雷曼 / 研究副技師

pi_image

連絡資訊

學歷

秘書

周泳恩 / 886-2-2789-8364

michelle0831[at]gate.sinica.edu.tw

研究興趣

經歷

學術著作

期刊論文

  • [1]     Lin Cheng-Chieh, Huang Shing-Jong, Wu Pei-Hao, Chen Tzu-Pei, Huang Chih-Ying, Wang Ying-Chiao, Chen Po-Tuan, Gelev Vladimir, Sankar Raman, Chen Chun-Wei, Yu Tsyr-Yan, accepted, “Direct Investigation of the Reorientational Dynamics of A-site Cations in 2D Organic-Inorganic Hybrid Perovskite by Solid-State NMR”, NATURE. (SCIE) (IF: 69.504; SCI ranking: 1.4%)

  • [2]     Krishnamoorthy Vimal, Bangolla Hemanth Kumar, Chen Chi-Yang, Huang Yu-Ting, Cheng Cheng-Maw, Ulaganathan Rajesh Kumar, Sankar Raman, Lee Kuei-Yi, Du He-Yun, Chen Li-Chyong, Chen Kuei-Hsieh, Chen Ruei-San, 2024, “Efficient Hydrogen Evolution Reaction in 2H-MoS2 Basal Planes Enhanced by Surface Electron Accumulation”, Catalysts, 14(1), 50. (SCIE) (IF: 4.501; SCI ranking: 43%)

  • [3]     D'Olimpio Gianluca, Zhang Yanxue, Rosmus Marcin, Nappini Silvia, Chakraborty Atasi, Olszowska Natalia, Ottaviano Luca, Sankar Raman, Agarwal Amit, Bondino Federica, Gao Junfeng, Politano Antonio, 2024, “Insights into the Stability and Surface Termination of Topological Semimetal NbAs<sub>2</sub>”, Advanced Materials Interfaces, 2300810, 0. (SCIE) (IF: 6.389; SCI ranking: 26.7%,27.5%)

  • [4]     Yi Liu, Chun-Qiang Xu, Wen-He Jiao, Ping-Gen Cai, Bin Li, Wei Zhou, Bin Qian, Xue-Fan Jiang, Raman Sankar, Xiang-Lin Ke, Guang-Han Cao, Xiao-Feng Xu, 2023, “Correction to:Anisotropic transport in a possible quasi-one-dimensional topological candidate: TaNi2Te3”, Tungsten, 5(4), 609-609.

  • [5]     Pal Sudip, Bahera Prakash, Sahu S.R., Srivastava Himanshu, Srivastava A.K., Lalla N.P., Sankar Raman, Banerjee A., Roy S.B., 2023, “Charge density wave and superconductivity in 6R-TaS<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si44.svg" display="inline" id="d1e293"><mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math>”, Physica B: Condensed Matter, 669, 415266. (SCIE) (IF: 2.988; SCI ranking: 52.2%)

  • [6]     Chih‐Ying Huang, Hung‐Min Lin, Chun‐Hao Chiang, Hsin‐An Chen, Ting‐Ran Liu, Deepak Vishnu S. K, Jau‐Wern Chiou, Raman Sankar, Huang‐Ming Tsai, Way‐Faung Pong, Chun‐Wei Chen, 2023, “Manipulating Spin Exchange Interactions and Spin‐Selected Electron Transfers of 2D Metal Phosphorus Trisulfide Crystals for Efficient Oxygen Evolution Reaction”, Advanced Functional Materials, 33, 43-2305792.

  • [7]     Bangolla Hemanth Kumar, Lee Yueh-Chien, Shen Wei-Chu, Ulaganathan Rajesh Kumar, Sankar Raman, Du He-Yun, Chen Ruei-San, 2023, “Photoconduction Properties in Tungsten Disulfide Nanostructures”, Nanomaterials, 13(15), 2190. (SCIE) (IF: 5.719; SCI ranking: 30.6%,31.5%,48.2%,23%)

  • [8]     Murugan G. Senthil, Lee Chanhyeon, Kalaivanan R., Muthuselvam I. Panneer, Oshima Yugo, Choi Kwang-Yong, Sankar R., 2023, “Anomalous spin dynamics of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>S</mml:mi><mml:mo>=</mml:mo><mml:mfrac><mml:mn>3</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:mrow></mml:math> kagome ferromagnet <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Li</mml:mi><mml:mn>9</mml:mn></mml:msub><mml:msub><mml:mi>Cr</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:msub><mml:mi mathvariant="normal">P</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>7</mml:mn></mml:msub><mml:mo>)</mml:mo></mml:mrow><mml:msub><mml:mrow /><mml:mn>3</mml:mn></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:msub><mml:mi>PO</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:mo>)</mml:mo></mml:mrow><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>”, Physical Review B, 107(21), 214411. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [9]     Madhumathy R., Saranya K., Moovendaran K., Ramesh Babu K., Rana Arpita, Choi Kwang-Yong, Kim Heung-Sik, Chen Wei-Tin, Ponmurugan M., Sankar R., Muthuselvam I. Panneer, 2023, “Crystal growth and magnetic properties of the coupled alternating <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>S</mml:mi><mml:mspace width="4pt" /><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math> spin chain <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Sr</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mi>Ni</mml:mi><mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mi>Se</mml:mi><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:mrow><mml:mo>)</mml:mo></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math>”, Physical Review B, 107(21), 214406. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [10]     Ahad Abdul, Gautam K., Majid S. S., Dey K., Tripathy A., Rahman F., Choudhary R. J., Sankar R., Sinha A. K., Kaul S. N., Shukla D. K., 2023, “Random magnetic anisotropy driven transitions in the layered perovskite <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>LaSrCoO</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:math>”, Physical Review B, 107(21), 214405. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [11]     Srinvasa Reddy Tamalampudi, Juan Esteban Villegas, Ghada Dushaq, Raman Sankar, Bruna Paredes, Mahmoud Rasras, 2023, “A High-Speed Waveguide Integrated InSe Photodetector on SiN Photonics for NIR Applications”, arXiv preprint arXiv:2305.00709, 15, 6.

  • [12]     Mathew Roshan Jesus, Cheng Kai‐Hsiang, Inbaraj Christy Roshini Paul, Sankar Raman, Gao Xuan P.A., Chen Yit‐Tsong, 2023, “An Anti‐Ambipolar Cryo‐Phototransistor”, Advanced Electronic Materials, 2300095, 1-10. (SCIE) (IF: 7.633; SCI ranking: 22.8%,32.7%,16.1%)

  • [13]     Moovendaran Kalimuthu, Kalaivanan Raju, Panneer Muthuselvam I., Rajeesh Kumar N., Lai Yen-Chung, iizuka Yoshiyuki, Choi Kwang-Yong, Sankar Raman, 2023, “Cluster-glass freezing and antiferromagnetic phase transitions in corundum structure Mg3-Co TeO6”, Journal of Magnetism and Magnetic Materials, 0, 170802. (SCIE) (IF: 3.097; SCI ranking: 59.5%,50.7%)

  • [14]     Freter Lars, Hsu Hung-Chang, Sankar Raman, Chen Chun-Wei, Dunin-Borkowski Rafal E., Ebert Philipp, Chiu Ya-Ping, Schnedler Michael, 2023, “Interplay of field-induced molecular dipole alignment and compensating surface polarization in low-temperature <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>P</mml:mi><mml:mtext>−</mml:mtext><mml:mi>V</mml:mi></mml:math> hysteresis of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">MAPbBr</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:mo>(</mml:mo><mml:mn>001</mml:mn><mml:mo>)</mml:mo></mml:math>”, Physical Review Materials, 7(5), L052401. (SCIE) (IF: 3.98; SCI ranking: 46.2%)

  • [15]     Paul Inbaraj Christy Roshini, Mathew Roshan Jesus, Sankar Raman, Lin Hsia Yu, Li Nian-Xiu, Chen Yit-Tsong, Chen Yang-Fang, 2023, “Coupling between Pyroelectricity and Built-In Electric Field Enabled Highly Sensitive Infrared Phototransistor Based on InSe/WSe<sub>2</sub>/P(VDF-TrFE) Heterostructure”, ACS Applied Materials & Interfaces, 15(15), 19121-19128.

  • [16]     Gulo Desman Perdamaian, Hung Nguyen Tuan, Sankar Raman, Saito Riichiro, Liu Hsiang-Lin, 2023, “Exploring optical properties of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>2</mml:mn><mml:mtext>H-</mml:mtext></mml:mrow></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>1</mml:mn><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="normal">T</mml:mi></mml:mrow><mml:mo>′</mml:mo></mml:msup><mml:mtext>−</mml:mtext></mml:mrow><mml:msub><mml:mi mathvariant="normal">MoTe</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math> single crystals by spectroscopic ellipsometry”, Physical Review Materials, 7(4), 044001. (SCIE) (IF: 3.98; SCI ranking: 46.2%)

  • [17]     Yadav Kanchan, Moovendaran Kalimuthu, Dhenadhayalan Namasivayam, Lee Shan Fang, Leung Man-Kit, Sankar Raman, 2023, “From Food Toxins to Biomarkers: Multiplexed Detection of Aflatoxin B1 and Aflatoxin M1 in Milk and Human Serum using PEGylated Ternary Transition Metal Sulfides”, Sensors and Actuators Reports, 0, 100156.

  • [18]     Ghosh Rapti, Papnai Bhartendu, Chen Yu‐Siang, Yadav Kanchan, Sankar Raman, Hsieh Ya‐Ping, Hofmann Mario, Chen Yang‐Fang, 2023, “Exciton Manipulation for Enhancing Photoelectrochemical Hydrogen Evolution Reaction in Wrinkled 2D Heterostructures”, Advanced Materials, 35(16), 2210746. (SCIE) (IF: 32.086; SCI ranking: 2.8%,2.4%,2.3%,2.7%,3.1%,2.9%)

  • [19]     Mazzola Federico, Zhang Yanxue, Olszowska Natalia, Rosmus Marcin, D’Olimpio Gianluca, Istrate Marian Cosmin, Politano Grazia Giuseppina, Vobornik Ivana, Sankar Raman, Ghica Corneliu, Gao Junfeng, Politano Antonio, 2023, “Fermiology of Chiral Cadmium Diarsenide CdAs<sub>2</sub>, a Candidate for Hosting Kramers–Weyl Fermions”, The Journal of Physical Chemistry Letters, 14, 3120-3125. (SCIE) (IF: 6.888; SCI ranking: 27.9%,25.4%,37.3%,13.9%)

  • [20]     Zhang Yanxue, D'Olimpio Gianluca, Bondino Federica, Nappini Silvia, Cosmin Istrate Marian, Sankar Raman, Chica Corneliu, Ottaviano Luca, Gao Junfeng, Politano Antonio, 2023, “Surface properties, chemical reactivity, and ambient stability of cadmium diarsenide CdAs2, a topological chiral material hosting Kramers-Weyl fermions”, Applied Surface Science, 0, 157132. (SCIE) (IF: 7.392; SCI ranking: 25.5%,5%,17.4%,20.3%)

  • [21]     Kim Dong Seob, Huang Di, Guo Chunhao, Li Kejun, Rocca Dario, Gao Frank Y., Choe Jeongheon, Lujan David, Wu Ting‐Hsuan, Lin Kung‐Hsuan, Baldini Edoardo, Yang Li, Sharma Shivani, Kalaivanan Raju, Sankar Raman, Lee Shang‐Fan, Ping Yuan, Li Xiaoqin, 2023, “Anisotropic Excitons Reveal Local Spin Chain Directions in a van der Waals Antiferromagnet”, Advanced Materials, 0, 2206585. (SCIE) (IF: 32.086; SCI ranking: 2.8%,2.4%,2.3%,2.7%,3.1%,2.9%)

  • [22]     Ghosh Rapti, Papnai Bhartendu, Chen Yu‐Siang, Yadav Kanchan, Sankar Raman, Hsieh Ya‐Ping, Hofmann Mario, Chen Yang‐Fang, 2023, “Exciton Manipulation for Enhancing Photo‐electrochemical Hydrogen Evolution Reaction in Wrinkled 2D Heterostructures”, Advanced Materials, 0, 2210746. (SCIE) (IF: 32.086; SCI ranking: 2.8%,2.4%,2.3%,2.7%,3.1%,2.9%)

  • [23]     Ulaganathan Rajesh Kumar, Roy Pradip Kumar, Mhatre Swapnil Milind, Murugesan Raghavan Chinnambedu, Chen Wei‐Liang, Lai Man‐Hong, Subramanian Ambika, Lin Chang‐Yu, Chang Yu‐Ming, Canulescu Stela, Rozhin Alex, Liang Chi‐Te, Sankar Raman, 2023, “High‐Performance Photodetector and Angular‐Dependent Random Lasing from Long‐Chain Organic Diammonium Sandwiched 2D Hybrid Perovskite Non‐Linear Optical Single Crystal”, Advanced Functional Materials, 0, 2214078. (SCIE) (IF: 19.924; SCI ranking: 5.6%,6.1%,4.9%,7.3%,5%,8.7%)

  • [24]     Li Zi-Yi, Cheng Hao-Yu, Kung Sheng-Hsun, Yao Hsuan-Chun, Inbaraj Christy Roshini Paul, Sankar Raman, Ou Min-Nan, Chen Yang-Fang, Lee Chi-Cheng, Lin Kung-Hsuan, 2023, “Uniaxial Strain Dependence on Angle-Resolved Optical Second Harmonic Generation from a Few Layers of Indium Selenide”, Nanomaterials, 13(4), 750. (SCIE) (IF: 5.719; SCI ranking: 30.6%,31.5%,48.2%,23%)

  • [25]     Chazarin Ulysse, Lezoualc'h Mahé, Chou Jyh‐Ping, Pai Woei Wu, Karn Abhishek, Sankar Raman, Chacon Cyril C., Girard Yann, Repain Vincent, Bellec Amandine, Rousset Sylvie, Smogunov Alexander, Dappe Yannick J., Lagoute Jérôme, 2023, “Formation of Monolayer Charge Density Waves and Anomalous Edge Doping in Na Doped Bulk VSe <sub>2</sub>”, Advanced Materials Interfaces, 0, 2201680. (SCIE) (IF: 6.389; SCI ranking: 26.7%,27.5%)

  • [26]     Ting-Hsuan Wu, Hao-Yu Cheng, Wei-Chiao Lai, Raman Sankar, Chia-Seng Chang*, Kung-Hsuan Lin*, 2023, “Ultrafast carrier dynamics and layer-dependent carrier recombination rate in InSe”, Advanced Materials, 15(7), 3169-3176. (SCIE) (IF: 32.086; SCI ranking: 2.8%,2.4%,2.3%,2.7%,3.1%,2.9%)

  • [27]     Lu Yi-Ying, Yu Hsiao-Ching, Wang You-Xin, Hung Chih-Keng, Chen You-Ren, Jhou Jie, Yen Peter Tsung-Wen, Hsu Jui-Hung, Sankar Raman, 2022, “Optical determination of layered-materials InSe thickness via RGB contrast method and regression analysis”, Nanotechnology, 33(48), 485702. (SCIE) (IF: 3.953; SCI ranking: 46.5%,58.2%,31.7%)

  • [28]     Krishna Kumar B., Navaneetha Krishnan R., Sankar R., Rukmani R., 2022, “Performance analysis of cognitive wireless retrial queueing networks with admission control for secondary users”, Quality Technology & Quantitative Management, 0, 1-38.

  • [29]     Panneer Muthuselvam I., Madhumathy R., Saranya K., Moovendaran K., Lee Suheon, Choi Kwang-Yong, Chen Wei-tin, Wang Chin-Wei, Chen Peng-Jen, Ponmurugan M., Ou Min-nan, Chen Yang-Yuan, Kim Heung-Sik, Sankar R., 2022, “Spin-singlet ground state of the coupled <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>J</mml:mi><mml:mtext>eff</mml:mtext></mml:msub></mml:math> = <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:math> alternating chain system <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">Sr</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mi mathvariant="normal">Co</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:msub><mml:mi mathvariant="normal">SeO</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:mrow><mml:mo>)</mml:mo></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math>”, Physical Review B, 106(21), 21-214417. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [30]     Takeda Hikaru, Mai Jiancong, Akazawa Masatoshi, Tamura Kyo, Yan Jian, Moovendaran Kalimuthu, Raju Kalaivanan, Sankar Raman, Choi Kwang-Yong, Yamashita Minoru, 2022, “Planar thermal Hall effects in the Kitaev spin liquid candidate <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Na</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>Co</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>TeO</mml:mi><mml:mn>6</mml:mn></mml:msub></mml:mrow></mml:math>”, Physical Review Research, 4(4), 4-L042035.

  • [31]     Moovendaran Kalimuthu, Kalaivanan Raju, Muthuselvam I. Panneer, Babu K. Ramesh, Lee Suheon, Lee C. H., Bayikadi Khasim Saheb, Dhenadhayalan Namasivayam, Chen Wei-Tin, Wang Chin-Wei, Lai Yen-Chung, iizuka Yoshiyuki, Choi Kwang-Yong, Nalbandyan Vladimir B., Sankar Raman, 2022, “Triangular Magnet Emergent from Noncentrosymmetric Sr<sub>0.94</sub>Mn<sub>0.86</sub>Te<sub>1.14</sub>O<sub>6</sub> Single Crystals”, Inorganic Chemistry, 61(48), 19058-19066. (SCIE) (IF: 5.436; SCI ranking: 10.9%)

  • [32]     Dutta S., Yang L., Liu S.Y., Liu C.M., Liaw L.J., Som S., Mohapatra A., Sankar R., Lin W.C., Chao Y.C., 2022, “Impact of Co2+ on the magneto-optical response of MAPbBr3: An inspective study of doping and quantum confinement effect”, Materials Today Physics, 27, 100843. (SCIE) (IF: 11.021; SCI ranking: 12.4%,8.7%)

  • [33]     Ghosh Rapti, Kang Yi-Sun, Yadav Kanchan, Lin Hung-I, Yen Zhi Long, Lin Hsia-Yu, Lu Guan Zhang, Sankar Raman, Hsieh Ya-Ping, Hofmann Mario, Chen Yang-Fang, 2022, “Omnidirectional and Highly Sensitive Microtubular Photodetectors Based on QD/2D Heterojunctions”, ACS Applied Electronic Materials, 4(11), 5208-5214. (SCIE) (IF: 4.494; SCI ranking: 27.7%,38.7%)

  • [34]     Lin I C, Lee M H, Wu P C, Lin S C, Chen J W, Li C-C, Guo G Y, Chu Y-H, Sankar R, Chu M-W, 2022, “Atomic-scale observation of spontaneous hole doping and concomitant lattice instabilities in strained nickelate films”, New Journal of Physics, 24(2), 023011. (SCIE) (IF: 3.716; SCI ranking: 38.4%)

  • [35]     Murtaza Tahir, Yang Haiyang, Feng Jiajia, Shen Yi, Ge Yongheng, Liu Yi, Xu Chunqiang, Jiao Wenhe, Lv Yaokang, Ridley Christopher J., Bull Craig L., Biswas Pabitra K., Sankar Raman, Zhou Wei, Qian Bin, Jiang Xuefan, Feng Zhenjie, Zhou Yonghui, Zhu Ziming, Yang Zhaorong, Xu Xiaofeng, 2022, “Cascade of pressure-driven phase transitions in the topological nodal-line superconductor <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">PbTaSe</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math>”, Physical Review B, 106(6), L060501. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [36]     Bayikadi Khasim Saheb, Imam Safdar, Ubaid Mohammad, Aziz Anver, Chen Kuei-Hsien, Sankar Raman, 2022, “Effect of aliovalent substituted highly disordered GeTe compound's thermoelectric performance”, Journal of Alloys and Compounds, 922, 166221. (SCIE) (IF: 6.371; SCI ranking: 31.5%,27.7%,6.3%)

  • [37]     Lu Yi-Ying, Huang Yan-Ting, Chen Jia-Ni, Jhou Jie, Lan Liang-Wei, Kuo Chien-Cheng, Hsu Jui-Hung, Hsieh Shang-Hsien, Chen Chia-Hao, Sankar Raman, 2022, “Energy Barrier at Indium/Indium Selenide Nanosheet Interfaces: Implications of Metal-to-Insulator Transition for Field-Effect Transistor Modeling”, ACS Applied Nano Materials, 5(2), 1911-1916. (SCIE) (IF: 6.14; SCI ranking: 29.2%,41.8%)

  • [38]     Harsh Rishav, Mondal Sourav, Sharma Devina, Bouatou Mehdi, Chacon Cyril, Ilyn Maxim, Rogero Celia, Repain Vincent, Bellec Amandine, Girard Yann, Rousset Sylvie, Sankar Raman, Pai Woei Wu, Narasimhan Shobhana, Lagoute Jérôme, 2022, “Identification and Manipulation of Defects in Black Phosphorus”, The Journal of Physical Chemistry Letters, 13(27), 6276-6282. (SCIE) (IF: 6.888; SCI ranking: 27.9%,25.4%,37.3%,13.9%)

  • [39]     Sheelam Anjaiah, Balu Sakthipriya, Muneeb Adil, Bayikadi Khasim Saheb, Namasivayam Dhenadhayalan, Siddharthan Erakulan E., Inamdar Arif I., Thapa Ranjit, Chiang Ming-Hsi, Isaac Huang Song-Jeng, Sankar Raman, 2022, “Improved Oxygen Redox Activity by High-Valent Fe and Co3+ Sites in the Perovskite LaNi1–xFe0.5xCo0.5xO3”, ACS Applied Energy Materials, 5(1), 343-354. (SCIE) (IF: 6.959; SCI ranking: 27.3%,32.8%,24.9%)

  • [40]     Wyzula Jan, Lu Xin, Santos‐Cottin David, Mukherjee Dibya Kanti, Mohelský Ivan, Le Mardelé Florian, Novák Jiří, Novak Mario, Sankar Raman, Krupko Yuriy, Piot Benjamin A., Lee Wei‐Li, Akrap Ana, Potemski Marek, Goerbig Mark O., Orlita Milan, 2022, “Lorentz‐Boost‐Driven Magneto‐Optics in a Dirac Nodal‐Line Semimetal”, Advanced Science, 0, 2105720. (SCIE) (IF: 17.521; SCI ranking: 7.8%,6.1%,10.9%)

  • [41]     Howard Sean, Raghavan Arjun, Iaia Davide, Xu Caizhi, Flötotto David, Wong Man-Hong, Mo Sung-Kwan, Singh Bahadur, Sankar Raman, Lin Hsin, Chiang Tai-Chang, Madhavan Vidya, 2022, “Observation of a smoothly tunable Dirac point in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Ge</mml:mi><mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:msub><mml:mi>Bi</mml:mi><mml:mi>x</mml:mi></mml:msub><mml:msub><mml:mi>Sb</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mtext>−</mml:mtext><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mo>)</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>Te</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:mrow></mml:math>”, Physical Review Materials, 6(4), 044201. (SCIE) (IF: 3.98; SCI ranking: 46.2%)

  • [42]     Cheng Chih-Yi, Pai Wei-Liang, Chen Yi-Hsun, Paylaga Naomi Tabudlong, Wu Pin-Yun, Chen Chun-Wei, Liang Chi-Te, Chou Fang-Cheng, Sankar Raman, Fuhrer Michael S., Chen Shao-Yu, Wang Wei-Hua, 2022, “Phase Modulation of Self-Gating in Ionic Liquid-Functionalized InSe Field-Effect Transistors”, Nano Letters, 22(6), 2270-2276. (SCIE) (IF: 12.262; SCI ranking: 11.1%,15.2%,9.2%,15.5%,8.1%,14.5%)

  • [43]     Inamdar Arif I., Sainbileg Batjargal, Lin Chi-Jia, Usman Muhammad, Kamal Saqib, Chiou Kuan-Ru, Pathak Abhishek, Luo Tzuoo-Tsair, Bayikadi Khasim Saheb, Sankar Raman, Chen Jenq-Wei, Tseng Tien-Wen, Chen Ruei-San, Hayashi Michitoshi, Chiang Ming-Hsi, Lu Kuang-Lieh, 2022, “Regimented Charge Transport Phenomena in Semiconductive Self-Assembled Rhenium Nanotubes”, ACS Applied Materials & Interfaces, 14(10), 12423-12433.

  • [44]     A.Sivakumar , Dhas S. Sahaya Jude, A.Saranraj , Sankar Raman, Kumar Raju Suresh, Almansour Abdulrahman I., Kim Ikhyun, Dhas S.A. Martin Britto, 2022, “Reversible disorder-order type structural phase transition of potassium dihydrogen phosphate bulk single crystals induced by dynamic shock waves”, Physica B: Condensed Matter, 644, 414233. (SCIE) (IF: 2.988; SCI ranking: 52.2%)

  • [45]     Blue Brandon T., Lough Stephanie D., Le Duy, Thompson Jesse E., Rahman Talat S., Sankar R., Ishigami Masahiro, 2022, “Scanning tunneling microscopy and spectroscopy of NiTe2”, Surface Science, 722, 122099. (SCIE) (IF: 2.07; SCI ranking: 78.8%,63.8%)

  • [46]     Dutta Somrita, Vishnu S. K Deepak, Som Sudipta, Chaurasiya Rajneesh, Patel Dinesh Kumar, Moovendaran Kalimuthu, Lin Cheng-Chieh, Chen Chun-Wei, Sankar Raman, 2022, “Segmented Highly Reversible Thermochromic Layered Perovskite [(CH2)2(NH3)2]CuCl4 Crystal Coupled with an Inverse Magnetocaloric Effect”, ACS Applied Electronic Materials, 4(1), 521-530. (SCIE) (IF: 4.494; SCI ranking: 27.7%,38.7%)

  • [47]     Murugan Ganesan Senthil, Lee Suheon, Wang C., Luetkens H., Choi Kwang-Yong, Sankar Raman, 2022, “Spin dynamics of the one-dimensional double chain spin-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:math> antiferromagnet <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>KNaCuP</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>7</mml:mn></mml:msub></mml:mrow></mml:math>”, Physical Review B, 105(17), 111. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [48]     Huang Song-Jeng, Balu Sakthipriya, Barveen Nazar Riswana, Sankar Raman, 2022, “Surface Engineering of Reduced Graphene Oxide onto the Nanoforest-like Nickel Selenide as a High Performance Electrocatalyst for OER and HER”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 0, 130024.

  • [49]     Cho Kwanghee, Lee Seungyeol, Kalaivanan Raju, Sankar Raman, Choi Kwang‐Yong, Park Soonyong, 2022, “Tunable Ferroelectricity in Van der Waals Layered Antiferroelectric CuCrP <sub>2</sub> S <sub>6</sub>”, Advanced Functional Materials, 0, 2204214. (SCIE) (IF: 19.924; SCI ranking: 5.6%,6.1%,4.9%,7.3%,5%,8.7%)

  • [50]     Govindaraj L., Arumugam S., Thiyagarajan R., Kumar Dinesh, Kannan M., Das Dhruba, Suraj T.S., Sankaranarayanan V., Sethupathi K., Baskaran G., Sankar Raman, Rao M.S.Ramachandra, 2022, “Wohlleben Effect and Emergent π junctions in superconducting Boron doped Diamond thin films”, Physica C: Superconductivity and its Applications, 598, 1354065. (SCIE) (IF: 1.534; SCI ranking: 78.9%,78.3%)

  • [51]     Paul Inbaraj Christy Roshini, Mathew Roshan Jesus, Ulaganathan Rajesh Kumar, Sankar Raman, Kataria Monika, Lin Hsia Yu, Chen Yit-Tsong, Hofmann Mario, Lee Chih-Hao, Chen Yang-Fang, 2021, “A Bi-Anti-Ambipolar Field Effect Transistor”, ACS Nano, 15(5), 8686-8693. (SCIE) (IF: 18.027; SCI ranking: 7.2%,7.3%,5.8%,10%)

  • [52]     Imam Safdar, Bayikadi Khasim Saheb, Ubaid Mohammad, Ranganayakulu V.K., Devi Sumangala, Pujari Bhalchandra S., Chen Yang-Yuan, Chen Li-Chyong, Chen Kuei-Hsien, Lin Feng-Li, Sankar Raman, 2021, “Achieving synergistic performance through highly compacted microcrystalline rods induced in Mo doped GeTe based compounds”, Materials Today Physics, 17, 100571. (SCIE) (IF: 11.021; SCI ranking: 12.4%,8.7%)

  • [53]     Liu Yi, Xu Chun-Qiang, Jiao Wen-He, Cai Ping-Gen, Li Bin, Zhou Wei, Qian Bin, Jiang Xue-Fan, R Kalaivaman, Sankar Raman, Ke Xiang-Lin, Cao Guang-Han, Xu Xiao-Feng, 2021, “Anisotropic transport in a possible quasi-one-dimensional topological candidate: TaNi2Te3”, Tungsten, 1, 7.

  • [54]     Lee Seungyeol, Park Jaena, Choi Youngsu, Raju Kalaivanan, Chen Wei-Tin, Sankar Raman, Choi Kwang-Yong, 2021, “Chemical tuning of magnetic anisotropy and correlations in Ni1−xFexPS3”, Physical Review B, 104(17), 174412. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [55]     Karna Sunil K., Wang C. W., Sankar R., Temple D., Avdeev M., 2021, “Commensurate and incommensurate magnetic structure of the moderately frustrated antiferromagnet Li2M(WO4)2 with M=Co,Ni”, Physical Review B, 104(13), 134435. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [56]     Yen Yun, Chiu Cheng-Li, Lin Ping-Hui, Sankar Raman, Chuang Tien-Ming, Guo Guang-Yu, 2021, “Dirac nodal line and Rashba spin-split surface states in nonsymmorphic ZrGeTe”, New Journal of Physics, 23(10), 103019. (SCIE) (IF: 3.716; SCI ranking: 38.4%)

  • [57]     Glamazda A., Sharafeev A., Bohle R., Lemmens P., Choi K.-Y., Chou F. C., Sankar R., 2021, “Doping from CDW to topological superconductivity: The role of defects on phonon scattering in the non-centrosymmetric PbxTaSe2”, Low Temperature Physics, 47(11), 912-919. (SCIE) (IF: 0.891; SCI ranking: 91.9%)

  • [58]     Lu Yi-Ying, Peng Yu-Ting, Huang Yan-Ting, Chen Jia-Ni, Jhou Jie, Lan Liang-Wei, Jian Shi-Hao, Kuo Chien-Cheng, Hsieh Shang-Hsien, Chen Chia-Hao, Sankar Raman, Chou Fang-Cheng, 2021, “Engineering an Indium Selenide van der Waals Interface for Multilevel Charge Storage”, ACS Applied Materials & Interfaces, 13(3), 4618-4625. (SCIE) (IF: 10.383; SCI ranking: 14.2%,20.9%)

  • [59]     Wang Xiao, Hu Zhiwei, Agrestini Stefano, Herrero-Martín Javier, Valvidares Manuel, Sankar Raman, Chou Fang-Cheng, Chu Ying-Hao, Tanaka Arata, Tjeng Liu Hao, Pellegrin Eric, 2021, “Evidence for largest room temperature magnetic signal from Co2+ in antiphase-free & fully inverted CoFe2O4 in multiferroic-ferrimagnetic BiFeO3-CoFe2O4 nanopillar thin films”, Journal of Magnetism and Magnetic Materials, 530, 167940. (SCIE) (IF: 3.097; SCI ranking: 59.5%,50.7%)

  • [60]     Panneer Muthuselvam I., Saranya K., Büscher Florian, Wulferding Dirk, Lemmens Peter, Chen Wei-tin, Sankar R., 2021, “High magnetic anisotropy and magnon excitations in single crystals of the double spin chain compound PbMn2Ni6Te3O18”, Physical Review B, 103(6), 064401. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [61]     Lingannan Govindaraj, Ganesan Kalaiselvan, Mariappan Sathiskumar, Sankar Raman, Uwatoko Y., Arumugam S., 2021, “Internal and External Pressure Effects on Superconductivity in FeTexSe1-x (x = 0.46, 0.54) Single Crystals”, Journal of Superconductivity and Novel Magnetism, 34(3), 725-731. (SCIE) (IF: 1.675; SCI ranking: 75.2%,75.4%)

  • [62]     Shrestha K, Miertschin D, Sankar R, Lorenz B, Chu C W, 2021, “Large magnetoresistance and quantum oscillations in Sn0.05Pb0.95Te”, Journal of Physics: Condensed Matter, 33(33), 335501.

  • [63]     Murugan G. Senthil, Babu K. Ramesh, Sankar R., Chen W. T., Muthuselvam I. Panneer, Chattopadhyay Sumanta, Choi K.-Y., 2021, “Magnetic and structural dimer networks in layered K2Ni(MoO4)2”, Physical Review B, 103(2), 024451. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [64]     Murtaza Tahir, Kalaivanan Raju, Madeswaran G., Bayikadi Khasimsaheb, Sankar Raman, 2021, “Magnetic properties of honeycomb spin lattice compounds Na2M2TeO6 (M = Co, Ni) and spin dimer compound Na2Cu2TeO6 single crystals by flux-growth”, Journal of Materials Research and Technology, 14, 1601-1608.

  • [65]     Muthuselvam I. Panneer, Saranya K., Kasinathan Deepa, Bhowmik R. N., Sankar R., Dhenadhayalan Namasivayam, Shu G. J., Chen Wei-tin, Kavitha L., Lin King-Chuen, 2021, “Magnetic spin order in the honeycomb structured Pb6Co9(TeO6)5 compound”, Physical Review B, 104(17), 174442. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [66]     Lee C. H., Lee S., Choi Y. S., Jang Z. H., Kalaivanan R., Sankar R., Choi K.-Y., 2021, “Multistage development of anisotropic magnetic correlations in the Co-based honeycomb lattice Na2Co2TeO6”, Physical Review B, 103(21), 214447. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [67]     Ebad-Allah J., Rojewski S., Vöst M., Eickerling G., Scherer W., Uykur E., Sankar Raman, Varrassi L., Franchini C., Ahn K.-H., Kuneš J., Kuntscher C. A., 2021, “Pressure-Induced Excitations in the Out-of-Plane Optical Response of the Nodal-Line Semimetal ZrSiS”, Physical Review Letters, 127(7), 076402. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [68]     Cui Hengbo, Yun Seohee, Lee Kyeong Jun, Lee Chanhyeon, Chang Seo Hyoung, Lee Yongjae, Lee Hyun Hwi, Raju Kalaivanan, Moovendaran Kalimuthu, Sankar Raman, Choi Kwang-Yong, 2021, “Quasihydrostatic versus nonhydrostatic pressure effects on the electrical properties of NiPS3”, Physical Review Materials, 5(12), 124008. (SCIE) (IF: 3.98; SCI ranking: 46.2%)

  • [69]     Rajput Nitul S., Baik Hionsuck, Lu Jin-You, Tamalampudi Srinivasa Reddy, Sankar Raman, Al Ghaferi Amal, Chiesa Matteo, 2021, “Revealing the Quasi-Periodic Crystallographic Structure of Self-Assembled SnTiS3 Misfit Compound”, The Journal of Physical Chemistry C, 125(18), 9956-9964. (SCIE) (IF: 4.177; SCI ranking: 47.3%,41.3%,56.4%)

  • [70]     Multer Daniel, Yin Jia-Xin, Zhang Songtian S., Zheng Hao, Chang Tay-Rong, Bian Guang, Sankar Raman, Hasan M. Zahid, 2021, “Robust topological state against magnetic impurities observed in the superconductor PbTaSe2”, Physical Review B, 104(7), 075145. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [71]     Lin Chang-Yu, Ulaganathan Rajesh Kumar, Sankar Raman, Murugesan Raghavan Chinnambedu, Subramanian Ambika, Rozhin Alex, Firdoz Shaik, 2021, “Silicon-based two-dimensional chalcogenide of p-type semiconducting silicon telluride nanosheets for ultrahigh sensitive photodetector applications”, Journal of Materials Chemistry C, 9(32), 10478-10486. (SCIE) (IF: 8.067; SCI ranking: 20.5%,14.9%)

  • [72]     Ulaganathan Rajesh Kumar, Murugesan Raghavan Chinnambedu, Lin Chang‐Yu, Subramanian Ambika, Chen Wei‐Liang, Chang Yu‐Ming, Rozhin Alex, Sankar Raman, 2021, “Stable Formamidinium‐Based Centimeter Long Two‐Dimensional Lead Halide Perovskite Single‐Crystal for Long‐Live Optoelectronic Applications”, Advanced Functional Materials, 31, 2112277. (SCIE) (IF: 19.924; SCI ranking: 5.6%,6.1%,4.9%,7.3%,5%,8.7%)

  • [73]     Majchrzak Paulina, Pakdel Sahar, Biswas Deepnarayan, Jones Alfred J. H., Volckaert Klara, Marković Igor, Andreatta Federico, Sankar Raman, Jozwiak Chris, Rotenberg Eli, Bostwick Aaron, Sanders Charlotte E., Zhang Yu, Karras Gabriel, Chapman Richard T., Wyatt Adam, Springate Emma, Miwa Jill A., Hofmann Philip, King Phil D. C., Lanatà Nicola, Chang Young Jun, Ulstrup Søren, 2021, “Switching of the electron-phonon interaction in 1T−VSe2 assisted by hot carriers”, Physical Review B, 103(24), L241108. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [74]     Huang Song-Jeng, Muneeb Adil, Sabhapathy Palani, Sheelam Anji, Bayikadi Khasim Saheb, Sankar Raman, 2021, “Tailoring the Co4+/Co3+ active sites in a single perovskite as a bifunctional catalyst for the oxygen electrode reactions”, Dalton Transactions, 50(21), 7212-7222. (SCIE) (IF: 4.569; SCI ranking: 15.2%)

  • [75]     Huang Song Jeng, Muneeb Adil, Abbas Aqeel, Sankar Raman, 2021, “The effect of Mg content and milling time on the solid solubility and microstructure of Ti–Mg alloys processed by mechanical milling”, Journal of Materials Research and Technology, 11, 1424-1433.

  • [76]     Huang Song-Jeng, Muneeb Adil, Sabhapathy Palani, Bayikadi Khasim Saheb, Murtaza Tahir, Raju Kalaivanan, Chen Li-Chyong, Chen Kuei-Hsien, Sankar Raman, 2021, “Two-Dimensional Layered NiLiP2S6 Crystals as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting”, Catalysts, 11(7), 786. (SCIE) (IF: 4.501; SCI ranking: 43%)

  • [77]     Inamdar Arif I., Sainbileg Batjargal, Kamal Saqib, Bayikadi Khasim Saheb, Sankar Raman, Luo Tzuoo Tsair, Hayashi Michitoshi, Chiang Ming-Hsi, Lu Kuang-Lieh, 2021, “Water-assisted spin-flop antiferromagnetic behaviour of hydrophobic Cu-based metal–organic frameworks”, Dalton Transactions, 50(17), 5754-5758. (SCIE) (IF: 4.569; SCI ranking: 15.2%)

  • [78]     H-C Chang, T-H Chen, R Sankar, Y-J Yang, L-C Chen, K-H Chen, 2020, “Highly improved thermoelectric performance of BiCuTeO achieved by decreasing the oxygen content”, Materials Today Physics, 15,100248. (SCIE) (IF: 11.021; SCI ranking: 12.4%,8.7%)

  • [79]     Rojin Varghese, V Shobin Vijay, S Rajesh, A Sakunthala, P Senthil Kumar, Raman Sankar, 2020, “Thin film LiV3O8 nanorod formation through Pulsed Laser Deposition and the effect of heat treatment”, Vacuum, 182,109722. (SCIE) (IF: 4.11; SCI ranking: 42.8%,29.8%)

  • [80]     RS Ravi Sankar, Bankuru Vamsi, KK Deepika, P Ramesh, 2020, “Flexible Power Regulation Of Hvdc Light System”, Solid State Technology, 63 No. 6 (2020).

  • [81]     Yi-Ying Lu, Chuan-Ruei Guo, Hui-Lin Yeh, He-Wen Chen, Chien-Cheng Kuo, Jui-Hung Hsu, Jie Jhou, Yan-Ting Huang, Shang-Hsien Hsieh, Chia-Hao Chen, Ching-Hwa Ho, Raman Sankar, Fang-Cheng Chou, 2020, “Multilayer GaSe/InSe Heterointerface-Based Devices for Charge Transport and Optoelectronics”, ACS Applied Nano Materials, 2020, XXXX, XXX, XXX-XXX. (SCIE) (IF: 6.14; SCI ranking: 29.2%,41.8%)

  • [82]     Anjaiah Sheelam, Raman Sankar, 2020, “Carbon-supported cobalt (III) complex for direct reduction of oxygen in alkaline medium”, International Journal of Hydrogen Energy, 45,24738-24748. (SCIE) (IF: 7.139; SCI ranking: 26.1%,26.7%,31.9%)

  • [83]     Arvind Shankar Kumar, Kasun Premasiri, Min Gao, U Rajesh Kumar, Raman Sankar, Fang-Cheng Chou, Xuan PA Gao, 2020, “Electron-electron interactions in the two-dimensional semiconductor InSe”, American Physical Society, 102, 121301(R).

  • [84]     I Panneer Muthuselvam, K Saranya, R Sankar, RN Bhowmik, L Kavitha, 2020, “Experimental study of multiple magnetic transitions in micrometer and nano-grain sized Ni3TeO6-type oxide”, Journal of Applied Physics, 128, 123902. (SCIE) (IF: 2.877; SCI ranking: 46%)

  • [85]     Raman Sankar, I Panneer Muthuselvam, Karthik Rajagopal, K Ramesh Babu, G Senthil Murugan, Khasim Saheb Bayikadi, K Moovendaran, Chien Ting Wu, Guang-Yu Guo, 2020, “Anisotropic Magnetic Properties of Nonsymmorphic Semimetallic Single Crystal NdSbTe”, Crystal Growth & Design, 20, 10, 6585–6591. (SCIE) (IF: 4.01; SCI ranking: 42.2%,19.2%,44.8%)

  • [86]     Chunqiang Xu, Yi Liu, Pinggen Cai, Bin Li, Wenhe Jiao, Yunlong Li, Junyi Zhang, Wei Zhou, Bin Qian, Xuefan Jiang, Zhixiang Shi, Raman Sankar, Jinglei Zhang, Feng Yang, Zengwei Zhu, Pabitra Biswas, Dong Qian, Xianglin Ke, Xiaofeng Xu, 2020, “Anisotropic Transport and Quantum Oscillations in the Quasi-One-Dimensional TaNiTe5: Evidence for the Nontrivial Band Topology”, The Journal of Physical Chemistry Letters, 11, 18, 7782–7789. (SCIE) (IF: 6.888; SCI ranking: 27.9%,25.4%,37.3%,13.9%)

  • [87]     Tian Le, Yue Sun, Hui-Ke Jin, Liqiang Che, Lichang Yin, Jie Li, Guiming Pang, Chunqiang Xu, Lingxiao Zhao, Shunichiro Kittaka, Toshiro Sakakibara, Kazushige Machida, Raman Sankar, Huiqiu Yuan, Genfu Chen, Xiaofeng Xu, Shiyan Li, Yi Zhou, Xin Lu, 2020, “Evidence for nematic superconductivity of topological surface states in PbTaSe2”, SCIENCE BULLETIN, 16, 1349-1355. (SCIE) (IF: 20.577; SCI ranking: 6.8%)

  • [88]     Christy Roshini Paul Inbaraj, Roshan Jesus Mathew, Raman Sankar, Chih-Hao Lee, Yang-Fang Chen, 2020, “Doping Engineered InSe Flakes for High Mobility Phototransistor”, Novel Optical Materials and Applications, 978-1-943580-79-8.

  • [89]     Yue Sun, Shunichiro Kittaka, Toshiro Sakakibara, Kazushige Machida, R Sankar, Xiaofeng Xu, Nan Zhou, Xiangzhuo Xing, Zhixiang Shi, Sunseng Pyon, Tsuyoshi Tamegai, 2020, “Fully gapped superconductivity without sign reversal in the topological superconductor PbTaSe 2”, Physical Review B, 102, 024517. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [90]     Srinivasa Reddy Tamalampudi, Jin-You Lu, Nitul Rajput, Chia-Yun Lai, Boulos Alfakes, Raman Sankar, Harry Apostoleris, Shashikant P Patole, Ibraheem Almansouri, Matteo Chiesa, 2020, “Superposition of semiconductor and semi-metal properties of self-assembled 2D SnTiS 3 heterostructures”, 2D Materials and Applications, 4:23.

  • [91]     Pradip Kumar Roy, Rajesh Kumar Ulaganathan, Chinnambedu Murugesan Raghavan, Swapnil Milind Mhatre, Hung-I Lin, Wei-Liang Chen, Yu-Ming Chang, Alex Rozhin, Yun-Tzu Hsu, Yang-Fang Chen, Raman Sankar, Fang-Cheng Chou, Chi-Te Liang, 2020, “Unprecedented random lasing in 2D organolead halide single-crystalline perovskite microrods”, NANOSCALE, 12, 18269-18277. (SCIE) (IF: 8.307; SCI ranking: 20.6%,20.2%,28.2%,14.3%)

  • [92]     Tien-Tien Yeh, Chien-Ming Tu, Wen-Hao Lin, Cheng-Maw Cheng, Wen-Yen Tzeng, Chen-Yu Chang, Hideto Shirai, Takao Fuji, Raman Sankar, Fang-Cheng Chou, Marin M Gospodinov, Takayoshi Kobayashi , Chih-Wei Luo, 2020, “Femtosecond time-evolution of mid-infrared spectral line shapes of Dirac fermions in topological insulators”, SCIENTIFIC REPORTS, 10, 9803. (SCIE) (IF: 4.997; SCI ranking: 25.7%)

  • [93]     Anjaiah Sheelam, Adil Muneeb, Biva Talukdar, Rini Ravindranath, Song-Jeng Huang, Chun-Hong Kuo, Raman Sankar, 2020, “Flexible and free-standing polyvinyl alcohol-reduced graphene oxide-Cu 2 O/CuO thin films for electrochemical reduction of carbon dioxide”, Journal of Applied Electrochemistry, 50, pages979–991. (SCIE) (IF: 2.925; SCI ranking: 73.3%)

  • [94]     K Gautam, SS Majid, S Francoual, A Ahad, K Dey, MC Rahn, R Sankar, FC Chou, DK Shukla, 2020, “Magnetic and orbital correlations in multiferroic CaMn 7 O 12 probed by x-ray resonant elastic scattering”, Physical Review B, 101, 224430. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [95]     Prabu Mani, Anjaiah Sheelam, Pitchiah Esakki Karthik, Raman Sankar, Kothandaraman Ramanujam, Sukhendu Mandal, 2020, “Nickel-Based Hybrid Material for Electrochemical Oxygen Redox Reactions in an Alkaline Medium”, ACS Applied Energy Materials, 3, 7, 6408–6415. (SCIE) (IF: 6.959; SCI ranking: 27.3%,32.8%,24.9%)

  • [96]     Christy Roshini Paul Inbaraj, Roshan Jesus Mathew, Rajesh Kumar Ulaganathan, Raman Sankar, Monika Kataria, Hsia Yu Lin, Hao-Yu Cheng, Kung-Hsuan Lin, Hung-I Lin, Yu-Ming Liao, Fang-Cheng Chou, Yit- Tsong Chen, Chih-Hao Lee, Yang-Fang Chen, 2020, “Modulating charge separation with h-BN mediation in vertical van der Waals heterostructures”, ACS APPLIED MATERIALS & INTERFACES, 12,26213–26221. (SCIE) (IF: 10.383; SCI ranking: 14.2%,20.9%)

  • [97]     Sarita Sharma, Khasimsaheb Bayikadi, Raman Sankar, Sonnathi Neeleshwar, 2020, “Synergistic optimization of thermoelectric performance in earth-abundant Cu2ZnSnS4 by inclusion of graphene nanosheets”, NANOTECHNOLOGY, 31 365402. (SCIE) (IF: 3.953; SCI ranking: 46.5%,58.2%,31.7%)

  • [98]     Gaurav Pande, Jyun-Yan Siao, Wei-Liang Chen, Chien-Ju Lee, Raman Sankar, Yu-Ming Chang, Chii-Dong Chen, Wen-Hao Chang, Fang-Cheng Chou, Minn-Tsong Lin, 2020, “Ultralow Schottky Barriers in Hexagonal Boron Nitride-Encapsulated Monolayer WSe2 Tunnel Field-Effect Transistors”, ACS APPLIED MATERIALS & INTERFACES, 12,18667–18673. (SCIE) (IF: 10.383; SCI ranking: 14.2%,20.9%)

  • [99]     Songtian S Zhang, Jia-Xin Yin, Guangyang Dai, Lingxiao Zhao, Tay-Rong Chang, Nana Shumiya, Kun Jiang, Hao Zheng, Guang Bian, Daniel Multer, Maksim Litskevich, Guoqing Chang, Ilya Belopolski, Tyler A Cochran, Xianxin Wu , Desheng Wu, Jianlin Luo, Genfu Chen, Hsin Lin, Fang-Cheng Chou, Xiancheng Wang, Changqing Jin, Raman Sankar, Ziqiang Wang, M Zahid Hasan, 2020, “Field-free platform for Majorana-like zero mode in superconductors with a topological surface state”, PHYSICAL REVIEW B, 101, 100507. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [100]     Khasim Saheb Bayikadi, Chien Ting Wu, Li-Chyong Chen, Kuei-Hsien Chen, Fang-Cheng Chou, Raman Sankar, 2020, “Synergistic optimization of thermoelectric performance of Sb doped GeTe with a strained domain and domain boundaries”, JOURNAL OF MATERIALS CHEMISTRY A, 8, 5332-5341. (SCIE) (IF: 14.511; SCI ranking: 10.9%,7.6%,7.5%)

  • [101]     Wen-Yen Tzeng, Ya-Hsin Tseng, Tien-Tien Yeh, Chien-Ming Tu, Raman Sankar, Yu-Han Chen, Bang-Hao Huang, Fang-Cheng Chou, and Chih-Wei Luo, 2020, “Selenium nanoparticle prepared by femtosecond laser-induced plasma shock wave”, OPTICS EXPRESS, 28, 685-694. (SCIE) (IF: 3.833; SCI ranking: 27.5%)

  • [102]     Zhang Yanxue, Nappini Silvia, Sankar Raman, Bondino Federica, Gao Junfeng, Politano Antonio, 2020, “Assessing the stability of Cd3As2 Dirac semimetal in humid environments: the influence of defects, steps and surface oxidation”, Journal of Materials Chemistry C, 9(4), 1235-1244. (SCIE) (IF: 8.067; SCI ranking: 20.5%,14.9%)

  • [103]     Wang Chih-Yuan, Lin Yun-Wu, Chuang Chiashain, Yang Cheng-Hsueh, Patel Dinesh K, Chen Sheng-Zong, Yeh Ching-Chen, Chen Wei-Chen, Lin Chia-Chun, Chen Yi-Hsun, Wang Wei-Hua, Sankar Raman, Chou Fang-Cheng, Kruskopf Mattias, Elmquist Randolph E, Liang Chi-Te, 2020, “Magnetotransport in hybrid InSe/monolayer graphene on SiC”, Nanotechnology, 32(15), 155704. (SCIE) (IF: 3.953; SCI ranking: 46.5%,58.2%,31.7%)

  • [104]     Perumal Packiyaraj, Kumar Ulaganathan Rajesh, Sankar Raman, Zhu Ling, 2020, “Staggered band offset induced high performance opto-electronic devices: Atomically thin vertically stacked GaSe-SnS2 van der Waals p-n heterostructures”, Applied Surface Science, 535, 147480. (SCIE) (IF: 7.392; SCI ranking: 25.5%,5%,17.4%,20.3%)

  • [105]     Yi-Hsun Chen, Chih-Yi Cheng, Shao-Yu Chen, Jan Sebastian Dominic Rodriguez, Han-Ting Liao, Kenji Watanabe, Takashi Taniguchi, Chun-Wei Chen, Raman Sankar, Fang-Cheng Chou, Hsiang-Chih Chiu, Wei-Hua Wang, 2019, “Oxidized-monolayer tunneling barrier for strong Fermi-level depinning in layered InSe transistors”, npj 2D materials and applications, 1-1-7. (SCIE) (IF: 10.516; SCI ranking: 13.6%,20%,10.6%)

  • [106]     Chellakannu Rajkumar, Raja Nehru, Shen-Ming Chen, Haekyoung Kim, S Arumugam, Raman Sankar, 2019, “Electrosynthesis of carbon aerogel-modified AuNPs@quercetin via an environmentally benign method for hydrazine (HZ) and hydroxylamine (HA) detection”, NEW JOURNAL OF CHEMISTRY, 44, 586-595. (SCIE) (IF: 3.925; SCI ranking: 44.4%)

  • [107]     Rajesh Kumar Ulaganathan, Raman Sankar, Chang‐Yu Lin, Raghavan Chinnambedu Murugesan, Kechao Tang, Fang‐Cheng Chou, 2019, “High‐Performance Flexible Broadband Photodetectors Based on 2D Hafnium Selenosulfide Nanosheets”, ADVANCED ELECTRONIC MATERIALS, 6, 1900794. (SCIE) (IF: 7.633; SCI ranking: 22.8%,32.7%,16.1%)

  • [108]     CQ Xu, B Li, JJ Feng, WH Jiao, YK Li, SW Liu, YX Zhou, Raman Sankar, Nikolai D Zhigadlo, HB Wang, ZD Han, B Qian, W Ye, W Zhou, Toni Shiroka, Pabitra K Biswas, Xiaofeng Xu, ZX Shi, 2019, “Two-gap superconductivity and topological surface states in TaOsSi”, PHYSICAL REVIEW B, 13-134503. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [109]     QR Zhang, B Zeng, YC Chiu, R Schönemann, S Memaran, W Zheng, D Rhodes, K-W Chen, T Besara, R Sankar, F Chou, GT McCandless, JY Chan, N Alidoust, S-Y Xu, I Belopolski, MZ Hasan, FF Balakirev, L Balicas, 2019, “Possible manifestations of the chiral anomaly and evidence for a magnetic field induced topological phase transition in the type-I Weyl semimetal TaAs”, PHYSICAL REVIEW B, 11-115138. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [110]     Raman Sankar, I Panneer Muthuselvam, K Ramesh Babu, G Senthil Murugan, Karthik Rajagopal, Rakesh Kumar, Tsung-Chi Wu, Cheng-Yen Wen, Wei-Li Lee, Guang-Yu Guo, Fang-Cheng Chou, 2019, “Crystal Growth and Magnetic Properties of Topological Nodal-Line Semimetal GdSbTe with Antiferromagnetic Spin Ordering”, INORGANIC CHEMISTRY, 17-11730. (SCIE) (IF: 5.436; SCI ranking: 10.9%)

  • [111]     Khasim Saheb Bayikadi, Raman Sankar, Chien Ting Wu, Chengliang Xia, Yue Chen, Li-Chyong Chen, Kuei-Hsien Chen and Fang-Cheng Chou, 2019, “Enhanced thermoelectric performance of GeTe through in situ microdomain and Ge-vacancy control”, JOURNAL OF MATERIALS CHEMISTRY A, 7, 15181-15189. (SCIE) (IF: 14.511; SCI ranking: 10.9%,7.6%,7.5%)

  • [112]     Danil W Boukhvalov, Raju Edla, Anna Cupolillo, Vito Fabio, Raman Sankar, Yanglin Zhu, Zhiqiang Mao, Jin Hu, Piero Torelli, Gennaro Chiarello, Luca Ottaviano, Antonio Politano, 2019, “Surface Instability and Chemical Reactivity of ZrSiS and ZrSiSe Nodal‐Line Semimetals”, ADVANCED FUNCTIONAL MATERIALS, 29, 1900438. (SCIE) (IF: 19.924; SCI ranking: 5.6%,6.1%,4.9%,7.3%,5%,8.7%)

  • [113]     Davide Iaia, Chang-Yan Wang, Yulia Maximenko, Daniel Walkup, R Sankar, Fang cheng Chou, Yuan-Ming Lu, Vidya Madhavan, 2019, “Topological nature of step-edge states on the surface of the topological crystalline insulatorPb0.7Sn0.3Se”, PHYSICAL REVIEW B, 99, 155116. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [114]     S. Kalish, C. Chamon, M. El-Batanouny, L. H. Santos, R. Sankar, and F. C. Chou, 2019, “Contrasting the Surface Phonon Dispersion of Pb0.7Sn0.3Se in Its Topologically Trivial and Nontrivial Phases”, PHYSICAL REVIEW LETTERS, 122, 116101. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [115]     Hung-Chang Hsu, Bo-Chao Huang, Shu-Cheng Chin, Cheng-Rong Hsing, Duc-Long Nguyen, Michael Schnedler, Raman Sankar, Rafal E Dunin-Borkowski, Ching-Ming Wei, Chun-Wei Chen, Philipp Ebert, Ya-Ping Chiu, 2019, “Photodriven Dipole Reordering: Key to Carrier Separation in Metalorganic Halide Perovskites”, ACS NANO, 13, 4, 4402-4409. (SCIE) (IF: 18.027; SCI ranking: 7.2%,7.3%,5.8%,10%)

  • [116]     C. Q. Xu, B. Li, M. R. van Delft, W. H. Jiao, W. Zhou, B. Qian, Nikolai D. Zhigadlo, Dong Qian, R. Sankar, N. E. Hussey, and Xiaofeng Xu, 2019, “Extreme magnetoresistance and pressure-induced superconductivity in the topological semimetal candidate YBi”, PHYSICAL REVIEW B, 99, 024110. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [117]     Yinming Shao, Zhiyuan Sun, Ying Wang, Chenchao Xu, Raman Sankar, Alexander J Breindel, Chao Cao, Michael M Fogler, Andrew J Millis, Fangcheng Chou, Zhiqiang Li, Thomas Timusk, M Brian Maple, DN Basov, 2019, “Optical signatures of Dirac nodal lines in NbAs2”, PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 4-1168. (SCIE) (IF: 12.779; SCI ranking: 12.2%)

  • [118]     Peramaiyan G., Sankar Raman, Muthuselvam I. Panneer, Lee Wei-Li, 2018, “Anisotropic magnetotransport and extremely large magnetoresistance in NbAs2 single crystals”, Scientific Reports, 8(1), 6414. (SCIE) (IF: 4.997; SCI ranking: 25.7%)

  • [119]     Gao Shang, Flicker Felix, Sankar Raman, Zhao He, Ren Zheng, Rachmilowitz Bryan, Balachandar Sidhika, Chou Fangcheng, Burch Kenneth S., Wang Ziqiang, van Wezel Jasper, Zeljkovic Ilija, 2018, “Atomic-scale strain manipulation of a charge density wave”, Proceedings of the National Academy of Sciences, 115(27), 6986-6990.

  • [120]     Hosen M. Mofazzel, Dimitri Klauss, Nandy Ashis K., Aperis Alex, Sankar Raman, Dhakal Gyanendra, Maldonado Pablo, Kabir Firoza, Sims Christopher, Chou Fangcheng, Kaczorowski Dariusz, Durakiewicz Tomasz, Oppeneer Peter M., Neupane Madhab, 2018, “Distinct multiple fermionic states in a single topological metal”, Nature Communications, 9(1), (2018) 9:3002. (SCIE) (IF: 17.694; SCI ranking: 8.1%)

  • [121]     Shu G. J., Liou S. C., Karna S. K., Sankar R., Hayashi M., Chou F. C., 2018, “Dynamic surface electronic reconstruction as symmetry-protected topological orders in topological insulator Bi2Se3”, Physical Review Materials, 2(4), 044201. (SCIE) (IF: 3.98; SCI ranking: 46.2%)

  • [122]     Duvjir Ganbat, Choi Byoung Ki, Jang Iksu, Ulstrup Søren, Kang Soonmin, Thi Ly Trinh, Kim Sanghwa, Choi Young Hwan, Jozwiak Chris, Bostwick Aaron, Rotenberg Eli, Park Je-Geun, Sankar Raman, Kim Ki-Seok, Kim Jungdae, Chang Young Jun, 2018, “Emergence of a Metal–Insulator Transition and High-Temperature Charge-Density Waves in VSe2 at the Monolayer Limit”, Nano Letters, 18(9), 5432-5438. (SCIE) (IF: 12.262; SCI ranking: 11.1%,15.2%,9.2%,15.5%,8.1%,14.5%)

  • [123]     Hakl M., Tchoumakov S., Crassee I., Akrap A., Piot B. A., Faugeras C., Martinez G., Nateprov A., Arushanov E., Teppe F., Sankar R., Lee Wei-li, Debray J., Caha O., Novák J., Goerbig M. O., Potemski M., Orlita M., 2018, “Energy scale of Dirac electrons in Cd3As2”, Physical Review B, 97(11), 115206. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [124]     Li Yang, Wang Tianmeng, Wang Han, Li Zhipeng, Chen Yanwen, West Damien, Sankar Raman, Ulaganathan Rajesh K., Chou Fangcheng, Wetzel Christian, Xu Cheng-Yan, Zhang Shengbai, Shi Su-Fei, 2018, “Enhanced Light Emission from the Ridge of Two-Dimensional InSe Flakes”, Nano Letters, 18(8), 5078-5084. (SCIE) (IF: 12.262; SCI ranking: 11.1%,15.2%,9.2%,15.5%,8.1%,14.5%)

  • [125]     B Li, CQ Xu, W Zhou, WH Jiao, R Sankar, FM Zhang, HH Hou, XF Jiang, B Qian, B Chen, AF Bangura and Xiaofeng Xu, 2018, “Evidence of s-wave superconductivity in the non-centrosymmetric La 7 Ir 3”, SCIENTIFIC REPORTS, 8, 651. (SCIE) (IF: 4.997; SCI ranking: 25.7%)

  • [126]     IP Muthuselvam, R Sankar, GN Rao, SK Karna, FC Chou, 2018, “Ferromagnetic nature in low-dimensional S= 1 antiferromagnetic Li 2 Ni(WO 4 ) 2 nanoparticles”, JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 449, 83-87. (SCIE) (IF: 3.097; SCI ranking: 59.5%,50.7%)

  • [127]     Huang Ce, Narayan Awadhesh, Zhang Enze, Liu Yanwen, Yan Xiao, Wang Jiaxiang, Zhang Cheng, Wang Weiyi, Zhou Tong, Yi Changjiang, Liu Shanshan, Ling Jiwei, Zhang Huiqin, Liu Ran, Sankar Raman, Chou Fangcheng, Wang Yihua, Shi Youguo, Law Kam Tuen, Sanvito Stefano, Zhou Peng, Han Zheng, Xiu Faxian, 2018, “Inducing Strong Superconductivity in WTe2 by a Proximity Effect”, ACS Nano, 12(7), 7185-7196. (SCIE) (IF: 18.027; SCI ranking: 7.2%,7.3%,5.8%,10%)

  • [128]     Walkup Daniel, Assaf Badih A., Scipioni Kane L., Sankar R., Chou Fangcheng, Chang Guoqing, Lin Hsin, Zeljkovic Ilija, Madhavan Vidya, 2018, “Interplay of orbital effects and nanoscale strain in topological crystalline insulators”, Nature Communications, 9(1), 1550. (SCIE) (IF: 17.694; SCI ranking: 8.1%)

  • [129]     Zhou W., Xu C. Q., Li B., Sankar R., Zhang F. M., Qian B., Cao C., Dai J. H., Lu Jianming, Jiang W. X., Qian Dong, Xu Xiaofeng, 2018, “Kondo behavior and metamagnetic phase transition in the heavy-fermion compound CeBi2”, Physical Review B, 97(19), 97, 195120. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [130]     Raghavan Chinnambedu Murugesan, Chen Tzu-Pei, Li Shao-Sian, Chen Wei-Liang, Lo Chao-Yuan, Liao Yu-Ming, Haider Golam, Lin Cheng-Chieh, Chen Chia-Chun, Sankar Raman, Chang Yu-Ming, Chou Fang-Cheng, Chen Chun-Wei, 2018, “Low-Threshold Lasing from 2D Homologous Organic–Inorganic Hybrid Ruddlesden–Popper Perovskite Single Crystals”, Nano Letters, 18(5), 3221-3228. (SCIE) (IF: 12.262; SCI ranking: 11.1%,15.2%,9.2%,15.5%,8.1%,14.5%)

  • [131]     Uykur E., Sankar R., Schmitz D., Kuntscher C. A., 2018, “Optical spectroscopy study on pressure-induced phase transitions in the three-dimensional Dirac semimetal Cd3As2”, Physical Review B, 97(19), 195134. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [132]     Roth S., Lee H., Sterzi A., Zacchigna M., Politano A., Sankar R., Chou F. C., Di Santo G., Petaccia L., Yazyev O. V., Crepaldi A., 2018, “Reinvestigating the surface and bulk electronic properties of Cd3As2”, Physical Review B, 97(16), 97, 165439. (SCIE) (IF: 3.908; SCI ranking: 47.1%,32.3%,33.3%)

  • [133]     Dhavala Suri, Christopher Linderalv, Bogdan Karpiak, Linnea Anderson, Sandeep Kumar Singh, Andre Dankert, FC Chou., Raman Sankar., Paul Erhart, Saroj P Dash, RS Patel, 2018, “Resistivity Anomaly in Weyl Semimetal candidate Molybdenum Telluride (MoTe 2 )”, APPLIED PHYSICS LETTERS, AR- 00763, xxxx-xxxx. (SCIE) (IF: 3.971; SCI ranking: 31.1%)

  • [134]     Raman Sankar. G Peramaiyan, I Panneer Muthuselvam, Cheng-Yen Wen, Xiaofeng Xu, FC Chou,, 2018, “Superconductivity in a misfit layered (SnS) 1.15 (TaS 2 ) compound”, Chemistry of Materials, xxxx, xxxx-xxxx. (SCIE) (IF: 10.508; SCI ranking: 18.8%,13.9%)

  • [135]     Xu Chunqiang, Li Bin, Jiao Wenhe, Zhou Wei, Qian Bin, Sankar Raman, Zhigadlo Nikolai D., Qi Yanpeng, Qian Dong, Chou Fang-Cheng, Xu Xiaofeng, 2018, “Topological Type-II Dirac Fermions Approaching the Fermi Level in a Transition Metal Dichalcogenide NiTe2”, Chemistry of Materials, 30(14), 4823-4830. (SCIE) (IF: 10.508; SCI ranking: 18.8%,13.9%)

  • [136]     Premasiri Kasun, Radha Santosh Kumar, Sucharitakul Sukrit, Kumar U. Rajesh, Sankar Raman, Chou Fang-Cheng, Chen Yit-Tsong, Gao Xuan P. A., 2018, “Tuning Rashba Spin–Orbit Coupling in Gated Multilayer InSe”, Nano Letters, 18(7), 4403-4408. (SCIE) (IF: 12.262; SCI ranking: 11.1%,15.2%,9.2%,15.5%,8.1%,14.5%)

  • [137]     Jiwei Ling, Yanwen Liu, Zhao Jin, Sha Huang, Weiyi Wang, Cheng Zhang, Xiang Yuan, Shanshan Liu, Enze Zhang, Ce Huang, Raman Sankar, Fang-Cheng Chou, Zhengcai Xia and Faxian Xiu, 2018, “Two-dimensional transport and strong spin–orbit interaction in SrMnSb2”, CHINESE PHYSICS B, 27, 017504. (SCIE) (IF: 1.652; SCI ranking: 66.3%)

  • [138]     Yang Li, Tianmeng Wang, Meng Wu, Ting Cao, Yanwen Chen, Raman Sankar, Rajesh Kumar Ulaganathan, Fang-Cheng Chou, Christian Wetzel, Chengyan Xu, Steven G Louie, Sufei Shi, 2018, “Ultrasensitive tunability of the direct bandgap of two-dimensional InSe flakes via strain engineering”, 2D MATERIALS, 5, 021002. (SCIE) (IF: 6.861; SCI ranking: 25.7%)

  • [139]     Xun Jia, Shuyuan Zhang, Raman Sankar, Fang-Cheng Chou, Weihua Wang, K Kempa, EW Plummer, Jiandi Zhang, Xuetao Zhu, and Jiandong Guo, 2017, “Anomalous Acoustic Plasmon Mode from Topologically Protected States”, PHYSICAL REVIEW LETTERS, 119, 136805. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [140]     Y Wang, G Luo, J Liu, R Sankar, NL Wang, F Chou, L Fu and Z Li, 2017, “Observation of ultrahigh mobility surface states in a topological crystalline insulator by infrared spectroscopy”, Nature Communications, 8.

  • [141]     Wenqing Dai, Anthony Richardella, Renzhong Du, Weiwei Zhao, Xin Liu, C.X. Liu, Song-Hsun Huang, Raman Sankar, Fangcheng Chou, Nitin Samarth, and Qi Li, 2017, “Proximity-effect- induced Superconducting Gap in Topological Surface States- A point contact Spectroscopy study of NbSe 2 /Bi2Se 3”, SCIENTIFIC REPORTS, 7, 7631. (SCIE) (IF: 4.997; SCI ranking: 25.7%)

  • [142]     YR Chang, PH Ho, CY Wen, TP Chen, SS Li, JY Wang, MK Li, CA Tsai, Raman Sankar, Wei-Hua Wang, Po-Wen Chiu, Fang-Cheng Chou, and Chun-Wei Chen, 2017, “Surface oxidation doping to enhance photo generated carrier separation efficiency for ultrahigh gain indium selenide photodetector”, ACS PHOTONICS, 4, 2930-2936. (SCIE) (IF: 7.077; SCI ranking: 24.6%,35.5%,12.7%,18.6%,23.2%)

  • [143]     Schmoldt A, Benthe HF, Haberland G, Mills GC, Alperin JB, Trimmer KB, Morton JG, Burton JF, Isaac O, Thiemer K, Mandels M, Bose KS, Sarma RH, 1975, “Delineation of the intimate details of the backbone conformation of pyridine nucleotide coenzymes in aqueous solution.”, Biochemical and biophysical research communications, 66(4), 1173-9. (SCIE) (IF: 3.322; SCI ranking: 66%,54.2%)

  • [144]     Schmoldt A, Benthe HF, Haberland G, Holder AA, Wootton JC, Baron AJ, Chambers GK, Fincham JR, 1975, “The amino acid sequence of Neurospora NADP-specific glutamate dehydrogenase. Peptic and chymotryptic peptides and the complete sequence.”, The Biochemical journal, 149(3), 757-73. (SCIE) (IF: 3.766; SCI ranking: 58.9%)

  • [145]     Schmoldt A, Benthe HF, Haberland G, Rozengurt E, Heppel LA, Smith RJ, Bryant RG, Clarke C, Sheppard PM, 1975, “The genetics of the mimetic butterfly Hypolimnas bolina (L.).”, Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 272(917), 229-65.

其他論文

  • [1]     Huang Yu-Ting, Chen Yi-Hsun, Ho Yi-Ju, Huang Shih-Wei, Chang Yih-Ren, Watanabe Kenji, Taniguchi Takashi, Chiu Hsiang-Chih, Liang Chi-Te, Sankar Raman, Chou Fang-Cheng, Chen Chun-Wei, Wang Wei-Hua, 2018, “High-Performance InSe Transistors with Ohmic Contact Enabled by Nonrectifying Barrier-Type Indium Electrodes”, ACS Applied Materials & Interfaces, 10(39), 33450-33456.

發現與突破

  • [1]     西元年:2023
    研究人員(中):雷曼
    研究人員(英):SANKAR, RAMAN
    研究成果名稱(中):高性能光檢測器和角度依賴的長鏈有機二銨夾層二維混合鈣鈦礦非線性光學單晶體隨機激光器
    研究成果名稱(英):High-Performance Photodetector and Angular-Dependent Random Lasing from Long-Chain Organic Diammonium Sandwiched 2D Hybrid Perovskite Non-Linear Optical Single Crystal
    簡要記述(中):博士及其小組,與台灣國立台灣大學物理學系的梁啟德博士以及丹麥技術大學電氣與光子工程學系的Stela Canulescu教授合作,通過使用雙價N1-甲基丙烷-1,3-二銨(N-MPDA)陽離子作為有機間隔層,研究了穩定的厘米長的二維混合鈣鈦礦(N-MPDA)[PbBr4]單晶。這個生長出來的單晶展現了穩定的光電性能、低閾值的隨機激光和多光子螢光/多次諧波生成。使用(N-MPDA)[PbBr4]單晶製作的光導電裝置展現出卓越的光響應(在405納米處約為124 AW−1),比單價有機間隔層輔助的二維鈣鈦礦(如(BA)2PbBr4和(PEA)2PbBr4)高出約4個數量級,並具有較大的特定檢測度(約為1012 Jones)。作為光學增益介質,(N-MPDA)[PbBr4]單晶呈現出低閾值的隨機激光(約為6.5 μJ cm−2),具有角度依賴的窄線寬(約為0.1納米)和高品質因子(Q約為2673)。基於這些結果,(N-MPDA)[PbBr4]單晶的優越光電特性將提供高性能的裝置,並作為構建穩定未來電子和光電子應用的動態材料。
    簡要記述(英):Dr. Raman Sankar and his group, in collaboration with Chi-Te Liang of Department of Physics, National Taiwan University (Taiwan) and Prof. Stela Canulescu at Department of Electrical and Photonics Engineering, Technical University of Denmark, investigated a stable centimeter-long 2D hybrid perovskite (N-MPDA)[PbBr4] single crystal using divalent N1-methylpropane-1,3-diammonium (N-MPDA) cation as an organic spacer. The as-grown single crystal exhibits stable optoelectronic performance, low threshold random lasing, and multi-photon luminescence/multi-harmonic generation. A photoconductive device fabricated using (N-MPDA)[PbBr4] single crystal exhibits an excellent photo responsivity (≈124 AW−1 at 405 nm) that is ≈4 orders of magnitudes higher than that of monovalent organic spacer-assisted 2D perovskites, such as (BA)2PbBr4 and (PEA)2PbBr4, and large specific detectivity (≈1012 Jones). As an optical gain media, the (N-MPDA)[PbBr4] single crystal exhibits a low threshold random lasing (≈6.5 μJ cm−2) with angular dependent narrow linewidth (≈0.1 nm) and high-quality factor (Q ≈ 2673). Based on these results, the outstanding optoelectronic merits of (N-MPDA)[PbBr4] single crystal will offer a high performance device and act as a dynamic material to construct stable future electronics and optoelectronic-based applications.


  • [2]     西元年:2023
    研究人員(中):雷曼
    研究人員(英):SANKAR, RAMAN
    研究成果名稱(中):鍵合的交替S=1自旋鏈Sr2Ni(SeO3)3的晶體生長和磁性質
    研究成果名稱(英):Crystal growth and magnetic properties of the coupled alternating S=1 spin chain Sr2Ni(SeO3)3
    簡要記述(中):博士和I. Panneer Muthuselvam博士通過使用同步輻射X射線粉末衍射、磁化率χ(H, T)和熱容量CP(H, T)測量以及密度泛函理論(DFT)計算,研究了拟一維S = 1交替自旋鏈化合物Sr2Ni(SeO3)3的結構、磁性和熱力學性質。χ(H, T)和CP(H, T)的數據顯示在TN = 3.4(3) K處存在長程反鐵磁序,並在Tm ≈ 7.8 K處存在短程序。短程磁序與95%的自旋熵在TN以上的釋放,表明1D自旋相關性在∼8TN附近持續存在的重要性。理論DFT計算使用廣義梯度近似確定了主要的交換相互作用,表明鏈間相互作用負責觀察到的長程磁序。此外,根據χ(T, H)和CP(T, H)的數據確定了Sr2Ni(SeO3)3的溫度-場相圖。有趣的是,在沿著硬軸方向施加外部場的情況下,Tm的非單調相界被發現。我們的結果表明,Sr2Ni(SeO3)3的基態和磁性行為取決於單離子各向異性、鍵的交替和鏈間相互作用的相互作用
    簡要記述(英):Dr. Raman Sankar and Dr I. Panneer Muthuselvaminvestigate the structural, magnetic, and thermodynamic properties of a quasi-one-dimensional (1D) S = 1 alternating spin chain compound Sr2Ni(SeO3)3 are investigated by using synchrotron x-ray powder diffraction, magnetic susceptibility χ(H, T ), and heat capacity CP(H, T ) measurements together with density functional theory (DFT) calculations. The χ(H, T ) and CP(H, T ) data reveal long-range antiferromagnetic order at TN = 3.4(3) K and short-range order at Tm ≈ 7.8 K. The short-range magnetic order together with 95% of spin entropy release above TN signifies the importance of 1D spin correlations persisting to ∼8TN. Theoretical DFT calculations with generalized gradient approximation determine leading exchange interactions, suggesting that interchain interactions are responsible for the observed long-range magnetic ordering. In addition, the temperature-field phase diagram of Sr2Ni(SeO3)3 is determined based on the χ(T, H) and CP(T, H) data. Interestingly, a nonmonotonic phase boundary of Tm is found for an external field applied along a hard axis. Our results suggest that the ground state and magnetic behavior of Sr2Ni(SeO3 )3 rely on the interplay of single-ion anisotropy, bond alternation, and interchain interactions


  • [3]     西元年:2023
    研究人員(中):雷曼
    研究人員(英):SANKAR, RAMAN, Rapti Ghosh, Bhartendu Papnai, Yu-Siang Chen, Kanchan Yadav, Raman Sankar, Ya-Ping Hsieh, Mario Hofmann,* and Yang-Fang Chen*
    研究成果名稱(中):操控激子以增強皺曲的二維異質結構中的光電化學制氫反應
    研究成果名稱(英):Exciton Manipulation for Enhancing Photoelectrochemical Hydrogen Evolution Reaction in Wrinkled 2D Heterostructures
    簡要記述(中):博士及其小組,與楊芳榮教授和馬里奧·霍夫曼教授(國立臺灣大學)合作,研究了二維材料結構的交界面在無金屬條件下作為產氫反應(HER)的替代材料。迄今為止,HER一直僅限於不同成分或能帶結構的異質結構。這裡展示了基於皺曲的二維異質結構的局部應變調制的潛力,有助於實現光電催化活性的交界面。通過在皺曲的WS2單層中形成高應變和低應變的區域,實現了由於壓電效應而在橫向方向上實現的其能帶結構和內部電場的局部修改。這種結構由於光束滯和激子傳導向WS2皺痕的頂點,產生了有效的電子-正電子對生成,並增強了激子分離。此外,皺曲的形成在2D層和基板之間引起了一個空氣間隙,減少了界面散射效應,從而提高了電荷載流子的遷移率。對應變依賴的光催化HER過程的詳細研究表明,Tafel斜率減少了一倍,交換電流密度增強了30倍。最後,通過量子點的官能化優化光吸收,實現了前所未有的光電催化性能,為未來可伸縮形成應變調制的WS2納米交界提供了途徑,用於綠色能源生成。
    簡要記述(英):Dr. Raman Sankar and his group, in collaboration with Prof. Yang-Fang Chen and Prof. Mario Hofmann, (National Taiwan, University) investigate 2D materials’ junctions have demonstrated capabilities as metal-free alterna-tives for the hydrogen evolution reaction (HER). To date, the HER has been limited to heterojunctions of different compositions or band structures. Here, the potential of local strain modulation based on wrinkled 2D heterostruc-tures is demonstrated, which helps to realize photoelectrocatalytically active junctions. By forming regions of high and low tensile strain in wrinkled WS2monolayers, local modification of their band structure and internal electric field due to piezoelectricity is realized in the lateral direction. This structure produces efficient electron–hole pair generation due to light trapping and exciton funneling toward the crest of the WS2 wrinkles and enhances exciton separation. Additionally, the formation of wrinkles induces an air gap in-between the 2D layer and substrate, which reduces the interfacial scattering effect and consequently improves the charge-carrier mobility. A detailed study of the strain-dependence of the photocatalytic HER process demonstrates a 2-fold decrease in the Tafel slope and a 30-fold enhancement in exchange current density. Finally, optimization of the light absorption through function-alization with quantum dots produces unprecedented photoelectrocatalytic performance and provides a route toward the scalable formation of strain-modulated WS2 nanojunctions for future green energy generation.


  • [4]     西元年:2023
    研究人員(中):雷曼
    研究人員(英):SANKAR, RAMAN
    研究成果名稱(中):操控二維金屬磷三硫化物晶體的自旋交換相互作用和自旋選擇的電子轉移,以實現高效的氧進化反應。
    研究成果名稱(英):Manipulating Spin Exchange Interactions and Spin-Selected Electron Transfers of 2D Metal Phosphorus Trisulphide Crystals for Efficient Oxygen Evolution Reaction
    簡要記述(中):博士及其小組與國立臺灣大學材料科學與工程學系的陳俊維教授合作,成功展示了通過摻雜來操控二維范德瓦爾斯晶體的自旋交換相互作用,以增強自旋選擇的電子轉移效率,這是提高其氧進化反應(OER)催化性能的有效策略。該研究的顯著結果已發表在Adv. Funct. Mater. 2023, 2305792。由於氧分子在基態下偏好三重自旋態配置,電催化劑上的自旋極化電子可能促進平行自旋對齊的氧原子的生成,從而增強氧進化反應動力學。在這項研究中,通過鈷摻雜控制二維CoxFe1−xPS3(x=0–0.45)范德瓦爾斯(vdW)單晶的自旋交換相互作用和自旋選擇的電子轉移,顯示了氧進化反應性能的顯著提高。原始的FePS3表現出反鐵磁軌道排序,而摻雜的FePS3由於摻雜介導的磁性交換作用而表現出原子間的鐵磁性。在摻雜的FePS3晶體中,Fe和Co離子之間的耦合允許形成與原始FePS3相比更有效的自旋選擇的電子轉移通道。通過超導量子干涉儀、原位X射線吸收近邊緣光譜和密度泛函理論模擬
    簡要記述(英):For the first time, Dr Raman Sankar and his group, in collaboration with Prof. Chun-Wei Chen (Department of Materials Science and Engineering, National Taiwan University) has successfully demonstrated manipulating the spin-exchange interactions of 2D vdW crystals to enhance the spin-selected electron transfer efficiencies through doping is an effective strategy to boost their OER catalytic performances. The prominent results were published in Adv. Funct. Mater.2023, 2305792.Because oxygen molecules in the ground state favor a triplet spin configuration, spin-polarized electrons at electrocatalysts may promote the generation of parallel spin-aligned oxygen atoms, enhancing oxygen evolution reaction (OER) kinetics. In this study, a significant enhancement of OER performance is demonstrated by controlling the spin-exchange interaction and spin-selected electron transfer of 2D CoxFe 1−xPS3(x=0–0.45) van der Waals (vdW) single crystals through Co-doping. The pristine FePS3 exhibits antiferromagnetic orbital ordering, while the Co-doped FePS3 exhibits the emergence of interatomic ferromagnetism due to doping-mediated magnetic exchange interactions. The coupling between Fe and Co ions in the Co-doped FePS3crystal allows the formation of efficient spin-selective electron transfer channels compared to the pristine FePS3. The correlation of spin-exchange interactions and spin-selected electron transfers of 2D Co-doped FePS3 crystals with a superior OER performance is further revealed by superconducting quantum interference device magnetometer, in situ X-ray absorption near edge spectra, and density functional theory simulations. The result suggests that manipulating the spin-exchange interactions of 2D vdW crystals to enhance the spin-selected electron transfer efficiencies through doping is an effective strategy to boost their OER catalytic performances
    主要相關著作:
    Ghosh Rapti, Papnai Bhartendu, Chen Yu‐Siang, Yadav Kanchan, Sankar Raman, Hsieh Ya‐Ping, Hofmann Mario, Chen Yang‐Fang, 2023, “Exciton Manipulation for Enhancing Photo‐electrochemical Hydrogen Evolution Reaction in Wrinkled 2D Heterostructures”, Advanced Materials, 0, 2210746. (SCIE) (IF: 32.086; SCI ranking: 2.8%,2.4%,2.3%,2.7%,3.1%,2.9%)


  • [5]     西元年:2023
    研究人員(中):雷曼
    研究人員(英):SANKAR, RAMAN, Roshan Jesus Mathew, Kai-Hsiang Cheng, Christy Roshini Paul Inbaraj, Raman Sankar, Xuan P.A. Gao,* and Yit-Tsong Chen*
    研究成果名稱(中):一種反雙極低溫光電晶體管
    研究成果名稱(英):An Anti-Ambipolar Cryo-Phototransistor
    簡要記述(中):新型反雙極電晶體 (AAT) 是閘極可調整流器,具有多值邏輯電路的顯著潛力。在這項工作中,研究了 AAT 在低溫條件下的光電應用,AAT 裝置由垂直堆疊的 p-SnS 和 n-MoSe2 組成奈米片形成II型交錯能帶排列。靜電可調諧 p-SnS/n-MoSe2 低溫光電電晶體具有獨特的抗雙極特性和低溫增強光電表現。低溫光電晶體管表現出尖銳且高度對稱的特性77 K 時的抗雙極性傳遞曲線,峰谷比為 103在 1 V 的低偏壓下工作。高冷卻增強電荷電荷低溫光電電晶體的遷移率賦予此 AAT 裝置非凡的性能光電檢測能力。在 77 K 時,p-SnS/n-MoSe2 低溫光電電晶體,在 250−900 nm 光譜範圍內保持廣泛的光響應,展示了其 2 × 104 A W−1 的高響應度和7.5 × 1013 Jones,激發波長為 532 nm。高效能低工作電壓 p-SnS/n-MoSe2 低維光電電晶體77−150 K 適合低溫光電應用環境。此外,這種異質結構的低溫特性可以進一步擴展以設計多值邏輯電路低溫條件。
    簡要記述(英):Novel anti-ambipolar transistors (AATs) are gate tunable rectifiers with amarked potential for multi-valued logic circuits. In this work, theoptoelectronic applications of AATs in cryogenic conditions are studied, ofwhich the AAT devices consist of vertically stacked p-SnS and n- MoSe2nanoflakes to form a type-II staggered band alignment. An electrostaticallytunable p-SnS/n-MoSe2 cryo-phototransistor is presented with uniqueanti-ambipolar characteristics and cryogenic-enhanced optoelectronicperformance. The cryo-phototransistor exhibits a sharp and highly symmetricanti-ambipolar transfer curve at 77 K with the peak-to-valley ratio of 103operating under a low bias voltage of 1 V. The high cooling-enhanced chargemobilities in the cryo-phototransistor grant this AAT device remarkablephotodetection capabilities. At 77 K, the p-SnS/n-MoSe2 cryo-phototransistor,holding a broad photoresponse in the spectral range of 250−900 nm,demonstrates its high responsivity of 2 × 104 A W−1 and detectivity of7.5 × 1013 Jones with the excitation at 532 nm. The high-performancep-SnS/n-MoSe2 low-dimensional phototransistor with low operating voltagesat 77−150 K is eligible for optoelectronic applications in cryogenicenvironments. Furthermore, the cryo-characteristics of this heterostructurecan be further extended to design the mul-tivalued logic circuits operated incryogenic conditions.


  • [6]     西元年:2022
    研究人員(中):雷曼
    研究人員(英):SANKAR, RAMAN, Ganesan Senthil Murugan, Suheon Lee, C Wang, H Luetkens, Kwang-Yong Choi, Raman Sankar
    研究成果名稱(中):一維雙鏈自旋-1/2反鐵磁體KNaCuP2O7的自旋動力學
    研究成果名稱(英):Spin dynamics of the one-dimensional double chain spin-½ antiferromagnet KNaCuP2O7
    簡要記述(中):Raman Sankar博士和他的團隊與韓國的研究小組合作,特別是Sungkyunkwan大學的Kwang-Yong Choi教授,研究了反鐵磁材料KNaCuP2O7的靜態和動態自旋磁化率。他們將μ介子自旋弛豫(μSR)技術與熱力學測量相結合,探索了一維(1D)S = 1/2反鐵磁雙鏈KNaCuP2O7的自旋動力學。他們通過使用零 a 探測自旋輸運來測試一維理論
    簡要記述(英):Dr. Raman Sankar and his group, in collaboration with research groups in the Republic of Korea, especially Prof. Kwang-Yong Choi at Sungkyunkwan University, investigated static and dynamic spin susceptibility of antiferromagnetic material KNaCuP2O7. They combined a muon spin relaxation (μSR) technique with thermodynamic measurements to explore the spin dynamics of one-dimensional (1D) S = ½ antiferromagnetic double chain KNaCuP2O7. They tested the 1D theory by probing spin transport using zero and longitudinal-field μSR. A uniform 1D spin chain model well describes static magnetic susceptibility and specific heat with the intrachain interaction J/kB ≈ 55 K and small interchain interactions. Spin excitations probed by zero-field μSR manifest that high-temperature diffusive spin transport turns into ballistic behavior with decreasing temperature below 30 K. In addition, they observe that longitudinal-field μSR varies hardly with an external magnetic field. The field-independent dynamical spin susceptibility disagrees with diffusive or ballistic behaviors.


  • [7]     西元年:2022
    研究人員(中):雷曼
    研究人員(英):SANKAR, RAMAN, Kalimuthu Moovendaran, Raju Kalaivanan, I Panneer Muthuselvam, K Ramesh Babu, Suheon Lee, CH Lee, Khasim Saheb Bayikadi, Namasivayam Dhenadhayalan, Wei-Tin Chen, Chin-Wei Wang, Yen-Chung Lai, Yoshiyuki Iizuka, Kwang-Yong Choi, Vladimir B Nalbandyan, Raman Sankar
    研究成果名稱(中):非質心Sr0.94Mn0.86Te1.14O6單晶三角形磁體
    研究成果名稱(英):Triangular Magnet Emergent from Noncentrosymmetric Sr0.94Mn0.86Te1.14O6 Single Crystals
    簡要記述(中):Raman Sankar博士及其團隊與韓國的研究小組,成均館大學的Kwang-Yong Choi教授和南方聯邦大學(俄羅斯)的Vladimir B. Nalbandyan教授合作,報告了使用自通量方法成功生長Sr0.94Mn0.86Te1.14O6(SMTO)的高品質單晶。通過中子粉末衍射(NPD)、單晶X射線衍射(SCXRD)、熱化學等手段研究了SMTO的結構、電子和磁學性質
    簡要記述(英):Dr. Raman Sankar and his group, in collaboration with research groups in the Republic of Korea, Prof. Kwang-Yong Choi at Sungkyunkwan University and Prof. Vladimir B. Nalbandyan at Southern Federal University (Russia), report the successful growth of high-quality single crystals of Sr0.94Mn0.86Te1.14O6 (SMTO) using a self-flux method. The structural, electronic, and magnetic properties of SMTO are investigated by neutron powder diffraction (NPD), single-crystal X-ray diffraction (SCXRD), thermodynamic, and nuclear magnetic resonance techniques in conjunction with density functional theory calculations. The previously reported P6̅2m structure of SrMnTeO6 with cations in prismatic coordination has been revised using NPD and SCXRD. NPD unambiguously determined octahedral (trigonal antiprismatic) coordination for all cations with the chiral space group P312 (no. 149), which is further confirmed by SCXRD data. The magnetic susceptibility and specific heat data evidence a weak antiferromagnetic order at TN = 6.6 K. The estimated Curie−Weiss temperature θCW = −21 K indicates antiferromagnetic interaction between Mn-ions. Furthermore, both the magnetic entropy and the 125Te nuclear spin-lattice relaxation rate showcase that short range spin correlations persist well above the Néel temperature. Our work demonstrates that Sr0.94(2)Mn0.86(3)Te1.14(3)O6 single crystals realize a noncentrosymmetric triangular antiferromagnet.


  • [8]     西元年:2022
    研究人員(中):雷曼
    研究人員(英):SANKAR, RAMAN, Hikaru Takeda, Jiancong Mai, Masatoshi Akazawa, Kyo Tamura, Jian Yan, Kalimuthu Moovendaran, Kalaivanan Raju, Raman Sankar, Kwang-Yong Choi, Minoru Yamashita
    研究成果名稱(中):Kitaev自旋液體候選物Na2Co2TeO6中的平面熱霍爾效應
    研究成果名稱(英):Planar thermal Hall effects in the Kitaev spin liquid candidate Na2Co2TeO6
    簡要記述(中):博士及其小組,與東京大學固態物理研究所的山下實教授(日本)和成均館大學的崔光勇教授(韓國)合作,在沿著 a- 和 a∗-軸方向施加磁場(B)的情況下,研究了基於鈷的蜂巢反鐵磁體Na2Co2TeO6中基塔耶夫自旋液體候選體的紐曼熱導率(κxx)和平面熱霍爾導率(κxy)。κxy/T的溫度依賴性顯示拓撲玻色激發的出現。此外,κxy對磁場的依賴性在反鐵磁相的臨界磁場處呈現符號反轉,表明了拓撲磁子的Chern數分佈的變化。值得注意的是,在AFM相的一階轉變磁場和飽和磁場之間的B ǀǀ a∗區間內觀察到有限的κxy,這在蜂巢格的a∗軸周圍的雙折疊旋轉對稱性的無序狀態中是被禁止的,表明存在一種打破雙折疊旋轉對稱性的磁有序狀態。這些結果表明,在飽和磁場以下的整個場範圍內,該化合物存在拓撲磁子。
    簡要記述(英):Dr. Raman Sankar and his group, in collaboration with Prof. Minoru Yamashita at the Institute for Solid State Physics, University of Tokyo (Japan) and Prof. Kwang-Yong Choi at Sungkyunkwan University (Republic of Korea), investigated the longitudinal thermal conductivity (κxx) and the planar thermal Hall conductivity (κxy) in the Kitaev spin liquid candidate of the cobalt-based honeycomb antiferromagnet Na2Co2TeO6 in a magnetic field (B) applied along the a- and a∗-axes. The temperature dependen


  • [9]     西元年:2022
    研究人員(中):雷曼
    研究人員(英):SANKAR, RAMAN, I Panneer Muthuselvam, R Madhumathy, K Saranya, K Moovendaran, Suheon Lee, Kwang-Yong Choi, Wei-tin Chen, Chin-Wei Wang, Peng-Jen Chen, M Ponmurugan, Min-nan Ou, Yang-Yuan Chen, Heung-Sik Kim, R Sankar
    研究成果名稱(中):鍵合的Jeff = 1/2交替鏈系統Sr2Co(SeO3)3的自旋單重基態
    研究成果名稱(英):Spin-singlet ground state of the coupled Jeff = 1/2 alternating chain system Sr2Co(SeO3)3
    簡要記述(中):博士及其小組,與中央研究院楊元樾教授、成均館大學的崔光勇教授(韓國)和班納拉斯印度大學的I.P.穆都塞爾瓦姆教授合作,通過磁化率χ(T)、磁特性熱Cm(T)、磁化和中子繞射測量以及第一性原理計算,研究了耦合的Jeff = 1/2交替鏈Sr2Co(SeO3)3化合物的結構、磁性、熱力學和電子性質。基於密度泛函理論的第一性原理計算表明,Sr2Co(SeO3)3形成一維鏈結構,具有鍵的交替和鏈間相互作用。磁化率χ(T)、磁特性熱Cm(T)和中子粉末繞射測量確認在100毫開爾文以下不發生長程磁有序。相反,χ(T)和Cm(T)中的最大值以及隨著T → 0 K時χ(T)和Cp(T)的指數下降指向自旋單重基態。基於J1-J2交替海森堡模型對χ(T)和Cm(T)的分析顯示,鍵的交替α = J2/J1 ≈ 0.7和自旋能隙Δ ≈ 3 K。最後,這項工作證明了Sr2Co(SeO3)3是一個基於自旋軌道纏繞Jeff = 1/2的耦合交替鏈系統。
    簡要記述(英):Dr. Raman Sankar and his group, in collaboration with Prof. Yang-Yuan Chen (IoP, Academia Sinica), Prof. Kwang-Yong Choi at Sungkyunkwan University (Republic of Korea) and Prof. I.P. Muthuselvam at Banaras Hindu University (India), investigated the structural, magnetic, thermodynamic, and electronic properties of a coupled Jeff = 1/2 alternating chain Sr2Co(SeO3)3 compound using magnetic susceptibility χ(T ), magnetic specific heat Cm(T ), magnetization, and neutron diffraction measurements along with first-principles calculations. The first-principles calculations based on the density functional theory suggest that Sr2Co(SeO3)3 forms a quasi-one-dimensional chain with bond alternation and interchain interactions. χ(T ), Cm(T ), and neutron powder diffraction measurements confirm that no long-range magnetic ordering occurs down to 100 mK. Instead, a maximum in χ(T ) and Cm(T ) and an exponential drop of χ(T ) and Cp(T ) as T → 0 K point to a spin-singlet ground state. The analysis of χ(T ) and Cm(T ) based on a J1-J2 alternating Heisenberg model shows the bond alternation α = J2/J1 ≈ 0.7 and a spin gap of Δ ≈ 3 K. Finally, this work demonstrates that Sr2Co(SeO3)3 is a coupled alternating chain system based on spin-orbit entangled Jeff = 1/2.


  • [10]     西元年:2022
    研究人員(中):雷曼
    研究人員(英):SANKAR, RAMAN, Jan Wyzula, Xin Lu, David Santos-Cottin, Dibya Kanti Mukherjee, Ivan Mohelský, Florian Le Mardelé, Jiˇrí Novák, Mario Novak, Raman Sankar, Yuriy Krupko, Benjamin A. Piot, Wei-Li Lee, Ana Akrap, Marek Potemski, Mark O. Goerbig, and Milan Orlita*
    研究成果名稱(中):狄拉克節點線中的洛倫茲升壓驅動磁光 半金屬
    研究成果名稱(英):Lorentz-Boost-Driven Magneto-Optics in a Dirac Nodal-Line Semimetal
    簡要記述(中):晶體固體的光學響應在很大程度上是由激發驅動的促進各能帶之間的電子。這允許一個人申請透過實驗確定能量的光學和磁光方法帶隙-對於我們理解任何事物都至關重要的基本屬性堅固-具有極高的精度。這裡表明,這種傳統的過去在許多材料上取得巨大成功的方法,並不研究具有色散節點線的拓樸狄拉克半金屬。在那裡,光學推導的帶隙取決於磁場的方向相對於晶軸。這種極不尋常的行為在由洛倫茲增強驅動的帶隙重整化項,其結果來自與相關的狄拉克哈密頓量的洛倫茲協變形式低能量時的節點線
    簡要記述(英):Optical response of crystalline solids is to a large extent driven by excitationsthat promote electrons among individual bands. This allows one to applyoptical and magneto-optical methods to determine experimentally the energyband gap —a fundamental property crucial to our understanding of anysolid—with a great precision. Here it is shown that such conventionalmethods, applied with great success to many materials in the past, do notwork in topological Dirac semimetals with a dispersive nodal line. There, theoptically deduced band gap depends on how the magnetic field is orientedwith respect to the crystal axes. Such highly unusual behavior is explained interms of band-gap renormalization driven by Lorentz boosts which resultsfrom the Lorentz-covariant form of the Dirac Hamiltonian relevant for thenodal line at low energies.


  • [11]     西元年:2022
    研究人員(中):雷曼
    研究人員(英):SANKAR, RAMAN, Cheng-Chieh Lin 1,2, Shing-Jong Huang3, Pei-Hao Wu4, Tzu-Pei Chen5, Chih-Ying Huang1,2, Ying-Chiao Wang5, Po-Tuan Chen6, Denitsa Radeva7, Ognyan Petrov7, Vladimir M. Gelev7, Raman Sankar 8, Chia-Chun Chen9, Chun-Wei Chen 1,5,10✉ & Tsyr-Yan Yu 1,2,4✉
    研究成果名稱(中):重定向動力學的直接研究 二維有機-無機雜化中A位陽離子的分佈 以固態 NMR 測定鈣鈦礦
    研究成果名稱(英):Direct investigation of the reorientational dynamics of A-site cations in 2D organic-inorganic hybrid perovskite by solid-state NMR
    簡要記述(中):用於研究 A 位陽離子的重新取向動力學的方法有限在二維有機-無機雜化鈣鈦礦(2D OIHP)中,它發揮關鍵作用決定其物理特性的作用。在這裡,我們描述了一種研究方法使用固態 NMR 和穩定同位素標記分析 A 位陽離子的動力學。 2D 2H NMR結合甲基-d3-銨陽離子 (d3-MA) 的 OIHP 揭示了多種分子的存在MA 的重定向運動模式。旋轉回波雙共振 (REDOR) NMR包含 15N 和 13C 標記的甲基銨陽離子 (13C,15N-MA) 的 2D OIHP反映了 C 和 N 核之間經歷不同的平均偶極耦合運動模式。我們的研究揭示了 A 位陽離子動力學與有機間隔物的結構剛性,因此提供了分子層次的洞察二維 OIHP 的設計
    簡要記述(英):Limited methods are available for investigating the reorientational dynamics of A-site cationsin two-dimensional organic–inorganic hybrid perovskites (2D OIHPs), which play a pivotalrole in determining their physical properties. Here, we describe an approach to study thedynamics of A-site cations using solid-state NMR and stable isotope labelling. 2H NMR of 2DOIHPs incorporating methyl-d3-ammonium cations (d3-MA) reveals the existence of multiplemodes of reorientational motions of MA. Rotational-echo double resonance (REDOR) NMRof 2D OIHPs incorporating 15N- and 13C-labeled methylammonium cations (13C,15N-MA)reflects the averaged dipolar coupling between the C and N nuclei undergoing differentmodes of motions. Our study reveals the interplay between the A-site cation dynamics andthe structural rigidity of the organic spacers, so providing a molecular-level insight into thedesign of 2D OIHPs.


  • [12]     西元年:2022
    研究人員(中):雷曼
    研究人員(英):SANKAR, RAMAN, Khasim Saheb Bayikadia,b,1 , Safdar Imama,c,1 , Mohammad Ubaidd , Anver Azizd , Kuei-Hsien Chenb , Raman Sankara,⁎
    研究成果名稱(中):異價取代的高度無序GeTe化合物的影響 熱電性能
    研究成果名稱(英):Effect of aliovalent substituted highly disordered GeTe compound's thermoelectric performance
    簡要記述(中):碲化鍺(GeTe)作為一種無鉛高性能熱電材料,近年來已廣泛應用。針對中溫 (500–800 K) 應用進行了廣泛研究。載子濃度和與原始 GeTe 相比,空位控制的 GeTe 化合物的熱導率降低。我們探討並優化了 Ge0.9−xSb0.1PxTe (x = 0.01–0.05) 材料的最高熱電性能曼斯在高溫下。使用 Sb/P (+3) 控制和操縱 Ge (+2) 的本徵 Ge 空位將電荷對功率因數改善的貢獻增加到∼42 μWcm−1 K−2,同時最小化晶格熱貢獻~0.4 W/mK。這導致熱電性能的提高對於 Ge0.88Sb0.1P0.02Te 樣品,約 2.4 @ 773 K。含有大量原子無序的 Sb/P 離子增加了點缺陷引起的散射效應,而拉伸的晶界揭示了晶格熱貢獻減少。目前的工作證明了磷作為共摻雜劑可提高 GeTe 運作時的平均熱電性能 (ZTavg) 值溫度範圍。
    簡要記述(英):As a lead-free high-performance thermoelectric material, germanium telluride (GeTe) has recently beenextensively studied for mid-temperature (500–800 K) applications. The carrier concentration and thethermal conductivity are reduced for vacancy-controlled GeTe compounds compared with pristine GeTe.We explored and optimized the Ge0.9−xSb0.1PxTe (x = 0.01–0.05) material's highest thermoelectric perfor-mance at elevated temperatures. Intrinsic Ge vacancy control and manipulation of Ge (+2) with Sb/P (+3)increased the charge contribution to power factor improvement to ∼42 μWcm−1 K−2 while minimizing thelattice thermal contribution to ∼0.4 W/mK. This resulted in an increase in thermoelectric performance of∼2.4 @ 773 K for the Ge0.88Sb0.1P0.02Te sample. The inclusion of atomically disordered Sb/P ions considerablyincreases the scattering effects caused by the point defect, whereas stretched grain boundaries reveal thedecreased lattice thermal contribution. The current work demonstrates the effectiveness of phosphorus as aco-dopant in increasing the average thermoelectric performance (ZTavg) value over the GeTe operatingtemperature range.


  • [13]     西元年:2022
    研究人員(中):雷曼
    研究人員(英):SANKAR, RAMAN, Safdar Imam, Khasim Saheb Bayikadi, Mohammad Ubaid, V.K. Ranganayakulu, Sumangala Devi, Bhalchandra S. Pujari, Yang-Yuan Chen, Li-Chyong Chen, Kuei-Hsien Chen, Feng-Li Lin, Raman Sankar*
    研究成果名稱(中):在 Mo 摻雜的 GeTe 基化合物中誘導的微晶棒通過高度壓實實現協同性能
    研究成果名稱(英):Achieving synergistic performance through highly compacted microcrystalline rods induced in Mo doped GeTe based compounds
    簡要記述(中):在無鉛熱電材料中,碲化鍺(GeTe)已被廣泛研究,由於其在中溫下的高熱電性能(ZT);然而,高 p 型載流子密度(~1021 cm 3)阻礙了它對更高ZT的適用性。提高熱電性能在對環境有利的 GeTe 中,我們探索了 Mo 摻雜顯著優化了載流子濃度以及伴隨緻密晶粒的獨特微晶棒邊界、高密度平面缺陷和實現全頻聲子散射的點缺陷,以降低熱導率。此外,Sb/Bi 在 Ge 位點與 Mo 共摻雜主要降低載流子濃度和熱導率以獲得更高的 ZT。共摻雜Bi 在 673 K 時在樣品中實現 ~2.3 的最高 ZT 方面表現出更突出的作用與 Ge0.89Mo0
    簡要記述(英):Among the lead-free thermoelectric material, germanium telluride (GeTe) has been extensively investigated due to its high thermoelectric performance (ZT) in mid-temperature; however, high p-type carrier density (~1021 cm3) hinder its suitability for higher ZT. To enhance the thermoelectric performance of the environmentally favorable GeTe, we explored the Mo doping significantly optimizes the carrier concentration along with uniquely unveiled microcrystalline rods accompanying compact grain boundaries, high-density planar defects, and point defects effectuating all-frequency phonon scattering yields to lower down the thermal conductivity. Furthermore, Sb/Bi co-doping with Mo at the Ge sites predominantly reduces the carrier concentration and thermal conductivity to attain a higher ZT. The codoping of Bi manifested a more prominent role in achieving the highest ZT of ~2.3 at 673 K for the sample composition with Ge0.89Mo0


  • [14]     西元年:2022
    研究人員(中):雷曼
    研究人員(英):SANKAR, RAMAN, Anjaiah Sheelam, Sakthipriya Balu, Adil Muneeb, Khasim Saheb Bayikadi, Dhenadhayalan Namasivayam, Erakulan E. Siddharthan, Arif I. Inamdar, Ranjit Thapa, Ming-Hsi Chiang, Song-Jeng Isaac Huang, and Raman Sankar*
    研究成果名稱(中):通過高價 Fe 和 Co3+ 位點提高氧的氧化還原活性 在鈣鈦礦 LaNi1−xFe0.5xCo0.5xO3
    研究成果名稱(英):Improved Oxygen Redox Activity by High-Valent Fe and Co3+ Sites in the Perovskite LaNi1−xFe0.5xCo0.5xO3
    簡要記述(中):通過異價取代調整鈣鈦礦氧化物的電子結構是獲得用於能量轉換和存儲設備的廉價且高效的電催化劑的有前景的策略。在此,根據 d 帶中心位置並使用簡單的溶膠-凝膠法和熱解步驟,設計了 LaNi1-xCo0.5xFe0.5xO3 (LNFCO-x; x = 0.0, 0.4, 0.5 和 0.6) 電催化劑,並在 1 M KOH 中合成用於氧氧化還原反應。其中,LNFCO-0.5在氧氧化還原反應中表現出最低的過電位和最高的電荷轉移動力學。
    簡要記述(英):Tuning the electronic structure of perovskite oxides via aliovalent substitution is a promising strategy to attain inexpensive and efficient electrocatalysts for energy conversion and storage devices. Herein, following the d-band center positions and using a simple sol–gel method followed by a pyrolysis step, LaNi1–xCo0.5xFe0.5xO3 (LNFCO-x; x = 0.0, 0.4, 0.5, and 0.6) electrocatalysts are designed and synthesized for oxygen redox reactions in 1 M KOH. Among them, LNFCO-0.5 has exhibited the lowest overpotential and the highest charge transfer kinetics in oxygen redox reactions. Overall, a 90 mV lower overpotential was observed in oxygen redox activity of LNFCO-0.5 compared to that of pristine LaNiO3. The mass activity of LNFCO-0.5 in the oxygen reduction reaction (at 0.7 V vs RHE) and oxygen evolution reaction (1.60 V vs RHE) was calculated to be 2.5 and 2.13 times higher than that of LaNiO3, respectively. The bifunctionality index (potential difference between the oxygen evolution at a current density of 10 mA cm–2 and the oxygen reduction at a current density of −1 mA cm–2) of LNFCO-0.5 was found to be 0.98. The substitution of Fe and Co for the Ni-site shifted the d-band center close to the Fermi level, which can increase the binding strength of the *OH intermediate in the rate-determining step. Also, the surface was enriched with Fe3+Δ, Co3+, and partially oxidized Ni3+ states, which is susceptible to tune the eg-orbital filling for superior oxygen redox activity.


  • [15]     西元年:2022
    研究人員(中):雷曼
    研究人員(英):SANKAR, RAMAN, Somrita Dutta, Deepak Vishnu S. K, Sudipta Som, Rajneesh Chaurasiya, Dinesh Kumar Patel, Kalimuthu Moovendaran, Cheng-Chieh Lin, Chun-Wei Chen,* and Raman Sankar*
    研究成果名稱(中):分段高可逆熱致變色層狀鈣鈦礦 [(CH2)2(NH3)2]CuCl4晶體與逆磁熱耦合 影響
    研究成果名稱(英):Segmented Highly Reversible Thermochromic Layered Perovskite [(CH2)2(NH3)2]CuCl4 Crystal Coupled with an Inverse Magnetocaloric Effect
    簡要記述(中):與三維(3D)對應物相比,層狀無鉛雜化鈣鈦礦在有機電子學方面具有優勢,因為它們易於合成並且對各種環境條件具有良好的穩定性。為了進一步了解此類材料的多功能性,在溶液中生長了層狀鈣鈦礦 (EDA)CuCl4 [EDA 為 (CH2)2(NH3)2] 晶體,並通過單晶 X 射線衍射對其進行了晶體學表徵。該晶體的熱穩定性非常好,具有很高的可逆熱致變色工作溫度(~503 K)、強烈的電導率隨溫度變化以及強烈的奇異磁性。通過粉末 X 射線衍射和紫外可見吸收來監測和解釋晶體結構隨溫度的變化。在重複加熱/冷卻循環後,晶體的吸收帶幾乎沒有變化,表明穩定性非常好。此外,Cu 雜化物由反鐵磁耦合層中的強鐵磁相互作用組成,Néel 溫度約為 34 K。研究了晶體的磁熱效應,發現由於與反鐵磁轉變相關的磁熵變化和強鐵磁相互作用,表明鈣鈦礦雜化材料適合作為環保低溫磁冷卻技術的候選者。總體結果為未來在寬溫度範圍內的電子應用提供了潛在的多用途二維 (2D) 鈣鈦礦。
    簡要記述(英):The layered, lead-free hybrid perovskites are superior in organic electronics compared to their three-dimensional (3D) counterparts due to their facile synthesis and promising stability to various environmental conditions. To learn more about the multifunctional side of such materials, a layered perovskite (EDA)CuCl4 [EDA is (CH2)2(NH3)2] crystal was grown in solution and crystallographically characterized by single-crystal X-ray diffraction. The crystal is thermally very stable and exhibits a high reversible thermochromic working temperature (∼503 K), intense conductivity changes with temperature, and strong exotic magnetic properties. The structural changes of the crystal with temperature are monitored and explained by powder X-ray diffraction and UV–vis absorption. The absorption band of the crystal shows little variation after repeated heating/cooling cycles, indicating admirable stability. Moreover, the Cu hybrid consists of a strong ferromagnetic interaction in antiferromagnetically coupled layers with a Néel temperature of about 34 K. The magnetocaloric effect of the crystal was investigated and found to be inverse due to the magnetic entropy change associated with the antiferromagnetic transition and the strong ferromagnetic interaction, indicating the suitability of the perovskite hybrid as a candidate for an environmentally friendly low-temperature magnetic cooling technology. The overall results promise a potential multipurpose two-dimensional (2D) perovskite for future electronic applications in a wide temperature range.


  • [16]     西元年:2022
    研究人員(中):雷曼
    研究人員(英):SANKAR, RAMAN, Rajesh Kumar Ulaganathan,* Raghavan Chinnambedu Murugesan,* Chang-Yu Lin, Ambika Subramanian, Wei-Liang Chen, Yu-Ming Chang, Alex Rozhin, and Raman Sankar*
    研究成果名稱(中):穩定的基於甲脒的厘米長 二維鹵化鉛鈣鈦礦單晶 用於長壽命光電應用
    研究成果名稱(英):Stable Formamidinium-Based Centimeter Long Two-Dimensional Lead Halide Perovskite Single-Crystal for Long-Live Optoelectronic Applications
    簡要記述(中):由於其固有的多量子阱結構,可溶液加工的二維金屬鹵化物鈣鈦礦在具有成本效益的光電應用中非常有前景。然而,缺乏穩定性仍然是這類材料在實際設備中使用的主要障礙。在這裡,作者使用由兩個鈣鈦礦層的厚度控制的基於甲脒 (FA) 的厘米長二維鈣鈦礦 (BA)2FAPb2I7 高質量單晶展示了穩定的光電特性。大面積單晶表現出良好的結晶度、相純度和光譜均勻性。此外,與基於甲基銨 (MA) 的 (BA)2MAPb2I7 對應物相比,(BA)2FAPb2I7 單晶在開放大氣條件下表現出優異的穩定性。在剛性 Si/SiO2 襯底上使用二維鈣鈦礦單晶製造的光電探測器顯示出高光響應性 (Rλ)(≈5 AW-1)、快速響應時間 (<20 ms)、比檢測率 (D*) (≈3.5 × 1011 Jones),在 488 nm 激光照射下具有出色的耐用性。Rλ 和 D* 值分別從 (BA)2FAPb2I7 單晶獲得 25 倍和三個數量級,比 (BA)2MAPb2I7 單晶高。此外,柔性聚合物基板上的鈣鈦礦材料在彎曲和非彎曲狀態下均顯示出良好的光敏特性。
    簡要記述(英):Solution-processable 2D metal-halide perovskites are highly promising for cost-effective optoelectronic applications due to their intrinsic multiquantum well structure. However, the lack of stability is still a major obstacle in the use of this class of materials in practical devices. Here, the authors demonstrate the stable optoelectronic properties using formamidinium (FA)-based centimeter-long 2D perovskite (BA)2FAPb2I7 high-quality single-crystal controlled by the thickness of two perovskite layers. The large area single-crystal exhibits good crystallinity, phase purity, and spectral uniformity. Moreover, the (BA)2FAPb2I7 single-crystal shows excellent stability at open atmospheric conditions when compared to methylammonium (MA)-based (BA)2MAPb2I7 counterparts. The photodetectors fabricated using 2D perovskite single-crystal on the rigid Si/SiO2 substrate reveal high photoresponsivity (Rλ)(≈5 A W−1), the fast response time (<20 ms), specific detectivity (D*) (≈3.5 × 1011 Jones), and excellent durability under 488 nm laser illumination. The Rλ and D* values are obtained from the (BA)2FAPb2I7 single-crystal 25 times and three orders magnitudes, respectively, higher than the (BA)2MAPb2I7 single-crystal. Additionally, the perovskite material on flexible polymer substrate reveals good photo-sensing properties in both bending and nonbending states.


  • [17]     西元年:2021
    研究人員(中):雷曼
    研究人員(英):SANKAR, RAMAN, Seungyeol Lee, Jaena Park, Youngsu Choi, Kalaivanan Raju, Wei-Tin Chen , Raman Sankar,* and Kwang-Yong Choi*
    研究成果名稱(中):Ni1-xFexPS3 中磁各向异性和相关性的化学调谐
    研究成果名稱(英):Chemical tuning of magnetic anisotropy and correlations in Ni1−xFexPS3
    簡要記述(中):我们报告了范德华反铁磁体 Ni1-xFexPS3 上静磁化率和拉曼光谱测量的温度和成分依赖性。末端成员 NiPS3 和 FePS3 分别具有类似 XY 和 Ising 的磁性,可实现磁各向异性和自旋的化学调谐 相关性。 Ni1−xFexPS3 显示了从 XY 到 Ising 各向异性的转换,x ≈ 0.1。虽然 XY 引入 Fe 含量后各向异性被迅速抑制,双磁振子散射证明缓慢抑制 富铁侧深处的短程磁相关。与直觉相反,双磁振子信号 尽管更大的自旋数和增强的 x 的增加,其能量的重整化较少 经典的磁性。不同的静态和动态磁行为表明出现了一种奇异的 合金范德华磁体中的自旋态。
    簡要記述(英):We report the temperature and composition dependence of static magnetic susceptibility and Raman spectroscopic measurements on van der Waals antiferromagnets Ni1−xFexPS3. The end members NiPS3 and FePS3 feature XY - and Ising-like magnetism, respectively, enabling chemical tuning of magnetic anisotropy and spin correlations. Ni1−xFexPS3 shows a turnover from the XY to Ising anisotropy through x ≈ 0.1. Although the XY anisotropy is rapidly suppressed on introducing Fe content, two-magnon scattering evidences the slow repression of short-range magnetic correlations deep inside the Fe-rich side. Counterintuitively, the two-magnon signal undergoes less renormalization of its energy with increasing x despite the larger spin number and enhanced classical magnetism. The disparate static and dynamic magnetic behaviors indicate the emergence of an exotic spin state in alloy van der Waals magnets.


  • [18]     西元年:2021
    研究人員(中):雷曼
    研究人員(英):SANKAR, RAMAN, C. H. Lee , S. Lee, Y. S. Choi, Z. H. Jang, R. Kalaivanan, R. Sankar, * and K.-Y. Choi*
    研究成果名稱(中):Co基各向异性磁相关的多阶段发展 蜂窝晶格 Na2Co2TeO6
    研究成果名稱(英):Multistage development of anisotropic magnetic correlations in the Co-based honeycomb lattice Na2Co2TeO6
    簡要記述(中):我们研究了 Co 基蜂窝晶格 Na2Co2TeO6 磁相关性的热演化23Na核磁共振和静磁化率χ(T)。所研究的化合物显示TN = 26 K 时的三维 (3D) 长程磁性排序。通过 T ∗ ≈ 110 K 冷却,一个简单的 顺磁态经历与具有幂律依赖性的相关顺磁态的交叉 核自旋晶格 (1/T1) 和自旋-自旋 (1/T2) 弛豫率以及面外 χ(T) 的变化。这1/T1、1/T2 和 χ(T ) 的磁场方向相关性揭示了 a 的各向异性自旋-自旋相关性 二维 (2D) 重归一化经典字符。在磁性有序状态下,我们能够识别 在 TN = 26、TN1 = 16、TN2 = 7 和 TN3 = 3.5 K 处发生四个连续的转变或交叉。转换和交叉与 2D 和 3D 磁序的共存或重新定向有关 有序旋转。我们的结果表明存在各种令人沮丧的相互作用及其能量 控制复杂磁性结构和各向异性磁性的层次结构。
    簡要記述(英):We investigate the thermal evolution of magnetic correlations of the Co-based honeycomb lattice Na2Co2TeO6 with 23Na nuclear magnetic resonance and static magnetic susceptibility χ(T ). The studied compound shows three-dimensional (3D) long-range magnetic ordering at TN = 26 K. On cooling through T∗ ≈ 110 K, a simple paramagnetic state undergoes a crossover to a correlated paramagnetic state featuring a power-law dependence of the nuclear spin-lattice (1/T1) and spin-spin (1/T2) relaxation rates as well as of the out-of-plane χ(T ). The magnetic-field-direction dependence of 1/T1, 1/T2, and χ(T ) uncovers anisotropic spin-spin correlations of a two-dimensional (2D) renormalized classical character. In a magnetically ordered state, we are able to identify four successive transitions or crossovers occurring at TN = 26, TN1 = 16, TN2 = 7, and TN3 = 3.5 K. The multiple transitions and crossovers are associated with the coexistence of 2D and 3D magnetic orders or reorientation of the ordered spins. Our results suggest the presence of various types of frustrating interactions and their energy hierarchy that control complex magnetic structures and anisotropic magnetism.


  • [19]     西元年:2020
    研究人員(中):雷曼
    研究人員(英):SANKAR, RAMAN, Khasim Saheb Bayikadi, Chien Ting Wu, Li-Chyong Chen, Kuei-Hsien Chen, Fang-Cheng Chou and Raman Sankar *
    研究成果名稱(中):具有應變疇和疇邊界的 Sb 摻雜 GeTe 熱電性能的協同優化
    研究成果名稱(英):Synergistic optimization of thermoelectric performance of Sb doped GeTe with a strained domain and domain boundaries
    簡要記述(中):RamanSankar 博士小組首次通過在系統中摻雜 Sb 來報告 GeTe 系統中 Ge 的系統空位控制 。 伴隨的載流子濃度( n )和異端價 Sb 離子取代導致最佳摻雜水平 x = 0.10 ,表明在 800 K 附近 ZT 〜 2.35 ,這明顯高於 GeTe 系統的單元素和多元素取代研究 在文學中 。 傑出的結果發表在 2020 年 2 月 13 日由英國皇家化學學會出版的《材料化學期刊》上。
    簡要記述(英):For the first time Dr Raman Sankar group have reported the systematic vacancy control of Ge in GeTe system by doping Sb in to the system The concomitant carrier concentration ( and the aliovalent Sb ion substitution led to an optimal doping level of x= 0 10 to show ZT 2 35 near 800 K, which is significantly higher than those single and multi elementals substitution studies of GeTe system reported in literature The prominent results were published in Journal of Material Chemistry A, published by Royal Society of Chemistry on 13 Feb 2020


  • [20]     西元年:2019
    研究人員(中):雷曼
    研究人員(英):SANKAR, RAMAN, Khasim Saheb Bayikadi, Raman Sankar, Chien Ting Wu, Chengliang Xia, Yue Chen, Li-Chyong Chen, Kuei-Hsien Chen and Fang-Cheng Chou
    研究成果名稱(中):通过增强GeTe的热电性能  原位微区和Ge空位控制
    研究成果名稱(英):Enhanced thermoelectric performance of GeTe through in situ micro domain and Ge vacancy control
    簡要記述(中):Raman Sankar博士小组首次借助原位TEM分析报告了锗空位控制证据,并且首次使菱形体中的GeTe相稳定在约500 oC的较高温度下。杰出的结果发表在2019年5月16日由英国皇家化学学会出版的 Journal of Material Chemistry – A上。迄今为止,由空位控制的具有厚鲱鱼骨结构域的GeTe增强了热电性能,超过已报道的60%。 据报道,一种高度可重复的样品制备方法,用于制备呈菱面体结构的纯GeTe,而不会转化为高达约500 oC的立方结构,显示出对Ge空位水平和相应的人字形微区的控制。通过采用可逆的原位路线调整Ge的空位水平,可以在约500 oC的高温(HT)下将GeTe粉的热电品质因数(ZT)从〜0.8提高到1.37。可控制和可复制的。
    簡要記述(英):For the first time Dr Raman Sankar group have reported the Ge vacancy control evidence with the help of In situ TEM analysis, Also for the first time have stabilized the GeTe phase in rhombohedral at higher temperature ~ 500 oC. The prominent results were published in Journal of Material Chemistry – A, published by Royal Society of Chemistry on May 16th 2019. Vacancy controlled GeTe with thick herring bone domains have enhanced the thermoelectric performance more than 60 % of the reported, up to date.A highly reproducible sample preparation method for pure GeTe in a rhombohedral structure without converting to the cubic structure up to ~ 500 oC is reported to show control of the Ge-vacancy level and the corresponding herringbone-structured micro domains. The thermoelectric figure-of-merit (ZT) for GeTe powder could be raised from ~ 0.8 to 1.37 at high temperature (HT) near ~ 500 oC by tuning the Ge-vacancy level through the applied reversible in situ route, which made it highly controllable and reproducible.


個人資料維護 | 著作目錄維護同步更新 | 最後更新日期 : 2024-02-12
2
Back To Top