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We compute the entropic interactions between two colloidal spheres immersed in a dilute suspen-
sion of semi-flexible rods. Our model treats the semi-flexible rod as a bent rod at fixed angle, set by
the rod contour and persistence lengths. The entropic forces arising from this additional rotational
degree of freedom are captured quantitatively by the model, and account for observations at short
range in a recent experiment. Global fits to the interaction potential data suggest the persistence
length of fd-virus is about two to three times smaller than the commonly used value of 2.2 µm.
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Colloidal dispersions exhibit a fascinating range of
equilibrium and non-equilibrium structures, and they
have important impact on our daily lives [1]. The inter-
actions between suspension constituents determines the
stability of the dispersion against flocculation, and the
phase behavior of the colloid. Quantitative models and
measurements of these interactions test our basic under-
standing about these systems, and enable experimenters
to better control suspension behaviors and properties. In
this paper we focus on a particular class of entropic inter-
action, exploring the forces between spheres in a suspen-
sion of rodlike particles. This system class has produced
a variety of interesting phases [2, 3, 4], and has stimulated
several theoretical models [5, 6, 7, 8, 9] and a measure-
ment [10] of the rod-induced depletion interaction.

The depletion attraction between two spheres im-
mersed in a dilute suspension of thin rods of length, Lc,
was first considered by Asakara and Oosawa [11]. Their
most important physical insight was that rods in sus-
pension gain both translational and rotational entropy
when the sphere surfaces come within Lc of one another.
Subsequent theories computed the attraction more ac-
curately within the Derjaguin approximation [6, 7] and
beyond [5]. However, in many practical scenarios the
rods are not rigid, and current theories do not account
for the flexibility of the rods. Indeed, flexibility effects
can be important as evidenced by a recent interaction
measurement [10] of micron diameter spheres in suspen-
sions of fd-virus; in this case systematic deviations be-
tween experiment and “rigid-rod” theories were found at
short-range, and were suggested to arise as a result of
the flexibility of the fd-virus. Flexible or bent rods have
an additional degree of freedom: the rotation about their
central axis. As the spheres get closer, this degree of free-
dom is depleted, the system entropy increases, and the
sphere interactions become even more attractive.

A quantitative model for this observation is still lack-
ing, and indeed a complete theory of semi-flexible rods
near surfaces remains a difficult task. In this paper, we
introduce a simple model to compute the depletion po-
tential between two spheres in a dilute solution of semi-
flexible rods. We use the model to quantitatively explain
the experiments of Ref. [10]. The model accounts for

the entropic effects of flexibility at short-range, and pro-
vides an accurate fit of the measured interaction poten-
tials. The model also provides a means to extract the
persistence length ℓp and the contour length Lc of the
suspended semi-flexible rods from interaction potential
data. Global fitting of the data suggests that the per-
sistence length of fd-virus is two to three times smaller
than the commonly used value of 2.2 µm [12].

Our model relies on the assumption that if the rods are
sufficiently stiff, they may be accurately approximated by
two rods of length L = Lc/2, attached together at a fixed
angle π − 2α, as shown in Fig. 1. The angle α may be

estimated by α = cos−1 R/Lc, where R ≡
(

〈R2〉
)1/2

is
the average end-to-end distance. R is related to ℓp and
Lc by [13]

〈R2〉 = 2Lcℓp + 2ℓ2
p

(

e−Lc/ℓp − 1
)

. (1)

This approach simplifies the problem, while still captur-
ing the essential physics. In particular, we show that the
part of the depletion potential associated with new rota-
tional degrees of freedom is short ranged, i.e. of order
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FIG. 1: (a) Typical configurations of a semi-flexible rod whose
contour length Lc is comparable to the persistence length ℓp.
(b) Our approximation of semi-flexible rod in (a); two stiff
rods of length L attached at a fix angle. (c) A bent rod near
a flat wall and (d) confined between two walls.
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the bent rod width, W = L sinα. Importantly, when W
is significantly less than the particle diameter, the rota-
tional part of the depletion interaction can be treated
within the Derjaguin approximation [1].

In the presence of repulsive walls (see Fig. 1), the
rotational degrees of freedom of a bent rod are restricted.
Consider a bent rod with one end displaced by z from
the wall and with orientation (û, φ). The probability
of finding a rod in such a configuration is given by the
Boltzmann factor: f(r, û, φ) ∝ exp[−βUe(r, û, φ)], where
β = 1/kBT , kB is the Boltzmann constant, and T is the
temperature. The hard wall potential Ue is infinite if
any part of the rod touches the wall and is otherwise
zero. We consider the case where the concentration of
the rods is sufficiently low so that the thermodynamics
are well characterized by the Grand potential of an ideal
gas of rods

Ω = −NkBT

∫

d3
r

∫

d2
u

∫

dφ f(r,u, φ). (2)

Here N is the number of rods. We define the surface
tension by the difference

∆γ =
Ω − Ω0

S

= ρ0kBT

∫

d3
r

S

∫

d2
u

4π

∫

dφ

2π

[

1 − e−βUe(r,u,φ)
]

.(3)

Here ρ0 is the average density of the rods and S is the
surface area of the wall. To compute the integral in Eq.
(3), we enumerate all the configurations of the bent rod
just touching the walls.

Let us first consider a single flat wall, as shown in Fig.
1. There are three regions to consider: (i) 0 < α < π/4,
(ii) π/4 < α < π/3, and (iii) π/3 < α < π/2. For
α < π/4, we observe that when θ1(z, α) < θ < θ2(z, α),
for

θ1(z, α) = cos−1
[ z

2L cosα

]

(4)

θ2(z, α) = α + cos−1 z/L, (5)

the rotation of the rod about its symmetry axis is re-
stricted to φa < φ < 2π − φa, where

φa(z, θ) = cos−1
[ z

L sinα sin θ
− cot θ cotα

]

. (6)

π/2α

β∆γ
ρ0L
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FIG. 2: The surface tension of a bent rod in the presence of
a flat plane wall.

Using this construction, the surface tension is

β∆γ(α)

ρ0
=

L cosα

2
+

L

2π

∫ sin 2α

0

dx

∫ θ2

θ1

dθ sin θ φa(x, θ),

(7)
where x = z/L. Similarly, for π

2 > α > π
4 , we have

β∆γ(α)

ρ0
=

L cosα

2
+

L

2π

∫ sin 2α

0

dx

∫ θ2

θ1

dθ sin θ φa(x, θ)

+
L

2π

∫ 1

sin 2α

dx

∫ θ2

α−cos−1 x

dθ sin θ φa(x, θ). (8)

In Fig. 2, we plot ∆γ(α) as a function of α. Note that
the limiting values, ∆γ(0) = 1

2ρ0kBTL and ∆γ(π/2) =
1
4ρ0kBTL, agree with previous results [14].

We now turn to the calculation for two walls (see Fig.
1). Since the rods are stiff and α is small in the exper-
iment of interest, we focus on the case where α < π/4.
For a given separation of the walls d, we divide the inter-
val 0 < z < d/2 into different regions, wherein θ1, θ2, θ3,
and θ4 take on different values. The new angles are

θ3(z, α) = π − α − cos−1

[

d − z

2L

]

(9)

Bent Rod with α=

Straight Rod R=2Lcosα

Straight Rod R=2L

βV(d)π
ρ0L π

7

a

Bent Rod with α=

Straight Rod R=2Lcosα
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b

FIG. 3: The depletion interaction V (d) [Eq. (12)] between
two planar walls (the solid curve) mediated by a bent rod of
contour length Lc = 2L with (a) α = π/7 and (b) π/5. The
dashed curve is the depletion interaction of a straight rod with
R = 2L cos α. At large distances, they show little difference
but the restriction on the additional degree of freedom at
shorter distances gives rise to a stronger attraction in V (d),
which is bounded below by the potential of a straight rod
of R = 2L (the dotted line). This is qualitatively the effect
observed in experiment of Ref. [10] (See also Fig. 4).



3

θ4(z, α) = π − cos−1

[

d − z

2L cosα

]

. (10)

If θ1 < θ < θ2 and θ2 < θ3, φ is restricted to φa < φ <
2π−φa. If θ3 < θ < θ4, φ is restricted to 0 < φ < π −φb

and π + φb < φ < 2π with

φb(z, θ) = cos−1

[

1 −
L cos(π − θ − α) − (d − z)

L sinα sin(π − θ)

]

.

(11)
When θ2 > θ3, φ is further restricted to φa < φ < π −
φb and π + φb < φ < 2π − φa if θ3 < θ < θ2. Thus,
the depletion potential per unit area defined by V (d) =
∆γ[d, α] − ∆γ[∞, α] is

V (d) = −ρ0kBT

[

L cosα

(

1 −
d

2L cosα

)2

+ Γ(d, α)

]

,

(12)
where

Γ(d, α) =
1

π

∫ L sin 2α

0

dz

∫ θ2

θ1

dθ sin θ φa(z, θ; α)

−
1

π

∫

′

dz

∫

′

dθ sin θ φa(z, θ; α)

−
1

π

∫

′

dz

∫

′

dθ sin θ φb(z, θ; α). (13)

Here ′ indicates integrations over phase space restricted
to the allowed values. Fig. 3 depicts the depletion poten-
tial between two walls for different α. At large distances
the potential is determined by the “end-to-end” distance
R of the rod. At short distances the rotational degree of
freedom becomes important and increases the attraction
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FIG. 4: Interaction potential between a pair of 1.0 µm sil-
ica spheres in a suspension of fd virus with concentration
0.67 mg/ml. The dotted (dashed) lines are generated by the
YJM model with R = Lc = 900 nm (R = 740 nm; Lc = 900
nm). The solid lines are generated by Eq. (14) with R = 740
nm and Lc = 900 nm. Clearly, the agreement of experimen-
tal data and our model which includes the addition rotational
degree of freedom of a bent rod is excellent. The dash-dotted
vertical line indicates W = 0.23 µm.

between walls. The potential is bounded below by the
potential of a straight rod with length 2L. Although our
calculation has been done for two walls, we expect the
same qualitative features to hold for two spheres.

V (d) can be written as a sum of 2 pieces. The first term
is the depletion potential of a straight rod with length
R = 2L cosα [14]. The second term depends only on the
additional rotational degree of freedom of the bent rod.
Moreover, the range of Γ(d, α) is of order of the width of
the bent rod, W = L sinα, which is small compared to
the sphere radius in Ref. [10]. These observations sug-
gest that to approximate the depletion potential for two
spheres, the latter term may be treated in the Derjaguin
approximation, while the first term replaced by the YJM
rigid-rod model [5]. Thus, we write

βUs(h) = −ρ0aR2

[

K

(

h

R
;

a

R

)

+
π

R2

∫

∞

h

dxΓ(x, α)

]

,

(14)
where a is the sphere radius and h their closest surface
separation. K(h/R; a/R) is the potential between two
spheres due to a straight rod of length R, which reduces
to the Derjaguin expression KD(h/R) = π

6 (1 − h/R)3 in
the limit a/R ≫ 1 [5].

Fig. 4 displays a typical experimental data set of Ref.
[10] with three different models – (i) the YJM model
(dotted line), whose potential is given by the first term
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FIG. 5: Interaction potential between pairs of (a) 1.0 µm and
(b) 1.6 µm silica spheres in a suspension of fd virus with differ-
ent concentration. The solid lines are generated by Eq. (14),
with best fit parameters that give smallest χ2.
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in Eq. (14) with R = 900 nm, the contour length of fd,
(ii) the YJM-KP model (dashed line), whose potential is
given by the first term in Eq. (14) with R = 740 nm,
and (iii) the bent rod model (solid line), Us(h) in Eq.
(14) with R = 740 nm and Lc = 900 nm. The circles are
experimental data for 1.0 µm diameter silica particle in
a dilute (0.67 mg/ml) solution of fd virus. The theory
curves are computed with no free parameters and are
then numerically blurred to account for the instrument’s
spatial resolution (see Ref. [10]). Clearly, our model gives
the best fit to the experimental data. In particular, both
YJM and YJM-KP models, while having approximately
the right magnitude and shape, fail to account for the
overall curvatures of the experimental curve. Further,
while the YJM-KP model agrees with most of the data
at large h, our model clearly accounts for the depth of
the measured potential near contact.

In order to explore the best fits more quantitatively,
we computed the χ2 value of our models for all data sets
with R ranging from 720 − 825 nm and Lc = 880, 900,
and 920 nm. If a fixed concentration (measured experi-
mentally) is assumed, χ2 is smallest for R = 780 nm and
Lc = 920 nm. If the concentration is allowed to vary
within its ±5% experimental error, then χ2 is small-
est for R = 740 nm and Lc = 900 nm. Fig. 5 shows
best fits for each of concentration. Note that the width
W ∼ 200 nm, is smaller than the radius of the colloidal
spheres. This justifies a posteriori the Derjaguin approx-
imation made in Eq. (14). Furthermore, we can estimate
ℓp using Eq. (1) and the values for R and Lc above, yield-

ing ℓp ≃ 850 nm (fixed concentration) and ℓp ≃ 680 nm
(variable concentration). Our results for Lc of fd are con-
sistent with the literature, i.e. 850 nm < Lc < 920 nm
[15]. However, our values for ℓp should be contrasted to
the often-quoted value, ℓp = 2.2 µm [16, 17]. The lat-
ter is based on a fitting of dynamic light scattering data
with theoretical models [17, 18], whose assumptions may
well be questioned in the light of our results. Indeed,
smaller values of ℓp have also been reported based on dy-
namic structure factor models of semi-flexible filaments
[19], and using electron microscopy [20].

We have presented a simple analytical model for the
depletion interaction between two spheres mediated by
semi-flexible rods, and demonstrated its quantitative
agreement with experimental data. Our theoretical
model combined with interaction measurements provides
a basis for extracting the persistence length of a semi-
flexible rod.
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