgo Collaboration, 2020, “Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA .”, LIVING REVIEWS IN RELATIVITY, 23(3). (SCIE) (IF: 42.9; SCI ranking: 3.4%)

  • [33]     KAGRA collaboration, 2020, “Overview of KAGRA : Detector design and construction history .”, PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, ptta. (SCIE) (IF: 7.492; SCI ranking: 14%,13.8%)

  • [34]     Y, Michimura, S.Haino, et al, 2020, “Prospects for improving the sensitivity of the cryogenic gravitational wave detector KAGRA.”, Physics Rev D., 102.

  • [35]     KAGRA collaboration, 2020, “Application of the independent component analysis to the iKAGRA data.”, PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2020, 053F01.. (SCIE) (IF: 7.492; SCI ranking: 14%,13.8%)

  • [36]     AMS collaboration 2020, May., 2020, “Properties of Neon, Magnesium, and Silicon Primary Cosmic Rays Results from the Alpha Magnetic Spectrometer .”, Physic Review Letter,, 124, 211102..

  • [37]     KAGRA collaboration, 2020, “An arm length stabilization system for KAGRA and future gravitational-wave detectors.”, Class. Quant. Gravity, 37, 035004..

  • [38]     M. Aguilar, et al. AMS collaboration, 2019, “Properties of Cosmic Helium Isotopes Measured by the Alpha Magnetic Spectrometer”, PHYSICAL REVIEW LETTERS, 123, 181102. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [39]     B. P. Abbott, et al. The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, 2019, “Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA”, LIVING REVIEWS IN RELATIVITY, 21, 3. (SCIE) (IF: 42.9; SCI ranking: 3.4%)

  • [40]     T. Akutsu, et al. KAGRA collaboration, 2019, “First cryogenic test operation of underground km-scale gravitational-wave observatory KAGRA”, CLASSICAL AND QUANTUM GRAVITY, 36, 16. (SCIE) (IF: 3.853; SCI ranking: 34.8%,32.6%,34.5%,52.6%)

  • [41]     Y. Akiyama, et al. KAGRA collaboration, 2019, “Vibration isolation system with a compact damping system for power recycling mirrors of KAGRA”, CLASSICAL AND QUANTUM GRAVITY, 36, 095015. (SCIE) (IF: 3.853; SCI ranking: 34.8%,32.6%,34.5%,52.6%)

  • [42]     M. Aguilar, et al. AMS collaboration, 2019, “Towards Understanding the Origin of Cosmic-Ray Electrons”, PHYSICAL REVIEW LETTERS, 122, 101101. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [43]     KAGRA Collaboration, 2019, “KAGRA: 2.5 Generation Interferometric Gravitational Wave Detector”, NATURE ASTRONOMY, 3, 35. (SCIE, Others) (IF: 15.647; SCI ranking: 7.2%)

  • [44]     M. Aguilar, et al. AMS collaboration, 2019, “Towards Understanding the Origin of Cosmic-Ray Positrons”, PHYSICAL REVIEW LETTERS, 122, 041102. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [45]     M. Aguilar, et al. AMS collaboration, 2018, “Observation of Complex Time Structures in the Cosmic-Ray Electron and Positron Fluxes with the Alpha Magnetic Spectrometer on the International Space Station”, PHYSICAL REVIEW LETTERS, 121, 051102. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [46]     M. Aguilar, et al. AMS collaboration, 2018, “Observation of Fine Time Structures in the Cosmic Proton and Helium Fluxes with the Alpha Magnetic Spectrometer on the International Space Station”, PHYSICAL REVIEW LETTERS, 121, 051101. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [47]     M. Aguilar, et al. AMS collaboration, 2018, “Precision Measurement of Cosmic-Ray Nitrogen and its Primary and Secondary Components with the Alpha Magnetic Spectrometer on the International Space Station”, PHYSICAL REVIEW LETTERS, 121, 051103. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [48]     Inoue Yuki, Haino Sadakazu, Kanda Nobuyuki, Ogawa Yujiro, Suzuki Toshikazu, Tomaru Takayuki, Yamanmoto Takahiro, Yokozawa Takaaki, 2018, “Improving the absolute accuracy of the gravitational wave detectors by combining the photon pressure and gravity field calibrators”, Physical Review D, 98, 022005. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [49]     M. Aguilar, et al. AMS collaboration, 2018, “Observation of Complex Time Structures in the Cosmic-Ray Electron and Positron Fluxes with the Alpha Magnetic Spectrometer on the International Space Station”, Physical Review Letters, 121, 051102. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [50]     M. Aguilar, et al. AMS collaboration, 2018, “Observation of Fine Time Structures in the Cosmic Proton and Helium Fluxes with the Alpha Magnetic Spectrometer on the International Space Station”, Physical Review Letters, 121, 051101. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [51]     M. Aguilar, et al. AMS collaboration, 2018, “Observation of New Properties of Secondary Cosmic Rays Lithium, Beryllium, and Boron by the Alpha Magnetic Spectrometer on the International Space Station”, Physical Review Letters, 120, 021101. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [52]     M. Aguilar, et al. AMS collaboration, 2018, “Precision Measurement of Cosmic-Ray Nitrogen and its Primary and Secondary Components with the Alpha Magnetic Spectrometer on the International Space Station”, Physical Review Letters, 121, 051103. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [53]     T. Akutsu, et al., KAGRA collaboration, 2017, “Construction of KAGRA: an underground gravitational-wave observatory”, Progress of Theoretical and Experimental Physics, 2018, 013F01. (SCIE) (IF: 7.492; SCI ranking: 14%,13.8%)

  • [54]     M. Aguilar, et al. AMS collaboration, 2017, “Observation of the Identical Rigidity Dependence of He, C, and O Cosmic Rays at High Rigidities by the Alpha Magnetic Spectrometer on the International Space Station”, Physical Review Letters, 119, 251101. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [55]     M. Aguilar, et al. AMS collaboration, 2016, “Precision Measurement of the Boron to Carbon Flux Ratio in Cosmic Rays from 1.9 GV to 2.6 TV with the Alpha Magnetic Spectrometer on the International Space Station”, PHYSICAL REVIEW LETTERS, 117, 231102. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [56]     M. Aguilar, et al. AMS collaboration, 2016, “Antiproton Flux, Antiproton-to-Proton Flux Ratio, and Properties of Elementary Particle Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station”, Physical Review Letters, 117, 091103. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [57]     M. Aguilar, et al. AMS collaboration, 2015, “Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station”, PHYSICAL REVIEW LETTERS, 114, 171103. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [58]     M. Aguilar, et al. AMS collaboration, 2015, “Precision Measurement of the Helium Flux in Primary Cosmic Rays of Rigidities 1.9 GV to 3 TV with the Alpha Magnetic Spectrometer on the International Space Station”, Physical Review Letters, 115, 211101. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [59]     M. Aguilar, et al. AMS collaboration, 2014, “Precision Measurement of the (+) Flux in Primary Cosmic Rays from 0.5 GeV to 1 TeV with the Alpha Magnetic Spectrometer on the International Space Station”, PHYSICAL REVIEW LETTERS, 113, 221102. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [60]     M. Aguilar, et al. AMS collaboration, 2014, “Electron and Positron Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station”, PHYSICAL REVIEW LETTERS, 113, 121102. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [61]     L. Accardo, et al. AMS collaboration, 2014, “High Statistics Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5–500 GeV with the Alpha Magnetic Spectrometer on the International Space Station”, PHYSICAL REVIEW LETTERS, 113, 121102. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [62]     M. Aguilar, et al. AMS collaboration, 2013, “First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5–350 GeV”, PHYSICAL REVIEW LETTERS, 110, 141102. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [63]     K. Abe, H. Fuke, S. Haino, T. Hams, M. Hasegawa, A. Horikoshi, A. Itazaki, K. C. Kim, T. Kumazawa, A. Kusumoto, M. H. Lee, Y. Makida, S. Matsuda, Y. Matsukawa, K. Matsumoto, J. W. Mitchell, Z. Myers, J. Nishimura, M. Nozaki, R. Orito, J. F. Ormes, K. Sakai, M. Sasaki* E. S. Seo, Y. Shikaze, R. Shinoda, R. E. Streitmatter, J. Suzuki, Y. Takasugi, K. Takeuchi, K. Tanaka, N. Thakur, T. Yamagami, A. Yamamoto, T. Yoshida, K. Yoshimura, 2012, “Search for Antihelium with the BESS-Polar Spectrometer”, PHYSICAL REVIEW LETTERS, 108, 131301. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [64]     K. Abe, H. Fuke, S. Haino, T. Hams, M. Hasegawa, A. Horikoshi, K. C. Kim, A. Kusumoto, M. H. Lee, Y. Makida, S. Matsuda, Y. Matsukawa, J. W. Mitchell, J. Nishimura, M. Nozaki, R. Orito, J. F. Ormes, K. Sakai* M. Sasaki, E. S. Seo, R. Shinoda, R. E. Streitmatter, J. Suzuki, K. Tanaka, N. Thakur, T. Yamagami, A. Yamamoto, T. Yoshida, K. Yoshimura, 2012, “Measurement of the Cosmic-Ray Antiproton Spectrum at Solar Minimum with a Long-Duration Balloon Flight over Antarctica”, PHYSICAL REVIEW LETTERS, 108, 051102. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [65]     M. Aguilar, et al. AMS collaboration, 2011, “ISOTOPIC COMPOSITION OF LIGHT NUCLEI IN COSMIC RAYS: RESULTS FROM AMS-01”, ASTROPHYSICAL JOURNAL, 736, 105. (SCIE) (IF: 5.521; SCI ranking: 20.3%)

  • [66]     K. Luebelsmeyer, A. Schultz von Dratziga*, M. Wlochal, G. Ambrosi, P. Azzarello, R. Battiston, R. Becker, U. Becker, B. Bertucci, K. Bollweg, J.D. Burger, F. Cadoux, X.D. Cai, M. Capell, V. Choutko, M. Duranti, C. Gargiulo, C. Guandalini, S. Haino, M. Ionica, A. Koulemzine, A. Kounine, V. Koutsenko, G. Laurenti, A. Lebedev, T. Martin, A. Oliva, M. Paniccia, E. Perrin, D. Rapin, A. Rozhkov, St. Schael, H. Tholen, S.C.C. Ting, P. Zuccon, 2011, “Upgrade of the Alpha Magnetic Spectrometer (AMS-02) for long term operation on the International Space Station (ISS)”, NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 654, 639. (SCIE) (IF: 1.335; SCI ranking: 81.3%,67.6%,78.9%,82.8%)

  • [67]     M. Aguilar, et al. AMS collaboration, 2010, “RELATIVE COMPOSITION AND ENERGY SPECTRA OF LIGHT NUCLEI IN COSMIC RAYS: RESULTS FROM AMS-01”, ASTROPHYSICAL JOURNAL, 724, 329. (SCIE) (IF: 5.521; SCI ranking: 20.3%)

  • [68]     B. Alpat, G. Ambrosi, Ph. Azzarello, R. Battiston, B. Bertucci, M. Bourquin, W.J. Burger, F. Cadoux, C.F. da Silva Costa, V. Choutko, M. Duranti, E. Fiandrini, D. Haas, S. Haino*, M. Ionica, R. Ionica, C. Lechanoine-Leluc, M. Menichelli, S. Natale, A. Oliva, M. Paniccia, E. Perrin, M. Pohl, D. Rapin, N. Tomassetti, P. Zuccon, C. Zurbach , 2009, “The internal alignment and position resolution of the AMS-02 silicon tracker determined with cosmic-ray muons”, NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 613, 207. (SCIE) (IF: 1.335; SCI ranking: 81.3%,67.6%,78.9%,82.8%)

  • [69]     K. Abe, H. Fuke, S. Haino∗, T. Hams, A. Itazaki, K.C. Kim, T. Kumazawa, M.H. Lee, Y. Makida, S. Matsuda, K. Matsumoto, J.W. Mitchell, A.A. Moiseev, Z. Myers, J. Nishimura, M. Nozaki, R. Orito, J.F. Ormes, M. Sasaki, E.S. Seo, Y. Shikaze, R.E. Streitmatter, J. Suzuki, Y. Takasugi, K. Takeuchi, K. Tanaka, T. Yamagami, A. Yamamoto, T. Yoshida, K. Yoshimura, 2008, “Measurement of the cosmic-ray low-energy antiproton spectrum with the first BESS-Polar Antarctic flight”, PHYSICS LETTERS B, 670, 103. (SCIE) (IF: 4.95; SCI ranking: 27.5%,21.1%,31%)

  • [70]     J. Alcaraz, B. Alpat, G. Ambrosi, Ph. Azzarello, R. Battiston, B. Bertucci, J. Bolmont, M. Bourquin, W.J. Burger*, M. Capell, F. Cardano, Y.H. Chang, V. Choutko, E. Cortina, N. Dinu, G. Esposito, E. Fiandrini, D. Haas, S. Haino, H. Hakobyan, M. Ionica, R. Ionica, A. Jacholkowska, A. Kounine, V. Koutsenko, G. Lamanna, A. Lebedev, C. Lechanoine-Leluc, C.H. Lin, M. Menichelli, S. Natale, A. Oliva, M. Paniccia, M. Pauluzzi, E. Perrin, M. Pohl, D. Rapin, M. Sapinski, I. Sevilla, W. Wallraff, P. Zuccon, C. Zurbach, 2008, “The alpha magnetic spectrometer silicon tracker: Performance results with protons and helium nuclei”, NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 593, 376. (SCIE) (IF: 1.335; SCI ranking: 81.3%,67.6%,78.9%,82.8%)

  • [71]     Y. Shikaze, S. Haino*, K. Abe, H. Fuke, T. Hams, K.C. Kim, Y. Makida, S. Matsuda, J.W. Mitchell, A.A. Moiseev, J. Nishimura, M. Nozaki, S. Orito, J.F. Ormes, T. Sanuki, M. Sasaki, E.S. Seo, R.E. Streitmatter, J. Suzuki, K. Tanaka, T. Yamagami, A. Yamamoto, T. Yoshida, K. Yoshimura, 2007, “Measurements of 0.2–20 GeV/n cosmic-ray proton and helium spectra from 1997 through 2002 with the BESS spectrometer”, ASTROPARTICLE PHYSICS, 28, 154. (SCIE) (IF: 2.588; SCI ranking: 52.2%,58.6%)

  • [72]     K. Yamato, K. Abe, H. Fuke, S. Haino, Y. Makida, S. Matsuda, H. Matsumoto, J.W. Mitchell, A.A. Moiseev, J. Nishimura, M. Nozaki, S. Orito, J.F. Ormes, T. Sanuki*, M. Sasaki, E.S. Seo, Y. Shikaze, R.E. Streitmatter, J. Suzuki, K. Tanaka, T. Yamagami, A. Yamamoto, T. Yoshida, K. Yoshimura, 2006, “Measurements of atmospheric antiprotons”, PHYSICS LETTERS B, 632, 475. (SCIE) (IF: 4.95; SCI ranking: 27.5%,21.1%,31%)

  • [73]     H. Fuke* T. Maeno, K. Abe, S. Haino, Y. Makida, S. Matsuda, H. Matsumoto, J. W. Mitchell, A. A. Moiseev, J. Nishimura, M. Nozaki, S. Orito, J. F. Ormes, M. Sasaki, E. S. Seo, Y. Shikaze, R. E. Streitmatter, J. Suzuki, K. Tanaka, K. Tanizaki, T. Yamagami, A. Yamamoto, Y. Yamamoto, K. Yamato, T. Yoshida, K. Yoshimura, 2005, “Search for Cosmic-Ray Antideuterons”, PHYSICAL REVIEW LETTERS, 95, 081101. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [74]     S. Haino*, T. Sanuki, K. Abe, K. Anraku, Y. Asaoka, H. Fuke, M. Imori, A. Itasaki, T. Maeno, Y. Makida, S. Matsuda, N. Matsui, H. Matsumoto, J.W. Mitchell, A.A. Moiseev, J. Nishimura, M. Nozaki, S. Orito, J.F. Ormes, M. Sasaki, E.S. Seo, Y. Shikaze, R.E. Streitmatter, J. Suzuki, Y. Takasugi, K. Tanaka, K. Tanizaki, T. Yamagami, A. Yamamoto, Y. Yamamoto, K. Yamato, T. Yoshida, K. Yoshimura, 2004, “Measurements of primary and atmospheric cosmic-ray spectra with the BESS-TeV spectrometer”, PHYSICS LETTERS B, 594, 35. (SCIE) (IF: 4.95; SCI ranking: 27.5%,21.1%,31%)

  • [75]     Y. Asaoka*, Y. Shikaze, K. Abe, K. Anraku, M. Fujikawa, H. Fuke, S. Haino, M. Imori, K. Izumi, T. Maeno, Y. Makida, S. Matsuda, N. Matsui, T. Matsukawa, H. Matsumoto, H. Matsunaga, J. Mitchell, T. Mitsui, A. Moiseev, M. Motoki, J. Nishimura, M. Nozaki, S. Orito, J. F. Ormes, T. Saeki, T. Sanuki, M. Sasaki, E. S. Seo, T. Sonoda, R. Streitmatter, J. Suzuki, K. Tanaka, K. Tanizaki, I. Ueda, J. Z. Wang, Y. Yajima, Y. Yamagami, A. Yamamoto, Y. Yamamoto, K. Yamato, T. Yoshida, K. Yoshimura, 2002, “Measurements of Cosmic-Ray Low-Energy Antiproton and Proton Spectra in a Transient Period of Solar Field Reversal”, PHYSICAL REVIEW LETTERS, 88, 051101. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [76]     KAGRA collaboration, Unpublished, “Overview of KAGRA : KAGRA science”, PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS. (SCIE) (IF: 7.492; SCI ranking: 14%,13.8%)

發現與突破

  • [1]     西元年:2016
    研究人員(中):灰野禎一、阿爾法磁譜儀實驗組 (李世昌,林志勳,...)
    研究人員(英):SADAKAZU, HAINO, AMS collaboration (Shih-Chang Lee, Chih-Hsun Lin,...)
    研究成果名稱(中):在宇宙中新觀察到的基本粒子特性
    研究成果名稱(英):New observations of the properties of elementary particles in the cosmos
    簡要記述(中):2016年中AMS發表了反質子的能譜。這四種基本粒子(包含質子、電子、 反質子與正電子)的宇宙射線具有不衰變特性並在銀河系播。電子與正電子具有遠小於質子與反質子的質量。由於同步輻射效應,造成它們損失更多能量在星系磁場中。這些基本粒子的宇宙射線通量及通量比藉由阿爾法磁譜儀而被精確的測量。在高能區域,質子、反質子與正電子譜線被發現具有相同的隨能量關聯性。然而電子譜線展示出一個不一樣的隨能量關聯性。在宇宙中,這些是被新觀察到的基本粒子特性。在宇宙射線實驗數據中,反質子與正電子為提供洞察新物理現象(例如暗物質特性)起了關鍵作用。

    簡要記述(英):There are four charged elementary particles, proton, electron, antiproton and positron, which have infinite life time and travel through the Galaxy as cosmic rays. Electron and positron have much smaller mass than proton and antiproton so they lose much more energy in the galactic magnetic field due to synchrotron. The fluxes and flux ratios of these elementary particles in cosmic rays are precisely measured by Alpha Magnetic Spectrometer. In the high energies, proton, antiproton, and positron spectra are found to have nearly identical energy dependence.However electron spectrum exhibits a different rigidity dependence. These are new observations of the properties of elementary particles in the cosmos. Experimental data on cosmic-ray antiproton and positrons are crucial for providing insight into new physics phenomena such as the nature of dark matter.

    主要相關著作:
    M. Aguilar, et al. AMS collaboration, 2016, “Antiproton Flux, Antiproton-to-Proton Flux Ratio, and Properties of Elementary Particle Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station”, Physical Review Letters, 117, 091103. (SCIE) (IF: 9.185; SCI ranking: 9.3%)


  • [2]     西元年:2015
    研究人員(中):灰野禎一、阿爾法磁譜儀實驗組
    研究人員(英):SADAKAZU, HAINO, AMS collaboration
    研究成果名稱(中):質子與氦的能譜。在能譜指數變換到新的值
    研究成果名稱(英):The change of spectral indices in very high energy cosmic-ray proton and Helium flux
    簡要記述(中):AMS發表了質子與氦的能譜。在剛度300GV附近,能譜指數(spectral index)變換到新的值,出乎宇宙線學家的意料之外。 實驗結果和理論預測不符合、理論是錯誤的。我們對宇宙線的來源有新的認識。

    簡要記述(英):We published the proton flux and helium flux in two Physical Review Letters. Both were selected as “Editor’s Suggestions”. We discovered that the spectral indices change into new values near rigidity 300GV. The spectral index of the ratio of proton over helium remains unchanged. This discovery is inconsistent with our understanding of cosmic ray energy spectrum. We have a new understanding of the sources of cosmic rays.

    主要相關著作:
    M. Aguilar, et al. AMS collaboration, 2015, “Precision Measurement of the Helium Flux in Primary Cosmic Rays of Rigidities 1.9 GV to 3 TV with the Alpha Magnetic Spectrometer on the International Space Station”, Physical Review Letters, 115, 211101. (SCIE) (IF: 9.185; SCI ranking: 9.3%)


個人資料維護 | 著作目錄維護同步更新 | 最後更新日期 : 2023-06-29
2
Back To Top