余海禮 / 兼任研究員

pi_image

連絡資訊

學歷

  • 美國匹茲堡大學博士

秘書

沈彩雲 / 886-2-2789-8386

samcy[at]phys.sinica.edu.tw

研究興趣

  • 場論及宇宙論
  • 粒子物理
  • 非平衡物理
  • 數位宇宙論及物理

獎項及殊榮

(1) 國內學術研究獎項 2016 「第八屆吳大猷科學普及著作獎」銀籤獎

經歷

  • 本所研究員
  • UCLA訪問教授
  • SLAC訪問學者
  • 本所副研究員
  • 中原大學副教授
  • 英國修咸頓大學博士後研究

學術著作

期刊論文

  • [1]     Eyo Eyo Ita III, Chopin Soo and Hoi Lai Yu, 2021, “Intrinsic time gravity, heat kernel regularization, and emergence of Einstein’s theory”, 2021 Class. Quantum Grav. 38 035007, 38, 035007.

  • [2]     Eyo Eyo Ita III, Chopin Soo and Hoi Lai Yu, 2018, “Gravitational waves in Intrinsic Time Geometrodynamics”, Eur.Phys.J.C 78 (2018) 9, 723, 78(9)-723.

  • [3]     Eyo Eyo Ita lll, Chopin Soo and Hoi-Lai Yu, 2018, “Cosmic time and reduced phase space of general relativity”, Phys.Rev.D 97 (2018) 10, 104021, D97(10), 104021.

  • [4]     H Y Cheng, C. Y. Cheung, G. L. Lin, Y. C. Lin, T. M. Yang, H. L. Yu,, 2016, “Heavy-Flavor-Conserving Hadronic Weak Decays of Heavy Baryons”, JOURNAL OF HIGH ENERGY PHYSICS, 03, 028. (SCIE) (IF: 5.81; SCI ranking: 17.2%)

  • [5]     Eyo Eyo Ita III, Chopin Soo and Hoi-Lai Yu, 2015, “Intrinsic Time Quantum Geometrodynamics”, Prog. Theor. Exp. Phys., 083E01. (SCIE) (IF: 2.572; SCI ranking: 43%,48.3%)

  • [6]     Chopin Soo and Hoi-Lai Yu, 2015, “New Commutation Relations for Quantum Gravity”, Chinese J. Phys., 53卷,110106-1. (SCIE) (IF: 3.237; SCI ranking: 33.7%)

  • [7]     Chopin Soo and Hoi Lai Yu, 2014, “General Relativity without paradigm of space-time covariance, and resolution of the problem of time”, Progress of Theoretical and Experimental Physics, 013E01. (SCIE) (IF: 2.572; SCI ranking: 43%,48.3%)

  • [8]     Niall O ́ Murchadha, Chopin Soo, Hoi Lai Yu, 2013, “Intrinsic time gravity and the Lichnerowicz-York equation”, CLASSICAL AND QUANTUM GRAVITY, 30, 095016. (SCIE) (IF: 3.528; SCI ranking: 36.8%,30.2%,47.1%,31%)

  • [9]     Chopin Soo, Jinsong Yang and Hoi-Lai Yu, 2011, “New formulation of Horava-Lifshitz quantum gravity as a master con- straint theory”, PHYSICS LETTERS B, 701, 275. (SCIE) (IF: 4.771; SCI ranking: 26.5%,21.1%,24.1%)

  • [10]     Jen-Tsung Hsiang, L. H. Ford, Da-Shin Lee and Hoi-Lai Yu, 2011, “Quantum Modi cations to Gravity Waves in de Sitter Spacetime”, PHYSICAL REVIEW D, 83, 084027. (SCIE) (IF: 5.296; SCI ranking: 22.1%,20.7%)

  • [11]     C.H. Chou and H.L. Yu, 2010, “Digital Origin of Cosmic In ation”, MODERN PHYSICS LETTERS A, 25, 1483. (SCIE) (IF: 2.066; SCI ranking: 55.9%,32.7%,52.6%,62.1%)

  • [12]     Chung-Hsien Chou, Chopin Soo, Hoi-Lai Yu, 2007, “Black holes and Rindler superspace: Classical singularity and quantum unitarity”, PHYSICAL REVIEW D, 76, 084004. (SCIE) (IF: 5.296; SCI ranking: 22.1%,20.7%)

  • [13]     Chou CH, Tung RS and Yu HL, 2005, “Origin of the Immirzi parameter”, PHYSICAL REVIEW D, 72((6): Art. No. 064016). (SCIE) (IF: 5.296; SCI ranking: 22.1%,20.7%)

  • [14]     Yu HL, 2003, “Consistent factorization and twist-3 contributions to the polarized nucleon structure function g(2)(x, Q(2))”, INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 18(8), 1469-1472. (SCIE) (IF: 1.381; SCI ranking: 78.9%,79.3%)

發現與突破

  • [1]     西元年:2013
    研究人員(中):余海禮
    研究人員(英):YU, HOI-LAI, Chopin Soo
    研究成果名稱(中):演化的內藴時間,LY方程
    研究成果名稱(英):Intrinsic time gravity and the Lichnerowicz-York equation
    簡要記述(中):我們提出從共軛的動量 及度規 中分離岀一個可作為一切演化的內藴 (intrinsic) 時間及其共軛能量後,GR只雖要動量約束,便能把動力參數約化到只剩2個自由度,剛好是重力的自由度數目。這樣一來GR原本的哈密頓密度可寫成 .
    量子重力便可得岀 Schrodinger方程,這是百年來研究者首次能推導一次時間微分的量子重力方程。我們的量子化方案一方面改變了研究者對GR的了解,一方面提出一具體可行的量子重力方案,進一步推廣GR加入一致的可重整化6維算子。

    簡要記述(英):We investigate the the effect on the Hamiltonian structure of general relativity of choosing an intrinsic time to fix the time slicing. 3-covariance with momentum constraint is maintained, but the Hamiltonian constraint is replaced by a dynamical equation for the trace of the momentum. This reveals a very simple structure with a local reduced Hamiltonian. The theory is easily generalised; in particular, the square of the Cotton-York tensor density can be added as an extra part of the potential while at the same time maintaining the classic 2 + 2 degrees of freedom. Initial data construction is simple in the extended intrinsic time formulation; we get a generalised Lichnerowicz- York equation with nice existence and uniqueness properties. Adding standard matter fields is quite straightforward.
    主要相關著作:
    Niall O ́ Murchadha, Chopin Soo, Hoi Lai Yu, 2013, “Intrinsic time gravity and the Lichnerowicz-York equation”, CLASSICAL AND QUANTUM GRAVITY, 30, 095016. (SCIE) (IF: 3.528; SCI ranking: 36.8%,30.2%,47.1%,31%)


個人資料維護 | 著作目錄維護同步更新 | 最後更新日期 : 2023-03-29
2
Back To Top