雷曼 / 研究助技師

pi_image

連絡資訊

學歷

秘書

周泳恩 / 886-2-2789-8364

研究興趣

經歷

學術著作

期刊論文

  • [1]     Lin Cheng-Chieh, Huang Shing-Jong, Wu Pei-Hao, Chen Tzu-Pei, Huang Chih-Ying, Wang Ying-Chiao, Chen Po-Tuan, Gelev Vladimir, Sankar Raman, Chen Chun-Wei, Yu Tsyr-Yan, accepted, “Direct Investigation of the Reorientational Dynamics of A-site Cations in 2D Organic-Inorganic Hybrid Perovskite by Solid-State NMR”, NATURE. (SCIE) (IF: 49.962; SCI ranking: 1.4%)

  • [2]     Lu Yi-Ying, Yu Hsiao-Ching, Wang You-Xin, Hung Chih-Keng, Chen You-Ren, Jhou Jie, Yen Peter Tsung-Wen, Hsu Jui-Hung, Sankar Raman, 2022, “Optical determination of layered-materials InSe thickness via RGB contrast method and regression analysis”, Nanotechnology, 33(48), 485702. (SCIE) (IF: 3.874; SCI ranking: 41.4%,55.1%,27.5%)

  • [3]     Takeda Hikaru, Mai Jiancong, Akazawa Masatoshi, Tamura Kyo, Yan Jian, Moovendaran Kalimuthu, Raju Kalaivanan, Sankar Raman, Choi Kwang-Yong, Yamashita Minoru, 2022, “Planar thermal Hall effects in the Kitaev spin liquid candidate <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Na</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>Co</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>TeO</mml:mi><mml:mn>6</mml:mn></mml:msub></mml:mrow></mml:math>”, Physical Review Research, 4(4), 4-L042035.

  • [4]     Dutta S., Yang L., Liu S.Y., Liu C.M., Liaw L.J., Som S., Mohapatra A., Sankar R., Lin W.C., Chao Y.C., 2022, “Impact of Co2+ on the magneto-optical response of MAPbBr3: An inspective study of doping and quantum confinement effect”, Materials Today Physics, 27, 100843. (SCIE) (IF: 9.298; SCI ranking: 12.8%,10.6%)

  • [5]     Lin I C, Lee M H, Wu P C, Lin S C, Chen J W, Li C-C, Guo G Y, Chu Y-H, Sankar R, Chu M-W, 2022, “Atomic-scale observation of spontaneous hole doping and concomitant lattice instabilities in strained nickelate films”, New Journal of Physics, 24(2), 023011. (SCIE) (IF: 3.732; SCI ranking: 25.6%)

  • [6]     Murtaza Tahir, Yang Haiyang, Feng Jiajia, Shen Yi, Ge Yongheng, Liu Yi, Xu Chunqiang, Jiao Wenhe, Lv Yaokang, Ridley Christopher J., Bull Craig L., Biswas Pabitra K., Sankar Raman, Zhou Wei, Qian Bin, Jiang Xuefan, Feng Zhenjie, Zhou Yonghui, Zhu Ziming, Yang Zhaorong, Xu Xiaofeng, 2022, “Cascade of pressure-driven phase transitions in the topological nodal-line superconductor <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">PbTaSe</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math>”, Physical Review B, 106(6), L060501. (SCIE) (IF: 4.036; SCI ranking: 38.7%,25.6%,31.9%)

  • [7]     Bayikadi Khasim Saheb, Imam Safdar, Ubaid Mohammad, Aziz Anver, Chen Kuei-Hsien, Sankar Raman, 2022, “Effect of aliovalent substituted highly disordered GeTe compound's thermoelectric performance”, Journal of Alloys and Compounds, 922, 166221. (SCIE) (IF: 5.316; SCI ranking: 32.7%,28.9%,7.5%)

  • [8]     Lu Yi-Ying, Huang Yan-Ting, Chen Jia-Ni, Jhou Jie, Lan Liang-Wei, Kuo Chien-Cheng, Hsu Jui-Hung, Hsieh Shang-Hsien, Chen Chia-Hao, Sankar Raman, 2022, “Energy Barrier at Indium/Indium Selenide Nanosheet Interfaces: Implications of Metal-to-Insulator Transition for Field-Effect Transistor Modeling”, ACS Applied Nano Materials, 5(2), 1911-1916. (SCIE) (IF: 5.097; SCI ranking: 30.1%,44.9%)

  • [9]     Harsh Rishav, Mondal Sourav, Sharma Devina, Bouatou Mehdi, Chacon Cyril, Ilyn Maxim, Rogero Celia, Repain Vincent, Bellec Amandine, Girard Yann, Rousset Sylvie, Sankar Raman, Pai Woei Wu, Narasimhan Shobhana, Lagoute Jérôme, 2022, “Identification and Manipulation of Defects in Black Phosphorus”, The Journal of Physical Chemistry Letters, 13(27), 6276-6282. (SCIE) (IF: 6.475; SCI ranking: 23.5%,23.5%,32.7%,8.1%)

  • [10]     Sheelam Anjaiah, Balu Sakthipriya, Muneeb Adil, Bayikadi Khasim Saheb, Namasivayam Dhenadhayalan, Siddharthan Erakulan E., Inamdar Arif I., Thapa Ranjit, Chiang Ming-Hsi, Isaac Huang Song-Jeng, Sankar Raman, 2022, “Improved Oxygen Redox Activity by High-Valent Fe and Co3+ Sites in the Perovskite LaNi1–xFe0.5xCo0.5xO3”, ACS Applied Energy Materials, 5(1), 343-354. (SCIE) (IF: 6.024; SCI ranking: 28.4%,29.8%,25.9%)

  • [11]     Wyzula Jan, Lu Xin, Santos‐Cottin David, Mukherjee Dibya Kanti, Mohelský Ivan, Le Mardelé Florian, Novák Jiří, Novak Mario, Sankar Raman, Krupko Yuriy, Piot Benjamin A., Lee Wei‐Li, Akrap Ana, Potemski Marek, Goerbig Mark O., Orlita Milan, 2022, “Lorentz‐Boost‐Driven Magneto‐Optics in a Dirac Nodal‐Line Semimetal”, Advanced Science, 0, 2105720. (SCIE) (IF: 16.806; SCI ranking: 7.3%,5.4%,8.4%)

  • [12]     Howard Sean, Raghavan Arjun, Iaia Davide, Xu Caizhi, Flötotto David, Wong Man-Hong, Mo Sung-Kwan, Singh Bahadur, Sankar Raman, Lin Hsin, Chiang Tai-Chang, Madhavan Vidya, 2022, “Observation of a smoothly tunable Dirac point in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Ge</mml:mi><mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:msub><mml:mi>Bi</mml:mi><mml:mi>x</mml:mi></mml:msub><mml:msub><mml:mi>Sb</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mtext>−</mml:mtext><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mo>)</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>Te</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:mrow></mml:math>”, Physical Review Materials, 6(4), 044201. (SCIE) (IF: 3.989; SCI ranking: 39.9%)

  • [13]     Cheng Chih-Yi, Pai Wei-Liang, Chen Yi-Hsun, Paylaga Naomi Tabudlong, Wu Pin-Yun, Chen Chun-Wei, Liang Chi-Te, Chou Fang-Cheng, Sankar Raman, Fuhrer Michael S., Chen Shao-Yu, Wang Wei-Hua, 2022, “Phase Modulation of Self-Gating in Ionic Liquid-Functionalized InSe Field-Effect Transistors”, Nano Letters, 22(6), 2270-2276. (SCIE) (IF: 11.189; SCI ranking: 11.2%,13.6%,9.5%,14%,9.4%,15.9%)

  • [14]     Inamdar Arif I., Sainbileg Batjargal, Lin Chi-Jia, Usman Muhammad, Kamal Saqib, Chiou Kuan-Ru, Pathak Abhishek, Luo Tzuoo-Tsair, Bayikadi Khasim Saheb, Sankar Raman, Chen Jenq-Wei, Tseng Tien-Wen, Chen Ruei-San, Hayashi Michitoshi, Chiang Ming-Hsi, Lu Kuang-Lieh, 2022, “Regimented Charge Transport Phenomena in Semiconductive Self-Assembled Rhenium Nanotubes”, ACS Applied Materials & Interfaces, 14(10), 12423-12433.

  • [15]     A.Sivakumar , Dhas S. Sahaya Jude, A.Saranraj , Sankar Raman, Kumar Raju Suresh, Almansour Abdulrahman I., Kim Ikhyun, Dhas S.A. Martin Britto, 2022, “Reversible disorder-order type structural phase transition of potassium dihydrogen phosphate bulk single crystals induced by dynamic shock waves”, Physica B: Condensed Matter, 644, 414233. (SCIE) (IF: 2.436; SCI ranking: 56.5%)

  • [16]     Blue Brandon T., Lough Stephanie D., Le Duy, Thompson Jesse E., Rahman Talat S., Sankar R., Ishigami Masahiro, 2022, “Scanning tunneling microscopy and spectroscopy of NiTe2”, Surface Science, 722, 122099. (SCIE) (IF: 1.942; SCI ranking: 78.4%,65.2%)

  • [17]     Dutta Somrita, Vishnu S. K Deepak, Som Sudipta, Chaurasiya Rajneesh, Patel Dinesh Kumar, Moovendaran Kalimuthu, Lin Cheng-Chieh, Chen Chun-Wei, Sankar Raman, 2022, “Segmented Highly Reversible Thermochromic Layered Perovskite [(CH2)2(NH3)2]CuCl4 Crystal Coupled with an Inverse Magnetocaloric Effect”, ACS Applied Electronic Materials, 4(1), 521-530. (SCIE) (IF: 3.314; SCI ranking: 34.8%,50.6%)

  • [18]     Murugan Ganesan Senthil, Lee Suheon, Wang C., Luetkens H., Choi Kwang-Yong, Sankar Raman, 2022, “Spin dynamics of the one-dimensional double chain spin-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:math> antiferromagnet <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>KNaCuP</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>7</mml:mn></mml:msub></mml:mrow></mml:math>”, Physical Review B, 105(17), 111. (SCIE) (IF: 4.036; SCI ranking: 38.7%,25.6%,31.9%)

  • [19]     Huang Song-Jeng, Balu Sakthipriya, Barveen Nazar Riswana, Sankar Raman, 2022, “Surface Engineering of Reduced Graphene Oxide onto the Nanoforest-like Nickel Selenide as a High Performance Electrocatalyst for OER and HER”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 0, 130024.

  • [20]     Cho Kwanghee, Lee Seungyeol, Kalaivanan Raju, Sankar Raman, Choi Kwang‐Yong, Park Soonyong, 2022, “Tunable Ferroelectricity in Van der Waals Layered Antiferroelectric CuCrP <sub>2</sub> S <sub>6</sub>”, Advanced Functional Materials, 0, 2204214. (SCIE) (IF: 18.808; SCI ranking: 6.7%,5.6%,4.5%,5.6%,5%,7.2%)

  • [21]     Govindaraj L., Arumugam S., Thiyagarajan R., Kumar Dinesh, Kannan M., Das Dhruba, Suraj T.S., Sankaranarayanan V., Sethupathi K., Baskaran G., Sankar Raman, Rao M.S.Ramachandra, 2022, “Wohlleben Effect and Emergent π junctions in superconducting Boron doped Diamond thin films”, Physica C: Superconductivity and its Applications, 598, 1354065. (SCIE) (IF: 1.241; SCI ranking: 83.8%,82.6%)

  • [22]     Paul Inbaraj Christy Roshini, Mathew Roshan Jesus, Ulaganathan Rajesh Kumar, Sankar Raman, Kataria Monika, Lin Hsia Yu, Chen Yit-Tsong, Hofmann Mario, Lee Chih-Hao, Chen Yang-Fang, 2021, “A Bi-Anti-Ambipolar Field Effect Transistor”, ACS Nano, 15(5), 8686-8693. (SCIE) (IF: 15.881; SCI ranking: 7.8%,7.4%,6.3%,10.3%)

  • [23]     Imam Safdar, Bayikadi Khasim Saheb, Ubaid Mohammad, Ranganayakulu V.K., Devi Sumangala, Pujari Bhalchandra S., Chen Yang-Yuan, Chen Li-Chyong, Chen Kuei-Hsien, Lin Feng-Li, Sankar Raman, 2021, “Achieving synergistic performance through highly compacted microcrystalline rods induced in Mo doped GeTe based compounds”, Materials Today Physics, 17, 100571. (SCIE) (IF: 9.298; SCI ranking: 12.8%,10.6%)

  • [24]     Liu Yi, Xu Chun-Qiang, Jiao Wen-He, Cai Ping-Gen, Li Bin, Zhou Wei, Qian Bin, Jiang Xue-Fan, R Kalaivaman, Sankar Raman, Ke Xiang-Lin, Cao Guang-Han, Xu Xiao-Feng, 2021, “Anisotropic transport in a possible quasi-one-dimensional topological candidate: TaNi2Te3”, Tungsten, 1, 7.

  • [25]     Lee Seungyeol, Park Jaena, Choi Youngsu, Raju Kalaivanan, Chen Wei-Tin, Sankar Raman, Choi Kwang-Yong, 2021, “Chemical tuning of magnetic anisotropy and correlations in Ni1−xFexPS3”, Physical Review B, 104(17), 174412. (SCIE) (IF: 4.036; SCI ranking: 38.7%,25.6%,31.9%)

  • [26]     Karna Sunil K., Wang C. W., Sankar R., Temple D., Avdeev M., 2021, “Commensurate and incommensurate magnetic structure of the moderately frustrated antiferromagnet Li2M(WO4)2 with M=Co,Ni”, Physical Review B, 104(13), 134435. (SCIE) (IF: 4.036; SCI ranking: 38.7%,25.6%,31.9%)

  • [27]     Yen Yun, Chiu Cheng-Li, Lin Ping-Hui, Sankar Raman, Chuang Tien-Ming, Guo Guang-Yu, 2021, “Dirac nodal line and Rashba spin-split surface states in nonsymmorphic ZrGeTe”, New Journal of Physics, 23(10), 103019. (SCIE) (IF: 3.732; SCI ranking: 25.6%)

  • [28]     Glamazda A., Sharafeev A., Bohle R., Lemmens P., Choi K.-Y., Chou F. C., Sankar R., 2021, “Doping from CDW to topological superconductivity: The role of defects on phonon scattering in the non-centrosymmetric PbxTaSe2”, Low Temperature Physics, 47(11), 912-919. (SCIE) (IF: 0.923; SCI ranking: 91.3%)

  • [29]     Lu Yi-Ying, Peng Yu-Ting, Huang Yan-Ting, Chen Jia-Ni, Jhou Jie, Lan Liang-Wei, Jian Shi-Hao, Kuo Chien-Cheng, Hsieh Shang-Hsien, Chen Chia-Hao, Sankar Raman, Chou Fang-Cheng, 2021, “Engineering an Indium Selenide van der Waals Interface for Multilevel Charge Storage”, ACS Applied Materials & Interfaces, 13(3), 4618-4625. (SCIE) (IF: 9.229; SCI ranking: 13.1%,19.6%)

  • [30]     Wang Xiao, Hu Zhiwei, Agrestini Stefano, Herrero-Martín Javier, Valvidares Manuel, Sankar Raman, Chou Fang-Cheng, Chu Ying-Hao, Tanaka Arata, Tjeng Liu Hao, Pellegrin Eric, 2021, “Evidence for largest room temperature magnetic signal from Co2+ in antiphase-free & fully inverted CoFe2O4 in multiferroic-ferrimagnetic BiFeO3-CoFe2O4 nanopillar thin films”, Journal of Magnetism and Magnetic Materials, 530, 167940. (SCIE) (IF: 2.993; SCI ranking: 56%,47.8%)

  • [31]     Panneer Muthuselvam I., Saranya K., Büscher Florian, Wulferding Dirk, Lemmens Peter, Chen Wei-tin, Sankar R., 2021, “High magnetic anisotropy and magnon excitations in single crystals of the double spin chain compound PbMn2Ni6Te3O18”, Physical Review B, 103(6), 064401. (SCIE) (IF: 4.036; SCI ranking: 38.7%,25.6%,31.9%)

  • [32]     Lingannan Govindaraj, Ganesan Kalaiselvan, Mariappan Sathiskumar, Sankar Raman, Uwatoko Y., Arumugam S., 2021, “Internal and External Pressure Effects on Superconductivity in FeTexSe1-x (x = 0.46, 0.54) Single Crystals”, Journal of Superconductivity and Novel Magnetism, 34(3), 725-731. (SCIE) (IF: 1.506; SCI ranking: 78.1%,78.3%)

  • [33]     Shrestha K, Miertschin D, Sankar R, Lorenz B, Chu C W, 2021, “Large magnetoresistance and quantum oscillations in Sn0.05Pb0.95Te”, Journal of Physics: Condensed Matter, 33(33), 335501.

  • [34]     Murugan G. Senthil, Babu K. Ramesh, Sankar R., Chen W. T., Muthuselvam I. Panneer, Chattopadhyay Sumanta, Choi K.-Y., 2021, “Magnetic and structural dimer networks in layered K2Ni(MoO4)2”, Physical Review B, 103(2), 024451. (SCIE) (IF: 4.036; SCI ranking: 38.7%,25.6%,31.9%)

  • [35]     Murtaza Tahir, Kalaivanan Raju, Madeswaran G., Bayikadi Khasimsaheb, Sankar Raman, 2021, “Magnetic properties of honeycomb spin lattice compounds Na2M2TeO6 (M = Co, Ni) and spin dimer compound Na2Cu2TeO6 single crystals by flux-growth”, Journal of Materials Research and Technology, 14, 1601-1608.

  • [36]     Muthuselvam I. Panneer, Saranya K., Kasinathan Deepa, Bhowmik R. N., Sankar R., Dhenadhayalan Namasivayam, Shu G. J., Chen Wei-tin, Kavitha L., Lin King-Chuen, 2021, “Magnetic spin order in the honeycomb structured Pb6Co9(TeO6)5 compound”, Physical Review B, 104(17), 174442. (SCIE) (IF: 4.036; SCI ranking: 38.7%,25.6%,31.9%)

  • [37]     Lee C. H., Lee S., Choi Y. S., Jang Z. H., Kalaivanan R., Sankar R., Choi K.-Y., 2021, “Multistage development of anisotropic magnetic correlations in the Co-based honeycomb lattice Na2Co2TeO6”, Physical Review B, 103(21), 214447. (SCIE) (IF: 4.036; SCI ranking: 38.7%,25.6%,31.9%)

  • [38]     Ebad-Allah J., Rojewski S., Vöst M., Eickerling G., Scherer W., Uykur E., Sankar Raman, Varrassi L., Franchini C., Ahn K.-H., Kuneš J., Kuntscher C. A., 2021, “Pressure-Induced Excitations in the Out-of-Plane Optical Response of the Nodal-Line Semimetal ZrSiS”, Physical Review Letters, 127(7), 076402. (SCIE) (IF: 9.161; SCI ranking: 8.1%)

  • [39]     Cui Hengbo, Yun Seohee, Lee Kyeong Jun, Lee Chanhyeon, Chang Seo Hyoung, Lee Yongjae, Lee Hyun Hwi, Raju Kalaivanan, Moovendaran Kalimuthu, Sankar Raman, Choi Kwang-Yong, 2021, “Quasihydrostatic versus nonhydrostatic pressure effects on the electrical properties of NiPS3”, Physical Review Materials, 5(12), 124008. (SCIE) (IF: 3.989; SCI ranking: 39.9%)

  • [40]     Rajput Nitul S., Baik Hionsuck, Lu Jin-You, Tamalampudi Srinivasa Reddy, Sankar Raman, Al Ghaferi Amal, Chiesa Matteo, 2021, “Revealing the Quasi-Periodic Crystallographic Structure of Self-Assembled SnTiS3 Misfit Compound”, The Journal of Physical Chemistry C, 125(18), 9956-9964. (SCIE) (IF: 4.126; SCI ranking: 42%,36.9%,52.3%)

  • [41]     Multer Daniel, Yin Jia-Xin, Zhang Songtian S., Zheng Hao, Chang Tay-Rong, Bian Guang, Sankar Raman, Hasan M. Zahid, 2021, “Robust topological state against magnetic impurities observed in the superconductor PbTaSe2”, Physical Review B, 104(7), 075145. (SCIE) (IF: 4.036; SCI ranking: 38.7%,25.6%,31.9%)

  • [42]     Lin Chang-Yu, Ulaganathan Rajesh Kumar, Sankar Raman, Murugesan Raghavan Chinnambedu, Subramanian Ambika, Rozhin Alex, Firdoz Shaik, 2021, “Silicon-based two-dimensional chalcogenide of p-type semiconducting silicon telluride nanosheets for ultrahigh sensitive photodetector applications”, Journal of Materials Chemistry C, 9(32), 10478-10486. (SCIE) (IF: 7.393; SCI ranking: 19.3%,15.6%)

  • [43]     Ulaganathan Rajesh Kumar, Murugesan Raghavan Chinnambedu, Lin Chang‐Yu, Subramanian Ambika, Chen Wei‐Liang, Chang Yu‐Ming, Rozhin Alex, Sankar Raman, 2021, “Stable Formamidinium‐Based Centimeter Long Two‐Dimensional Lead Halide Perovskite Single‐Crystal for Long‐Live Optoelectronic Applications”, Advanced Functional Materials, 31, 2112277. (SCIE) (IF: 18.808; SCI ranking: 6.7%,5.6%,4.5%,5.6%,5%,7.2%)

  • [44]     Majchrzak Paulina, Pakdel Sahar, Biswas Deepnarayan, Jones Alfred J. H., Volckaert Klara, Marković Igor, Andreatta Federico, Sankar Raman, Jozwiak Chris, Rotenberg Eli, Bostwick Aaron, Sanders Charlotte E., Zhang Yu, Karras Gabriel, Chapman Richard T., Wyatt Adam, Springate Emma, Miwa Jill A., Hofmann Philip, King Phil D. C., Lanatà Nicola, Chang Young Jun, Ulstrup Søren, 2021, “Switching of the electron-phonon interaction in 1T−VSe2 assisted by hot carriers”, Physical Review B, 103(24), L241108. (SCIE) (IF: 4.036; SCI ranking: 38.7%,25.6%,31.9%)

  • [45]     Huang Song-Jeng, Muneeb Adil, Sabhapathy Palani, Sheelam Anji, Bayikadi Khasim Saheb, Sankar Raman, 2021, “Tailoring the Co4+/Co3+ active sites in a single perovskite as a bifunctional catalyst for the oxygen electrode reactions”, Dalton Transactions, 50(21), 7212-7222. (SCIE) (IF: 4.39; SCI ranking: 17.8%)

  • [46]     Huang Song Jeng, Muneeb Adil, Abbas Aqeel, Sankar Raman, 2021, “The effect of Mg content and milling time on the solid solubility and microstructure of Ti–Mg alloys processed by mechanical milling”, Journal of Materials Research and Technology, 11, 1424-1433.

  • [47]     Huang Song-Jeng, Muneeb Adil, Sabhapathy Palani, Bayikadi Khasim Saheb, Murtaza Tahir, Raju Kalaivanan, Chen Li-Chyong, Chen Kuei-Hsien, Sankar Raman, 2021, “Two-Dimensional Layered NiLiP2S6 Crystals as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting”, Catalysts, 11(7), 786. (SCIE) (IF: 4.146; SCI ranking: 41.4%)

  • [48]     Inamdar Arif I., Sainbileg Batjargal, Kamal Saqib, Bayikadi Khasim Saheb, Sankar Raman, Luo Tzuoo Tsair, Hayashi Michitoshi, Chiang Ming-Hsi, Lu Kuang-Lieh, 2021, “Water-assisted spin-flop antiferromagnetic behaviour of hydrophobic Cu-based metal–organic frameworks”, Dalton Transactions, 50(17), 5754-5758. (SCIE) (IF: 4.39; SCI ranking: 17.8%)

  • [49]     H-C Chang, T-H Chen, R Sankar, Y-J Yang, L-C Chen, K-H Chen, 2020, “Highly improved thermoelectric performance of BiCuTeO achieved by decreasing the oxygen content”, Materials Today Physics, 15,100248. (SCIE) (IF: 9.298; SCI ranking: 12.8%,10.6%)

  • [50]     Rojin Varghese, V Shobin Vijay, S Rajesh, A Sakunthala, P Senthil Kumar, Raman Sankar, 2020, “Thin film LiV3O8 nanorod formation through Pulsed Laser Deposition and the effect of heat treatment”, Vacuum, 182,109722. (SCIE) (IF: 3.627; SCI ranking: 44.9%,31.3%)

  • [51]     RS Ravi Sankar, Bankuru Vamsi, KK Deepika, P Ramesh, 2020, “Flexible Power Regulation Of Hvdc Light System”, Solid State Technology, 63 No. 6 (2020).

  • [52]     Yi-Ying Lu, Chuan-Ruei Guo, Hui-Lin Yeh, He-Wen Chen, Chien-Cheng Kuo, Jui-Hung Hsu, Jie Jhou, Yan-Ting Huang, Shang-Hsien Hsieh, Chia-Hao Chen, Ching-Hwa Ho, Raman Sankar, Fang-Cheng Chou, 2020, “Multilayer GaSe/InSe Heterointerface-Based Devices for Charge Transport and Optoelectronics”, ACS Applied Nano Materials, 2020, XXXX, XXX, XXX-XXX. (SCIE) (IF: 5.097; SCI ranking: 30.1%,44.9%)

  • [53]     Anjaiah Sheelam, Raman Sankar, 2020, “Carbon-supported cobalt (III) complex for direct reduction of oxygen in alkaline medium”, International Journal of Hydrogen Energy, 45,24738-24748. (SCIE) (IF: 5.816; SCI ranking: 29.6%,31%,32.5%)

  • [54]     Arvind Shankar Kumar, Kasun Premasiri, Min Gao, U Rajesh Kumar, Raman Sankar, Fang-Cheng Chou, Xuan PA Gao, 2020, “Electron-electron interactions in the two-dimensional semiconductor InSe”, American Physical Society, 102, 121301(R).

  • [55]     I Panneer Muthuselvam, K Saranya, R Sankar, RN Bhowmik, L Kavitha, 2020, “Experimental study of multiple magnetic transitions in micrometer and nano-grain sized Ni3TeO6-type oxide”, Journal of Applied Physics, 128, 123902. (SCIE) (IF: 2.546; SCI ranking: 49.4%)

  • [56]     Raman Sankar, I Panneer Muthuselvam, Karthik Rajagopal, K Ramesh Babu, G Senthil Murugan, Khasim Saheb Bayikadi, K Moovendaran, Chien Ting Wu, Guang-Yu Guo, 2020, “Anisotropic Magnetic Properties of Nonsymmorphic Semimetallic Single Crystal NdSbTe”, Crystal Growth & Design, 20, 10, 6585–6591. (SCIE) (IF: 4.076; SCI ranking: 37.4%,19.2%,38.1%)

  • [57]     Chunqiang Xu, Yi Liu, Pinggen Cai, Bin Li, Wenhe Jiao, Yunlong Li, Junyi Zhang, Wei Zhou, Bin Qian, Xuefan Jiang, Zhixiang Shi, Raman Sankar, Jinglei Zhang, Feng Yang, Zengwei Zhu, Pabitra Biswas, Dong Qian, Xianglin Ke, Xiaofeng Xu, 2020, “Anisotropic Transport and Quantum Oscillations in the Quasi-One-Dimensional TaNiTe5: Evidence for the Nontrivial Band Topology”, The Journal of Physical Chemistry Letters, 11, 18, 7782–7789. (SCIE) (IF: 6.475; SCI ranking: 23.5%,23.5%,32.7%,8.1%)

  • [58]     Tian Le, Yue Sun, Hui-Ke Jin, Liqiang Che, Lichang Yin, Jie Li, Guiming Pang, Chunqiang Xu, Lingxiao Zhao, Shunichiro Kittaka, Toshiro Sakakibara, Kazushige Machida, Raman Sankar, Huiqiu Yuan, Genfu Chen, Xiaofeng Xu, Shiyan Li, Yi Zhou, Xin Lu, 2020, “Evidence for nematic superconductivity of topological surface states in PbTaSe2”, SCIENCE BULLETIN, 16, 1349-1355. (SCIE) (IF: 11.78; SCI ranking: 9.6%)

  • [59]     Christy Roshini Paul Inbaraj, Roshan Jesus Mathew, Raman Sankar, Chih-Hao Lee, Yang-Fang Chen, 2020, “Doping Engineered InSe Flakes for High Mobility Phototransistor”, Novel Optical Materials and Applications, 978-1-943580-79-8.

  • [60]     Yue Sun, Shunichiro Kittaka, Toshiro Sakakibara, Kazushige Machida, R Sankar, Xiaofeng Xu, Nan Zhou, Xiangzhuo Xing, Zhixiang Shi, Sunseng Pyon, Tsuyoshi Tamegai, 2020, “Fully gapped superconductivity without sign reversal in the topological superconductor PbTaSe 2”, Physical Review B, 102, 024517. (SCIE) (IF: 4.036; SCI ranking: 38.7%,25.6%,31.9%)

  • [61]     Srinivasa Reddy Tamalampudi, Jin-You Lu, Nitul Rajput, Chia-Yun Lai, Boulos Alfakes, Raman Sankar, Harry Apostoleris, Shashikant P Patole, Ibraheem Almansouri, Matteo Chiesa, 2020, “Superposition of semiconductor and semi-metal properties of self-assembled 2D SnTiS 3 heterostructures”, 2D Materials and Applications, 4:23.

  • [62]     Pradip Kumar Roy, Rajesh Kumar Ulaganathan, Chinnambedu Murugesan Raghavan, Swapnil Milind Mhatre, Hung-I Lin, Wei-Liang Chen, Yu-Ming Chang, Alex Rozhin, Yun-Tzu Hsu, Yang-Fang Chen, Raman Sankar, Fang-Cheng Chou, Chi-Te Liang, 2020, “Unprecedented random lasing in 2D organolead halide single-crystalline perovskite microrods”, NANOSCALE, 12, 18269-18277. (SCIE) (IF: 7.79; SCI ranking: 17.9%,18.5%,27.1%,14.4%)

  • [63]     Tien-Tien Yeh, Chien-Ming Tu, Wen-Hao Lin, Cheng-Maw Cheng, Wen-Yen Tzeng, Chen-Yu Chang, Hideto Shirai, Takao Fuji, Raman Sankar, Fang-Cheng Chou, Marin M Gospodinov, Takayoshi Kobayashi , Chih-Wei Luo, 2020, “Femtosecond time-evolution of mid-infrared spectral line shapes of Dirac fermions in topological insulators”, SCIENTIFIC REPORTS, 10, 9803. (SCIE) (IF: 4.38; SCI ranking: 23.3%)

  • [64]     Anjaiah Sheelam, Adil Muneeb, Biva Talukdar, Rini Ravindranath, Song-Jeng Huang, Chun-Hong Kuo, Raman Sankar, 2020, “Flexible and free-standing polyvinyl alcohol-reduced graphene oxide-Cu 2 O/CuO thin films for electrochemical reduction of carbon dioxide”, Journal of Applied Electrochemistry, 50, pages979–991. (SCIE) (IF: 2.8; SCI ranking: 62.1%)

  • [65]     K Gautam, SS Majid, S Francoual, A Ahad, K Dey, MC Rahn, R Sankar, FC Chou, DK Shukla, 2020, “Magnetic and orbital correlations in multiferroic CaMn 7 O 12 probed by x-ray resonant elastic scattering”, Physical Review B, 101, 224430. (SCIE) (IF: 4.036; SCI ranking: 38.7%,25.6%,31.9%)

  • [66]     Prabu Mani, Anjaiah Sheelam, Pitchiah Esakki Karthik, Raman Sankar, Kothandaraman Ramanujam, Sukhendu Mandal, 2020, “Nickel-Based Hybrid Material for Electrochemical Oxygen Redox Reactions in an Alkaline Medium”, ACS Applied Energy Materials, 3, 7, 6408–6415. (SCIE) (IF: 6.024; SCI ranking: 28.4%,29.8%,25.9%)

  • [67]     Christy Roshini Paul Inbaraj, Roshan Jesus Mathew, Rajesh Kumar Ulaganathan, Raman Sankar, Monika Kataria, Hsia Yu Lin, Hao-Yu Cheng, Kung-Hsuan Lin, Hung-I Lin, Yu-Ming Liao, Fang-Cheng Chou, Yit- Tsong Chen, Chih-Hao Lee, Yang-Fang Chen, 2020, “Modulating charge separation with h-BN mediation in vertical van der Waals heterostructures”, ACS APPLIED MATERIALS & INTERFACES, 12,26213–26221. (SCIE) (IF: 9.229; SCI ranking: 13.1%,19.6%)

  • [68]     Sarita Sharma, Khasimsaheb Bayikadi, Raman Sankar, Sonnathi Neeleshwar, 2020, “Synergistic optimization of thermoelectric performance in earth-abundant Cu2ZnSnS4 by inclusion of graphene nanosheets”, NANOTECHNOLOGY, 31 365402. (SCIE) (IF: 3.874; SCI ranking: 41.4%,55.1%,27.5%)

  • [69]     Gaurav Pande, Jyun-Yan Siao, Wei-Liang Chen, Chien-Ju Lee, Raman Sankar, Yu-Ming Chang, Chii-Dong Chen, Wen-Hao Chang, Fang-Cheng Chou, Minn-Tsong Lin, 2020, “Ultralow Schottky Barriers in Hexagonal Boron Nitride-Encapsulated Monolayer WSe2 Tunnel Field-Effect Transistors”, ACS APPLIED MATERIALS & INTERFACES, 12,18667–18673. (SCIE) (IF: 9.229; SCI ranking: 13.1%,19.6%)

  • [70]     Songtian S Zhang, Jia-Xin Yin, Guangyang Dai, Lingxiao Zhao, Tay-Rong Chang, Nana Shumiya, Kun Jiang, Hao Zheng, Guang Bian, Daniel Multer, Maksim Litskevich, Guoqing Chang, Ilya Belopolski, Tyler A Cochran, Xianxin Wu , Desheng Wu, Jianlin Luo, Genfu Chen, Hsin Lin, Fang-Cheng Chou, Xiancheng Wang, Changqing Jin, Raman Sankar, Ziqiang Wang, M Zahid Hasan, 2020, “Field-free platform for Majorana-like zero mode in superconductors with a topological surface state”, PHYSICAL REVIEW B, 101, 100507. (SCIE) (IF: 4.036; SCI ranking: 38.7%,25.6%,31.9%)

  • [71]     Khasim Saheb Bayikadi, Chien Ting Wu, Li-Chyong Chen, Kuei-Hsien Chen, Fang-Cheng Chou, Raman Sankar, 2020, “Synergistic optimization of thermoelectric performance of Sb doped GeTe with a strained domain and domain boundaries”, JOURNAL OF MATERIALS CHEMISTRY A, 8, 5332-5341. (SCIE) (IF: 12.732; SCI ranking: 11.1%,7%,8.6%)

  • [72]     Wen-Yen Tzeng, Ya-Hsin Tseng, Tien-Tien Yeh, Chien-Ming Tu, Raman Sankar, Yu-Han Chen, Bang-Hao Huang, Fang-Cheng Chou, and Chih-Wei Luo, 2020, “Selenium nanoparticle prepared by femtosecond laser-induced plasma shock wave”, OPTICS EXPRESS, 28, 685-694. (SCIE) (IF: 3.894; SCI ranking: 20.2%)

  • [73]     Zhang Yanxue, Nappini Silvia, Sankar Raman, Bondino Federica, Gao Junfeng, Politano Antonio, 2020, “Assessing the stability of Cd3As2 Dirac semimetal in humid environments: the influence of defects, steps and surface oxidation”, Journal of Materials Chemistry C, 9(4), 1235-1244. (SCIE) (IF: 7.393; SCI ranking: 19.3%,15.6%)

  • [74]     Wang Chih-Yuan, Lin Yun-Wu, Chuang Chiashain, Yang Cheng-Hsueh, Patel Dinesh K, Chen Sheng-Zong, Yeh Ching-Chen, Chen Wei-Chen, Lin Chia-Chun, Chen Yi-Hsun, Wang Wei-Hua, Sankar Raman, Chou Fang-Cheng, Kruskopf Mattias, Elmquist Randolph E, Liang Chi-Te, 2020, “Magnetotransport in hybrid InSe/monolayer graphene on SiC”, Nanotechnology, 32(15), 155704. (SCIE) (IF: 3.874; SCI ranking: 41.4%,55.1%,27.5%)

  • [75]     Perumal Packiyaraj, Kumar Ulaganathan Rajesh, Sankar Raman, Zhu Ling, 2020, “Staggered band offset induced high performance opto-electronic devices: Atomically thin vertically stacked GaSe-SnS2 van der Waals p-n heterostructures”, Applied Surface Science, 535, 147480. (SCIE) (IF: 6.707; SCI ranking: 22.8%,4.8%,18.8%,23.2%)

  • [76]     Yi-Hsun Chen, Chih-Yi Cheng, Shao-Yu Chen, Jan Sebastian Dominic Rodriguez, Han-Ting Liao, Kenji Watanabe, Takashi Taniguchi, Chun-Wei Chen, Raman Sankar, Fang-Cheng Chou, Hsiang-Chih Chiu, Wei-Hua Wang, 2019, “Oxidized-monolayer tunneling barrier for strong Fermi-level depinning in layered InSe transistors”, npj 2D materials and applications, 1-1-7. (SCIE) (IF: 11.106; SCI ranking: 9.8%,15%,10%)

  • [77]     Chellakannu Rajkumar, Raja Nehru, Shen-Ming Chen, Haekyoung Kim, S Arumugam, Raman Sankar, 2019, “Electrosynthesis of carbon aerogel-modified AuNPs@quercetin via an environmentally benign method for hydrazine (HZ) and hydroxylamine (HA) detection”, NEW JOURNAL OF CHEMISTRY, 44, 586-595. (SCIE) (IF: 3.591; SCI ranking: 41.9%)

  • [78]     Rajesh Kumar Ulaganathan, Raman Sankar, Chang‐Yu Lin, Raghavan Chinnambedu Murugesan, Kechao Tang, Fang‐Cheng Chou, 2019, “High‐Performance Flexible Broadband Photodetectors Based on 2D Hafnium Selenosulfide Nanosheets”, ADVANCED ELECTRONIC MATERIALS, 6, 1900794. (SCIE) (IF: 7.295; SCI ranking: 20.2%,29.9%,16.9%)

  • [79]     CQ Xu, B Li, JJ Feng, WH Jiao, YK Li, SW Liu, YX Zhou, Raman Sankar, Nikolai D Zhigadlo, HB Wang, ZD Han, B Qian, W Ye, W Zhou, Toni Shiroka, Pabitra K Biswas, Xiaofeng Xu, ZX Shi, 2019, “Two-gap superconductivity and topological surface states in TaOsSi”, PHYSICAL REVIEW B, 13-134503. (SCIE) (IF: 4.036; SCI ranking: 38.7%,25.6%,31.9%)

  • [80]     QR Zhang, B Zeng, YC Chiu, R Schönemann, S Memaran, W Zheng, D Rhodes, K-W Chen, T Besara, R Sankar, F Chou, GT McCandless, JY Chan, N Alidoust, S-Y Xu, I Belopolski, MZ Hasan, FF Balakirev, L Balicas, 2019, “Possible manifestations of the chiral anomaly and evidence for a magnetic field induced topological phase transition in the type-I Weyl semimetal TaAs”, PHYSICAL REVIEW B, 11-115138. (SCIE) (IF: 4.036; SCI ranking: 38.7%,25.6%,31.9%)

  • [81]     Raman Sankar, I Panneer Muthuselvam, K Ramesh Babu, G Senthil Murugan, Karthik Rajagopal, Rakesh Kumar, Tsung-Chi Wu, Cheng-Yen Wen, Wei-Li Lee, Guang-Yu Guo, Fang-Cheng Chou, 2019, “Crystal Growth and Magnetic Properties of Topological Nodal-Line Semimetal GdSbTe with Antiferromagnetic Spin Ordering”, INORGANIC CHEMISTRY, 17-11730. (SCIE) (IF: 5.165; SCI ranking: 11.1%)

  • [82]     Khasim Saheb Bayikadi, Raman Sankar, Chien Ting Wu, Chengliang Xia, Yue Chen, Li-Chyong Chen, Kuei-Hsien Chen and Fang-Cheng Chou, 2019, “Enhanced thermoelectric performance of GeTe through in situ microdomain and Ge-vacancy control”, JOURNAL OF MATERIALS CHEMISTRY A, 7, 15181-15189. (SCIE) (IF: 12.732; SCI ranking: 11.1%,7%,8.6%)

  • [83]     Danil W Boukhvalov, Raju Edla, Anna Cupolillo, Vito Fabio, Raman Sankar, Yanglin Zhu, Zhiqiang Mao, Jin Hu, Piero Torelli, Gennaro Chiarello, Luca Ottaviano, Antonio Politano, 2019, “Surface Instability and Chemical Reactivity of ZrSiS and ZrSiSe Nodal‐Line Semimetals”, ADVANCED FUNCTIONAL MATERIALS, 29, 1900438. (SCIE) (IF: 18.808; SCI ranking: 6.7%,5.6%,4.5%,5.6%,5%,7.2%)

  • [84]     Davide Iaia, Chang-Yan Wang, Yulia Maximenko, Daniel Walkup, R Sankar, Fang cheng Chou, Yuan-Ming Lu, Vidya Madhavan, 2019, “Topological nature of step-edge states on the surface of the topological crystalline insulatorPb0.7Sn0.3Se”, PHYSICAL REVIEW B, 99, 155116. (SCIE) (IF: 4.036; SCI ranking: 38.7%,25.6%,31.9%)

  • [85]     S. Kalish, C. Chamon, M. El-Batanouny, L. H. Santos, R. Sankar, and F. C. Chou, 2019, “Contrasting the Surface Phonon Dispersion of Pb0.7Sn0.3Se in Its Topologically Trivial and Nontrivial Phases”, PHYSICAL REVIEW LETTERS, 122, 116101. (SCIE) (IF: 9.161; SCI ranking: 8.1%)

  • [86]     Hung-Chang Hsu, Bo-Chao Huang, Shu-Cheng Chin, Cheng-Rong Hsing, Duc-Long Nguyen, Michael Schnedler, Raman Sankar, Rafal E Dunin-Borkowski, Ching-Ming Wei, Chun-Wei Chen, Philipp Ebert, Ya-Ping Chiu, 2019, “Photodriven Dipole Reordering: Key to Carrier Separation in Metalorganic Halide Perovskites”, ACS NANO, 13, 4, 4402-4409. (SCIE) (IF: 15.881; SCI ranking: 7.8%,7.4%,6.3%,10.3%)

  • [87]     C. Q. Xu, B. Li, M. R. van Delft, W. H. Jiao, W. Zhou, B. Qian, Nikolai D. Zhigadlo, Dong Qian, R. Sankar, N. E. Hussey, and Xiaofeng Xu, 2019, “Extreme magnetoresistance and pressure-induced superconductivity in the topological semimetal candidate YBi”, PHYSICAL REVIEW B, 99, 024110. (SCIE) (IF: 4.036; SCI ranking: 38.7%,25.6%,31.9%)

  • [88]     Yinming Shao, Zhiyuan Sun, Ying Wang, Chenchao Xu, Raman Sankar, Alexander J Breindel, Chao Cao, Michael M Fogler, Andrew J Millis, Fangcheng Chou, Zhiqiang Li, Thomas Timusk, M Brian Maple, DN Basov, 2019, “Optical signatures of Dirac nodal lines in NbAs2”, PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 4-1168. (SCIE) (IF: 11.205; SCI ranking: 11%)

  • [89]     Peramaiyan G., Sankar Raman, Muthuselvam I. Panneer, Lee Wei-Li, 2018, “Anisotropic magnetotransport and extremely large magnetoresistance in NbAs2 single crystals”, Scientific Reports, 8(1), 6414. (SCIE) (IF: 4.38; SCI ranking: 23.3%)

  • [90]     Gao Shang, Flicker Felix, Sankar Raman, Zhao He, Ren Zheng, Rachmilowitz Bryan, Balachandar Sidhika, Chou Fangcheng, Burch Kenneth S., Wang Ziqiang, van Wezel Jasper, Zeljkovic Ilija, 2018, “Atomic-scale strain manipulation of a charge density wave”, Proceedings of the National Academy of Sciences, 115(27), 6986-6990.

  • [91]     Hosen M. Mofazzel, Dimitri Klauss, Nandy Ashis K., Aperis Alex, Sankar Raman, Dhakal Gyanendra, Maldonado Pablo, Kabir Firoza, Sims Christopher, Chou Fangcheng, Kaczorowski Dariusz, Durakiewicz Tomasz, Oppeneer Peter M., Neupane Madhab, 2018, “Distinct multiple fermionic states in a single topological metal”, Nature Communications, 9(1), (2018) 9:3002. (SCIE) (IF: 14.919; SCI ranking: 5.5%)

  • [92]     Shu G. J., Liou S. C., Karna S. K., Sankar R., Hayashi M., Chou F. C., 2018, “Dynamic surface electronic reconstruction as symmetry-protected topological orders in topological insulator Bi2Se3”, Physical Review Materials, 2(4), 044201. (SCIE) (IF: 3.989; SCI ranking: 39.9%)

  • [93]     Duvjir Ganbat, Choi Byoung Ki, Jang Iksu, Ulstrup Søren, Kang Soonmin, Thi Ly Trinh, Kim Sanghwa, Choi Young Hwan, Jozwiak Chris, Bostwick Aaron, Rotenberg Eli, Park Je-Geun, Sankar Raman, Kim Ki-Seok, Kim Jungdae, Chang Young Jun, 2018, “Emergence of a Metal–Insulator Transition and High-Temperature Charge-Density Waves in VSe2 at the Monolayer Limit”, Nano Letters, 18(9), 5432-5438. (SCIE) (IF: 11.189; SCI ranking: 11.2%,13.6%,9.5%,14%,9.4%,15.9%)

  • [94]     Hakl M., Tchoumakov S., Crassee I., Akrap A., Piot B. A., Faugeras C., Martinez G., Nateprov A., Arushanov E., Teppe F., Sankar R., Lee Wei-li, Debray J., Caha O., Novák J., Goerbig M. O., Potemski M., Orlita M., 2018, “Energy scale of Dirac electrons in Cd3As2”, Physical Review B, 97(11), 115206. (SCIE) (IF: 4.036; SCI ranking: 38.7%,25.6%,31.9%)

  • [95]     Li Yang, Wang Tianmeng, Wang Han, Li Zhipeng, Chen Yanwen, West Damien, Sankar Raman, Ulaganathan Rajesh K., Chou Fangcheng, Wetzel Christian, Xu Cheng-Yan, Zhang Shengbai, Shi Su-Fei, 2018, “Enhanced Light Emission from the Ridge of Two-Dimensional InSe Flakes”, Nano Letters, 18(8), 5078-5084. (SCIE) (IF: 11.189; SCI ranking: 11.2%,13.6%,9.5%,14%,9.4%,15.9%)

  • [96]     B Li, CQ Xu, W Zhou, WH Jiao, R Sankar, FM Zhang, HH Hou, XF Jiang, B Qian, B Chen, AF Bangura and Xiaofeng Xu, 2018, “Evidence of s-wave superconductivity in the non-centrosymmetric La 7 Ir 3”, SCIENTIFIC REPORTS, 8, 651. (SCIE) (IF: 4.38; SCI ranking: 23.3%)

  • [97]     IP Muthuselvam, R Sankar, GN Rao, SK Karna, FC Chou, 2018, “Ferromagnetic nature in low-dimensional S= 1 antiferromagnetic Li 2 Ni(WO 4 ) 2 nanoparticles”, JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 449, 83-87. (SCIE) (IF: 2.993; SCI ranking: 56%,47.8%)

  • [98]     Huang Ce, Narayan Awadhesh, Zhang Enze, Liu Yanwen, Yan Xiao, Wang Jiaxiang, Zhang Cheng, Wang Weiyi, Zhou Tong, Yi Changjiang, Liu Shanshan, Ling Jiwei, Zhang Huiqin, Liu Ran, Sankar Raman, Chou Fangcheng, Wang Yihua, Shi Youguo, Law Kam Tuen, Sanvito Stefano, Zhou Peng, Han Zheng, Xiu Faxian, 2018, “Inducing Strong Superconductivity in WTe2 by a Proximity Effect”, ACS Nano, 12(7), 7185-7196. (SCIE) (IF: 15.881; SCI ranking: 7.8%,7.4%,6.3%,10.3%)

  • [99]     Walkup Daniel, Assaf Badih A., Scipioni Kane L., Sankar R., Chou Fangcheng, Chang Guoqing, Lin Hsin, Zeljkovic Ilija, Madhavan Vidya, 2018, “Interplay of orbital effects and nanoscale strain in topological crystalline insulators”, Nature Communications, 9(1), 1550. (SCIE) (IF: 14.919; SCI ranking: 5.5%)

  • [100]     Zhou W., Xu C. Q., Li B., Sankar R., Zhang F. M., Qian B., Cao C., Dai J. H., Lu Jianming, Jiang W. X., Qian Dong, Xu Xiaofeng, 2018, “Kondo behavior and metamagnetic phase transition in the heavy-fermion compound CeBi2”, Physical Review B, 97(19), 97, 195120. (SCIE) (IF: 4.036; SCI ranking: 38.7%,25.6%,31.9%)

  • [101]     Raghavan Chinnambedu Murugesan, Chen Tzu-Pei, Li Shao-Sian, Chen Wei-Liang, Lo Chao-Yuan, Liao Yu-Ming, Haider Golam, Lin Cheng-Chieh, Chen Chia-Chun, Sankar Raman, Chang Yu-Ming, Chou Fang-Cheng, Chen Chun-Wei, 2018, “Low-Threshold Lasing from 2D Homologous Organic–Inorganic Hybrid Ruddlesden–Popper Perovskite Single Crystals”, Nano Letters, 18(5), 3221-3228. (SCIE) (IF: 11.189; SCI ranking: 11.2%,13.6%,9.5%,14%,9.4%,15.9%)

  • [102]     Uykur E., Sankar R., Schmitz D., Kuntscher C. A., 2018, “Optical spectroscopy study on pressure-induced phase transitions in the three-dimensional Dirac semimetal Cd3As2”, Physical Review B, 97(19), 195134. (SCIE) (IF: 4.036; SCI ranking: 38.7%,25.6%,31.9%)

  • [103]     Roth S., Lee H., Sterzi A., Zacchigna M., Politano A., Sankar R., Chou F. C., Di Santo G., Petaccia L., Yazyev O. V., Crepaldi A., 2018, “Reinvestigating the surface and bulk electronic properties of Cd3As2”, Physical Review B, 97(16), 97, 165439. (SCIE) (IF: 4.036; SCI ranking: 38.7%,25.6%,31.9%)

  • [104]     Dhavala Suri, Christopher Linderalv, Bogdan Karpiak, Linnea Anderson, Sandeep Kumar Singh, Andre Dankert, FC Chou., Raman Sankar., Paul Erhart, Saroj P Dash, RS Patel, 2018, “Resistivity Anomaly in Weyl Semimetal candidate Molybdenum Telluride (MoTe 2 )”, APPLIED PHYSICS LETTERS, AR- 00763, xxxx-xxxx. (SCIE) (IF: 3.791; SCI ranking: 29.4%)

  • [105]     Raman Sankar. G Peramaiyan, I Panneer Muthuselvam, Cheng-Yen Wen, Xiaofeng Xu, FC Chou,, 2018, “Superconductivity in a misfit layered (SnS) 1.15 (TaS 2 ) compound”, Chemistry of Materials, xxxx, xxxx-xxxx. (SCIE) (IF: 9.811; SCI ranking: 14.8%,12.2%)

  • [106]     Xu Chunqiang, Li Bin, Jiao Wenhe, Zhou Wei, Qian Bin, Sankar Raman, Zhigadlo Nikolai D., Qi Yanpeng, Qian Dong, Chou Fang-Cheng, Xu Xiaofeng, 2018, “Topological Type-II Dirac Fermions Approaching the Fermi Level in a Transition Metal Dichalcogenide NiTe2”, Chemistry of Materials, 30(14), 4823-4830. (SCIE) (IF: 9.811; SCI ranking: 14.8%,12.2%)

  • [107]     Premasiri Kasun, Radha Santosh Kumar, Sucharitakul Sukrit, Kumar U. Rajesh, Sankar Raman, Chou Fang-Cheng, Chen Yit-Tsong, Gao Xuan P. A., 2018, “Tuning Rashba Spin–Orbit Coupling in Gated Multilayer InSe”, Nano Letters, 18(7), 4403-4408. (SCIE) (IF: 11.189; SCI ranking: 11.2%,13.6%,9.5%,14%,9.4%,15.9%)

  • [108]     Jiwei Ling, Yanwen Liu, Zhao Jin, Sha Huang, Weiyi Wang, Cheng Zhang, Xiang Yuan, Shanshan Liu, Enze Zhang, Ce Huang, Raman Sankar, Fang-Cheng Chou, Zhengcai Xia and Faxian Xiu, 2018, “Two-dimensional transport and strong spin–orbit interaction in SrMnSb2”, CHINESE PHYSICS B, 27, 017504. (SCIE) (IF: 1.494; SCI ranking: 65.1%)

  • [109]     Yang Li, Tianmeng Wang, Meng Wu, Ting Cao, Yanwen Chen, Raman Sankar, Rajesh Kumar Ulaganathan, Fang-Cheng Chou, Christian Wetzel, Chengyan Xu, Steven G Louie, Sufei Shi, 2018, “Ultrasensitive tunability of the direct bandgap of two-dimensional InSe flakes via strain engineering”, 2D MATERIALS, 5, 021002. (SCIE) (IF: 7.103; SCI ranking: 21.4%)

  • [110]     Xun Jia, Shuyuan Zhang, Raman Sankar, Fang-Cheng Chou, Weihua Wang, K Kempa, EW Plummer, Jiandi Zhang, Xuetao Zhu, and Jiandong Guo, 2017, “Anomalous Acoustic Plasmon Mode from Topologically Protected States”, PHYSICAL REVIEW LETTERS, 119, 136805. (SCIE) (IF: 9.161; SCI ranking: 8.1%)

  • [111]     Y Wang, G Luo, J Liu, R Sankar, NL Wang, F Chou, L Fu and Z Li, 2017, “Observation of ultrahigh mobility surface states in a topological crystalline insulator by infrared spectroscopy”, Nature Communications, 8.

  • [112]     Wenqing Dai, Anthony Richardella, Renzhong Du, Weiwei Zhao, Xin Liu, C.X. Liu, Song-Hsun Huang, Raman Sankar, Fangcheng Chou, Nitin Samarth, and Qi Li, 2017, “Proximity-effect- induced Superconducting Gap in Topological Surface States- A point contact Spectroscopy study of NbSe 2 /Bi2Se 3”, SCIENTIFIC REPORTS, 7, 7631. (SCIE) (IF: 4.38; SCI ranking: 23.3%)

  • [113]     YR Chang, PH Ho, CY Wen, TP Chen, SS Li, JY Wang, MK Li, CA Tsai, Raman Sankar, Wei-Hua Wang, Po-Wen Chiu, Fang-Cheng Chou, and Chun-Wei Chen, 2017, “Surface oxidation doping to enhance photo generated carrier separation efficiency for ultrahigh gain indium selenide photodetector”, ACS PHOTONICS, 4, 2930-2936. (SCIE) (IF: 7.529; SCI ranking: 19%,29%,10.1%,15%,18.8%)

其他論文

  • [1]     Huang Yu-Ting, Chen Yi-Hsun, Ho Yi-Ju, Huang Shih-Wei, Chang Yih-Ren, Watanabe Kenji, Taniguchi Takashi, Chiu Hsiang-Chih, Liang Chi-Te, Sankar Raman, Chou Fang-Cheng, Chen Chun-Wei, Wang Wei-Hua, 2018, “High-Performance InSe Transistors with Ohmic Contact Enabled by Nonrectifying Barrier-Type Indium Electrodes”, ACS Applied Materials & Interfaces, 10(39), 33450-33456.

發現與突破

  • [1]     西元年:2022
    研究人員(中):雷曼
    研究人員(英):SANKAR, RAMAN, Safdar Imam, Khasim Saheb Bayikadi, Mohammad Ubaid, V.K. Ranganayakulu, Sumangala Devi, Bhalchandra S. Pujari, Yang-Yuan Chen, Li-Chyong Chen, Kuei-Hsien Chen, Feng-Li Lin, Raman Sankar*
    研究成果名稱(中):在 Mo 摻雜的 GeTe 基化合物中誘導的微晶棒通過高度壓實實現協同性能
    研究成果名稱(英):Achieving synergistic performance through highly compacted microcrystalline rods induced in Mo doped GeTe based compounds
    簡要記述(中):在無鉛熱電材料中,碲化鍺(GeTe)已被廣泛研究,由於其在中溫下的高熱電性能(ZT);然而,高 p 型載流子密度(~1021 cm 3)阻礙了它對更高ZT的適用性。提高熱電性能在對環境有利的 GeTe 中,我們探索了 Mo 摻雜顯著優化了載流子濃度以及伴隨緻密晶粒的獨特微晶棒邊界、高密度平面缺陷和實現全頻聲子散射的點缺陷,以降低熱導率。此外,Sb/Bi 在 Ge 位點與 Mo 共摻雜主要降低載流子濃度和熱導率以獲得更高的 ZT。共摻雜Bi 在 673 K 時在樣品中實現 ~2.3 的最高 ZT 方面表現出更突出的作用與 Ge0.89Mo0
    簡要記述(英):Among the lead-free thermoelectric material, germanium telluride (GeTe) has been extensively investigated due to its high thermoelectric performance (ZT) in mid-temperature; however, high p-type carrier density (~1021 cm3) hinder its suitability for higher ZT. To enhance the thermoelectric performance of the environmentally favorable GeTe, we explored the Mo doping significantly optimizes the carrier concentration along with uniquely unveiled microcrystalline rods accompanying compact grain boundaries, high-density planar defects, and point defects effectuating all-frequency phonon scattering yields to lower down the thermal conductivity. Furthermore, Sb/Bi co-doping with Mo at the Ge sites predominantly reduces the carrier concentration and thermal conductivity to attain a higher ZT. The codoping of Bi manifested a more prominent role in achieving the highest ZT of ~2.3 at 673 K for the sample composition with Ge0.89Mo0


  • [2]     西元年:2022
    研究人員(中):雷曼
    研究人員(英):SANKAR, RAMAN, Anjaiah Sheelam, Sakthipriya Balu, Adil Muneeb, Khasim Saheb Bayikadi, Dhenadhayalan Namasivayam, Erakulan E. Siddharthan, Arif I. Inamdar, Ranjit Thapa, Ming-Hsi Chiang, Song-Jeng Isaac Huang, and Raman Sankar*
    研究成果名稱(中):通過高價 Fe 和 Co3+ 位點提高氧的氧化還原活性 在鈣鈦礦 LaNi1−xFe0.5xCo0.5xO3
    研究成果名稱(英):Improved Oxygen Redox Activity by High-Valent Fe and Co3+ Sites in the Perovskite LaNi1−xFe0.5xCo0.5xO3
    簡要記述(中):通過異價取代調整鈣鈦礦氧化物的電子結構是獲得用於能量轉換和存儲設備的廉價且高效的電催化劑的有前景的策略。在此,根據 d 帶中心位置並使用簡單的溶膠-凝膠法和熱解步驟,設計了 LaNi1-xCo0.5xFe0.5xO3 (LNFCO-x; x = 0.0, 0.4, 0.5 和 0.6) 電催化劑,並在 1 M KOH 中合成用於氧氧化還原反應。其中,LNFCO-0.5在氧氧化還原反應中表現出最低的過電位和最高的電荷轉移動力學。
    簡要記述(英):Tuning the electronic structure of perovskite oxides via aliovalent substitution is a promising strategy to attain inexpensive and efficient electrocatalysts for energy conversion and storage devices. Herein, following the d-band center positions and using a simple sol–gel method followed by a pyrolysis step, LaNi1–xCo0.5xFe0.5xO3 (LNFCO-x; x = 0.0, 0.4, 0.5, and 0.6) electrocatalysts are designed and synthesized for oxygen redox reactions in 1 M KOH. Among them, LNFCO-0.5 has exhibited the lowest overpotential and the highest charge transfer kinetics in oxygen redox reactions. Overall, a 90 mV lower overpotential was observed in oxygen redox activity of LNFCO-0.5 compared to that of pristine LaNiO3. The mass activity of LNFCO-0.5 in the oxygen reduction reaction (at 0.7 V vs RHE) and oxygen evolution reaction (1.60 V vs RHE) was calculated to be 2.5 and 2.13 times higher than that of LaNiO3, respectively. The bifunctionality index (potential difference between the oxygen evolution at a current density of 10 mA cm–2 and the oxygen reduction at a current density of −1 mA cm–2) of LNFCO-0.5 was found to be 0.98. The substitution of Fe and Co for the Ni-site shifted the d-band center close to the Fermi level, which can increase the binding strength of the *OH intermediate in the rate-determining step. Also, the surface was enriched with Fe3+Δ, Co3+, and partially oxidized Ni3+ states, which is susceptible to tune the eg-orbital filling for superior oxygen redox activity.


  • [3]     西元年:2022
    研究人員(中):雷曼
    研究人員(英):SANKAR, RAMAN, Somrita Dutta, Deepak Vishnu S. K, Sudipta Som, Rajneesh Chaurasiya, Dinesh Kumar Patel, Kalimuthu Moovendaran, Cheng-Chieh Lin, Chun-Wei Chen,* and Raman Sankar*
    研究成果名稱(中):分段高可逆熱致變色層狀鈣鈦礦 [(CH2)2(NH3)2]CuCl4晶體與逆磁熱耦合 影響
    研究成果名稱(英):Segmented Highly Reversible Thermochromic Layered Perovskite [(CH2)2(NH3)2]CuCl4 Crystal Coupled with an Inverse Magnetocaloric Effect
    簡要記述(中):與三維(3D)對應物相比,層狀無鉛雜化鈣鈦礦在有機電子學方面具有優勢,因為它們易於合成並且對各種環境條件具有良好的穩定性。為了進一步了解此類材料的多功能性,在溶液中生長了層狀鈣鈦礦 (EDA)CuCl4 [EDA 為 (CH2)2(NH3)2] 晶體,並通過單晶 X 射線衍射對其進行了晶體學表徵。該晶體的熱穩定性非常好,具有很高的可逆熱致變色工作溫度(~503 K)、強烈的電導率隨溫度變化以及強烈的奇異磁性。通過粉末 X 射線衍射和紫外可見吸收來監測和解釋晶體結構隨溫度的變化。在重複加熱/冷卻循環後,晶體的吸收帶幾乎沒有變化,表明穩定性非常好。此外,Cu 雜化物由反鐵磁耦合層中的強鐵磁相互作用組成,Néel 溫度約為 34 K。研究了晶體的磁熱效應,發現由於與反鐵磁轉變相關的磁熵變化和強鐵磁相互作用,表明鈣鈦礦雜化材料適合作為環保低溫磁冷卻技術的候選者。總體結果為未來在寬溫度範圍內的電子應用提供了潛在的多用途二維 (2D) 鈣鈦礦。
    簡要記述(英):The layered, lead-free hybrid perovskites are superior in organic electronics compared to their three-dimensional (3D) counterparts due to their facile synthesis and promising stability to various environmental conditions. To learn more about the multifunctional side of such materials, a layered perovskite (EDA)CuCl4 [EDA is (CH2)2(NH3)2] crystal was grown in solution and crystallographically characterized by single-crystal X-ray diffraction. The crystal is thermally very stable and exhibits a high reversible thermochromic working temperature (∼503 K), intense conductivity changes with temperature, and strong exotic magnetic properties. The structural changes of the crystal with temperature are monitored and explained by powder X-ray diffraction and UV–vis absorption. The absorption band of the crystal shows little variation after repeated heating/cooling cycles, indicating admirable stability. Moreover, the Cu hybrid consists of a strong ferromagnetic interaction in antiferromagnetically coupled layers with a Néel temperature of about 34 K. The magnetocaloric effect of the crystal was investigated and found to be inverse due to the magnetic entropy change associated with the antiferromagnetic transition and the strong ferromagnetic interaction, indicating the suitability of the perovskite hybrid as a candidate for an environmentally friendly low-temperature magnetic cooling technology. The overall results promise a potential multipurpose two-dimensional (2D) perovskite for future electronic applications in a wide temperature range.


  • [4]     西元年:2022
    研究人員(中):雷曼
    研究人員(英):SANKAR, RAMAN, Rajesh Kumar Ulaganathan,* Raghavan Chinnambedu Murugesan,* Chang-Yu Lin, Ambika Subramanian, Wei-Liang Chen, Yu-Ming Chang, Alex Rozhin, and Raman Sankar*
    研究成果名稱(中):穩定的基於甲脒的厘米長 二維鹵化鉛鈣鈦礦單晶 用於長壽命光電應用
    研究成果名稱(英):Stable Formamidinium-Based Centimeter Long Two-Dimensional Lead Halide Perovskite Single-Crystal for Long-Live Optoelectronic Applications
    簡要記述(中):由於其固有的多量子阱結構,可溶液加工的二維金屬鹵化物鈣鈦礦在具有成本效益的光電應用中非常有前景。然而,缺乏穩定性仍然是這類材料在實際設備中使用的主要障礙。在這裡,作者使用由兩個鈣鈦礦層的厚度控制的基於甲脒 (FA) 的厘米長二維鈣鈦礦 (BA)2FAPb2I7 高質量單晶展示了穩定的光電特性。大面積單晶表現出良好的結晶度、相純度和光譜均勻性。此外,與基於甲基銨 (MA) 的 (BA)2MAPb2I7 對應物相比,(BA)2FAPb2I7 單晶在開放大氣條件下表現出優異的穩定性。在剛性 Si/SiO2 襯底上使用二維鈣鈦礦單晶製造的光電探測器顯示出高光響應性 (Rλ)(≈5 AW-1)、快速響應時間 (<20 ms)、比檢測率 (D*) (≈3.5 × 1011 Jones),在 488 nm 激光照射下具有出色的耐用性。Rλ 和 D* 值分別從 (BA)2FAPb2I7 單晶獲得 25 倍和三個數量級,比 (BA)2MAPb2I7 單晶高。此外,柔性聚合物基板上的鈣鈦礦材料在彎曲和非彎曲狀態下均顯示出良好的光敏特性。
    簡要記述(英):Solution-processable 2D metal-halide perovskites are highly promising for cost-effective optoelectronic applications due to their intrinsic multiquantum well structure. However, the lack of stability is still a major obstacle in the use of this class of materials in practical devices. Here, the authors demonstrate the stable optoelectronic properties using formamidinium (FA)-based centimeter-long 2D perovskite (BA)2FAPb2I7 high-quality single-crystal controlled by the thickness of two perovskite layers. The large area single-crystal exhibits good crystallinity, phase purity, and spectral uniformity. Moreover, the (BA)2FAPb2I7 single-crystal shows excellent stability at open atmospheric conditions when compared to methylammonium (MA)-based (BA)2MAPb2I7 counterparts. The photodetectors fabricated using 2D perovskite single-crystal on the rigid Si/SiO2 substrate reveal high photoresponsivity (Rλ)(≈5 A W−1), the fast response time (<20 ms), specific detectivity (D*) (≈3.5 × 1011 Jones), and excellent durability under 488 nm laser illumination. The Rλ and D* values are obtained from the (BA)2FAPb2I7 single-crystal 25 times and three orders magnitudes, respectively, higher than the (BA)2MAPb2I7 single-crystal. Additionally, the perovskite material on flexible polymer substrate reveals good photo-sensing properties in both bending and nonbending states.


  • [5]     西元年:2021
    研究人員(中):雷曼
    研究人員(英):SANKAR, RAMAN, Seungyeol Lee, Jaena Park, Youngsu Choi, Kalaivanan Raju, Wei-Tin Chen , Raman Sankar,* and Kwang-Yong Choi*
    研究成果名稱(中):Ni1-xFexPS3 中磁各向异性和相关性的化学调谐
    研究成果名稱(英):Chemical tuning of magnetic anisotropy and correlations in Ni1−xFexPS3
    簡要記述(中):我们报告了范德华反铁磁体 Ni1-xFexPS3 上静磁化率和拉曼光谱测量的温度和成分依赖性。末端成员 NiPS3 和 FePS3 分别具有类似 XY 和 Ising 的磁性,可实现磁各向异性和自旋的化学调谐 相关性。 Ni1−xFexPS3 显示了从 XY 到 Ising 各向异性的转换,x ≈ 0.1。虽然 XY 引入 Fe 含量后各向异性被迅速抑制,双磁振子散射证明缓慢抑制 富铁侧深处的短程磁相关。与直觉相反,双磁振子信号 尽管更大的自旋数和增强的 x 的增加,其能量的重整化较少 经典的磁性。不同的静态和动态磁行为表明出现了一种奇异的 合金范德华磁体中的自旋态。
    簡要記述(英):We report the temperature and composition dependence of static magnetic susceptibility and Raman spectroscopic measurements on van der Waals antiferromagnets Ni1−xFexPS3. The end members NiPS3 and FePS3 feature XY - and Ising-like magnetism, respectively, enabling chemical tuning of magnetic anisotropy and spin correlations. Ni1−xFexPS3 shows a turnover from the XY to Ising anisotropy through x ≈ 0.1. Although the XY anisotropy is rapidly suppressed on introducing Fe content, two-magnon scattering evidences the slow repression of short-range magnetic correlations deep inside the Fe-rich side. Counterintuitively, the two-magnon signal undergoes less renormalization of its energy with increasing x despite the larger spin number and enhanced classical magnetism. The disparate static and dynamic magnetic behaviors indicate the emergence of an exotic spin state in alloy van der Waals magnets.


  • [6]     西元年:2021
    研究人員(中):雷曼
    研究人員(英):SANKAR, RAMAN, C. H. Lee , S. Lee, Y. S. Choi, Z. H. Jang, R. Kalaivanan, R. Sankar, * and K.-Y. Choi*
    研究成果名稱(中):Co基各向异性磁相关的多阶段发展 蜂窝晶格 Na2Co2TeO6
    研究成果名稱(英):Multistage development of anisotropic magnetic correlations in the Co-based honeycomb lattice Na2Co2TeO6
    簡要記述(中):我们研究了 Co 基蜂窝晶格 Na2Co2TeO6 磁相关性的热演化23Na核磁共振和静磁化率χ(T)。所研究的化合物显示TN = 26 K 时的三维 (3D) 长程磁性排序。通过 T ∗ ≈ 110 K 冷却,一个简单的 顺磁态经历与具有幂律依赖性的相关顺磁态的交叉 核自旋晶格 (1/T1) 和自旋-自旋 (1/T2) 弛豫率以及面外 χ(T) 的变化。这1/T1、1/T2 和 χ(T ) 的磁场方向相关性揭示了 a 的各向异性自旋-自旋相关性 二维 (2D) 重归一化经典字符。在磁性有序状态下,我们能够识别 在 TN = 26、TN1 = 16、TN2 = 7 和 TN3 = 3.5 K 处发生四个连续的转变或交叉。转换和交叉与 2D 和 3D 磁序的共存或重新定向有关 有序旋转。我们的结果表明存在各种令人沮丧的相互作用及其能量 控制复杂磁性结构和各向异性磁性的层次结构。
    簡要記述(英):We investigate the thermal evolution of magnetic correlations of the Co-based honeycomb lattice Na2Co2TeO6 with 23Na nuclear magnetic resonance and static magnetic susceptibility χ(T ). The studied compound shows three-dimensional (3D) long-range magnetic ordering at TN = 26 K. On cooling through T∗ ≈ 110 K, a simple paramagnetic state undergoes a crossover to a correlated paramagnetic state featuring a power-law dependence of the nuclear spin-lattice (1/T1) and spin-spin (1/T2) relaxation rates as well as of the out-of-plane χ(T ). The magnetic-field-direction dependence of 1/T1, 1/T2, and χ(T ) uncovers anisotropic spin-spin correlations of a two-dimensional (2D) renormalized classical character. In a magnetically ordered state, we are able to identify four successive transitions or crossovers occurring at TN = 26, TN1 = 16, TN2 = 7, and TN3 = 3.5 K. The multiple transitions and crossovers are associated with the coexistence of 2D and 3D magnetic orders or reorientation of the ordered spins. Our results suggest the presence of various types of frustrating interactions and their energy hierarchy that control complex magnetic structures and anisotropic magnetism.


  • [7]     西元年:2020
    研究人員(中):雷曼
    研究人員(英):SANKAR, RAMAN, Khasim Saheb Bayikadi, Chien Ting Wu, Li-Chyong Chen, Kuei-Hsien Chen, Fang-Cheng Chou and Raman Sankar *
    研究成果名稱(中):具有應變疇和疇邊界的 Sb 摻雜 GeTe 熱電性能的協同優化
    研究成果名稱(英):Synergistic optimization of thermoelectric performance of Sb doped GeTe with a strained domain and domain boundaries
    簡要記述(中):RamanSankar 博士小組首次通過在系統中摻雜 Sb 來報告 GeTe 系統中 Ge 的系統空位控制 。 伴隨的載流子濃度( n )和異端價 Sb 離子取代導致最佳摻雜水平 x = 0.10 ,表明在 800 K 附近 ZT 〜 2.35 ,這明顯高於 GeTe 系統的單元素和多元素取代研究 在文學中 。 傑出的結果發表在 2020 年 2 月 13 日由英國皇家化學學會出版的《材料化學期刊》上。
    簡要記述(英):For the first time Dr Raman Sankar group have reported the systematic vacancy control of Ge in GeTe system by doping Sb in to the system The concomitant carrier concentration ( and the aliovalent Sb ion substitution led to an optimal doping level of x= 0 10 to show ZT 2 35 near 800 K, which is significantly higher than those single and multi elementals substitution studies of GeTe system reported in literature The prominent results were published in Journal of Material Chemistry A, published by Royal Society of Chemistry on 13 Feb 2020


  • [8]     西元年:2019
    研究人員(中):雷曼
    研究人員(英):SANKAR, RAMAN, Khasim Saheb Bayikadi, Raman Sankar, Chien Ting Wu, Chengliang Xia, Yue Chen, Li-Chyong Chen, Kuei-Hsien Chen and Fang-Cheng Chou
    研究成果名稱(中):通过增强GeTe的热电性能  原位微区和Ge空位控制
    研究成果名稱(英):Enhanced thermoelectric performance of GeTe through in situ micro domain and Ge vacancy control
    簡要記述(中):Raman Sankar博士小组首次借助原位TEM分析报告了锗空位控制证据,并且首次使菱形体中的GeTe相稳定在约500 oC的较高温度下。杰出的结果发表在2019年5月16日由英国皇家化学学会出版的 Journal of Material Chemistry – A上。迄今为止,由空位控制的具有厚鲱鱼骨结构域的GeTe增强了热电性能,超过已报道的60%。 据报道,一种高度可重复的样品制备方法,用于制备呈菱面体结构的纯GeTe,而不会转化为高达约500 oC的立方结构,显示出对Ge空位水平和相应的人字形微区的控制。通过采用可逆的原位路线调整Ge的空位水平,可以在约500 oC的高温(HT)下将GeTe粉的热电品质因数(ZT)从〜0.8提高到1.37。可控制和可复制的。
    簡要記述(英):For the first time Dr Raman Sankar group have reported the Ge vacancy control evidence with the help of In situ TEM analysis, Also for the first time have stabilized the GeTe phase in rhombohedral at higher temperature ~ 500 oC. The prominent results were published in Journal of Material Chemistry – A, published by Royal Society of Chemistry on May 16th 2019. Vacancy controlled GeTe with thick herring bone domains have enhanced the thermoelectric performance more than 60 % of the reported, up to date.A highly reproducible sample preparation method for pure GeTe in a rhombohedral structure without converting to the cubic structure up to ~ 500 oC is reported to show control of the Ge-vacancy level and the corresponding herringbone-structured micro domains. The thermoelectric figure-of-merit (ZT) for GeTe powder could be raised from ~ 0.8 to 1.37 at high temperature (HT) near ~ 500 oC by tuning the Ge-vacancy level through the applied reversible in situ route, which made it highly controllable and reproducible.


個人資料維護 | 著作目錄維護同步更新 | 最後更新日期 : 2022-12-01
2
Back To Top