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Abstract

The paper describes an alternative approach to forecasting finan-
cial time series based on entropy (C. A. Zapart, On entropy, financial
markets and minority games, Physica A: Statistical Mechanics and
its Applications, 388 (7) 2009, pages 1157-1172). The research builds
upon an earlier statistical analysis of financial time series with Shannon
information entropy, published in (Molgedey, L and Ebeling, W, 2000,
“Local order, entropy and predictability of financial time series”, Euro-
pean Physical Journal B - Condensed Matter and Complex Systems).
A novel generic procedure is proposed for making multistep-ahead pre-
dictions of time series by building a statistical model of entropy. The
approach is applied to the prediction of Japanese Yen/US dollar in-
traday currency exchange time series. The study also reinterprets the
Minority Game (Moro E, 2004, “The Minority Game: an introduc-
tory guide”, Advances in Condensed Matter and Statistical Physics)
within the context of physical entropy, and uses models derived from
minority game theory as a tool for measuring the entropy of a model
in response to time series. This entropy conditional upon a model
is subsequently used in place of information-theoretic entropy in the
proposed multistep prediction algorithm.

Subsequently the paper suggests using alternative entropy measures
such as author’s NeuroEntropy or Approximate Entropy, introduced in
(S Pincus, Approximate entropy as a measure of system complexity,
Proceedings of National Academy of Sciences USA 1991 (88) pages
2297-2301) and (S Pincus, Irregularity, volatility, risk and financial
market time series, Proceedings of National Academy of Sciences USA
2004 101 (38) pages 13709-13714). Exponentially-Weighted Smooth
Approximate Entropy is proposed to make it more sensitive to recent
data.

1 Introduction

In many areas of science and engineering a common recurring task arises:
forecasting ∆T steps ahead an observed time series x1, x2, . . . , xN of some
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physical phenomena. Usually the process may involve finding a linear or
non-linear regression function that takes as arguments p past values of x(t).
However, in cases where observations come from financial markets standard
statistical techniques fail to capture sufficiently the underlying time series
generator and its often non-stationary nature. This is evidenced by poor out-
of-sample performance of models yielding apparently good in-sample fits [1].
The inadequacy of the existing approaches has been mentioned before in for
example [2, 3], and some explanation of the perceived failures of the status
quo has been contained in the works of Mandelbrot [4]. One of the reason for
the failure is that established statistical time series forecasting models, both
linear regression and non-linear neural networks, do not take into account
the physical generative aspect of financial time series. Financial time series
arise directly as a result of interactions between a large number of traders
which provides a justification for applying various tools of statistical physics
to computational finance [5, 6, 7]. As a consequence, from a physics point
of view a much more attractive proposition is to try to approximate the
underlying processes responsible for generating the time series in the first
place.

The paper describes concisely an entropy-based approach to forecasting
financial time series that can be seen in full detail in [7]. The indirect
forecasting method is applied to multistep-ahead prediction of the Japanese
Yen/US Dollar intraday currency futures data.

2 Forecasting with Entropy

We assume that there are N observations x1, x2, . . . , xN available from some
physical process. The goal of the analysis is to produce an estimate for the
change xt+∆T −xt, where t ∈ I denotes the current time step and ∆T is the
forecasting horizon. The proposed algorithm can be outlined in the following
sequence of steps:

(1) start with an observation sequence leading up to xt

⇓
(2) extract entropy time series H(t) from xt

⇓
(3) assume a statistical model for entropy

⇓
(4) simulate possible future paths of xt+k ∆T steps ahead

⇓
(5) measure entropy for the simulated paths

⇓
(6) discard paths inconsistent with entropy model identified in (3)

⇓
(7) formulate a forecast for xt+∆T based on the retained paths
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With respect to estimating entropy H(t) of a given time series, a good
starting point might be the Shannon n-gram (block) entropy suggested in [5,
6]. In a very general case, a given sequence of N observations x1, x2, . . . , xN

is first partitioned into subvectors of length L with an overlap of one time
step, which are further divided into subtrajectories (delay vectors) of length
n < L. Real-valued observations xi ∈ R are discretised by mapping them
onto λ non-overlapping intervals A{λ} (xi). The precise choice of those in-
tervals (also called states) denoted by A{λ} would depend on the range of
values taken by xi

1. Hence a certain subtrajectory x1, x2, . . . , xn of length n

can be represented by a sequence of states A
{λ}
1 , A

{λ}
2 , . . . , A

{λ}
n . The authors

then define the n-gram entropy (entropy per block of length n) to be

Hn = −
∑

Ω

p
(

A
{λ}
1 , A

{λ}
2 , . . . , A{λ}

n

)

logλ p
(

A
{λ}
1 , A

{λ}
2 , . . . , A{λ}

n

)

. (1)

In the above equation the summation is done over all possible state sequences

Ω ∈ {A{λ}
1 , A

{λ}
2 , . . . , A

{λ}
n }. The probabilities p

(

A
{λ}
1 , A

{λ}
2 , . . . , A

{λ}
n

)

are

calculated based on all subtrajectories x1, x2, . . . , xn contained within a
given subvector of the length L. Predictability of the time series, expressed
as an uncertainty of predicting the next step given the past n states A{λ},
is given by a conditional (dynamic) entropy (or differential block entropy)

hn = Hn+1 − Hn. (2)

In the actual analysis [5, 6] of financial time series, instead of using the
dynamic entropy as per equation (2) the authors use a local value of the
uncertainty defined [5] as

h(1)
n = −

∑

Ω′

p
(

A
{λ}
n+1|A

{λ}
1 , A

{λ}
2 , . . . , A{λ}

n

)

logλ p
(

A
{λ}
n+1|A

{λ}
1 , A

{λ}
2 , . . . , A{λ}

n

)

,

(3)

where Ω′ ∈ {A{λ}
n+1} enumerates all possible λ states for A

{λ}
n+1. As noted

in [5] h
(1)
n satisfies

0 ≤ h(1)
n ≤ 1. (4)

At first the local dynamic entropy given by equation (3) will be used in this
paper. Subsequently the information theoretic entropy will be replaced by
a physical entropy extracted from minority game theory models [8].

1In subsequent sections financial time series will be used. In case of modelling financial
returns the simplest choice of states A

{λ} can be made by setting λ = 2. Then A
{up}

corresponds to positive returns and A
{down} would represent negative returns.
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In order to make predictions over a given time horizon ∆T all possible
λ∆T future paths ζk = {xk

N+1, x
k
N+2, . . . , x

k
N+∆T }, k = 1 . . . λ∆T are gener-

ated assuming an equal probability2 of occurrence of each state A{λ}. The
simulated paths are appended to the end of the original sequence {xi}. As-
suming the last available observed entropy to be HN , for each path ζk one
can note the corresponding entropy sequence

HN → Hk
N+1 → Hk

N+2 → . . . → Hk
N+∆T . (5)

The probability of the path ζk can be linked to the probability of encoun-
tering such an entropy sequence:

P (ζk) =

∆T
∏

i=1

P
(

Hk
N+i|Hk

N+i−1, H
k
N+i−2, . . .

)

, (6)

with the starting point Hk
N = HN . In the simplest case, for estimating condi-

tional probabilities P
(

Hk
N+i|Hk

N+i−1, . . .
)

the following maximum-likelihood
procedure is suggested. As entropy takes on values between 0 and 1 a simple
logistic regression model of the order p is constructed to provide one-step
ahead predictions of Hk

N+i:

Ĥk
N+i =

1

1 + exp(−φ)
(7)

φ = w0 +

p
∑

j=1

wjH
k
N+i−j . (8)

For more complex entropy time series one could also consider using a com-
mittee of non-linear multilayer feedforward neural networks [9, 10]. As pre-

diction errors are bounded by
∣

∣

∣
Ĥk

N+i − Hk
N+i

∣

∣

∣
≤ 1, the following formulæ

derived from a β probability density function is used to model the condi-
tional probability from equation (6):

P
(

Hk
N+i|Hk

N+i−1, . . .
)

=
ǫα−1(1 − ǫ)β−1

B(α, β)
(9)

ǫ =
Ĥk

N+i − Hk
N+i + 1

2
(10)

with optimum parameters α̂ and β̂ obtained by maximising the likelihood
of observing the entropy time series H(t):

{α̂, β̂} = argmax
α>0,β>0

t
∏

j=p+1

P (Hj |Hj−1, Hj−2, . . . , Hj−p) . (11)

2The equal probability follows from the maximum entropy principle.
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The reason for choosing a β probability density function in equation (9) is
purely pragmatic. A β distribution can accommodate a range of empirical
histograms obtained for the residual errors ǫ. To further simplify early
experiments, a normal distribution

P
(

Hk
N+i|Hk

N+i−1, . . .
)

=
1

σ
√

2π
exp

(

−(ǫ − µ)2

2σ2

)

(12)

has also been used to fit even simpler residual errors

ǫ =



w0 +

p
∑

j=1

wjH
k
N+i−j



 − Hk
N+i. (13)

For the entropy modelling purposes only the original observations x1, x2, . . . , xN

are used together with their corresponding dynamic entropies. There is
no one defined way of modelling the entropy with regression models. The
choice, dependent on the actual entropy time series, has to be made on a
case-by-case basis.

Let x(ζk) denote the final simulated observation xk
t+∆T coming from the

kth ζk path. A pseudo-forecast3 of xt+∆T is given by

µ = E
[

xk
t+∆T

]

=

∑

k P (ζk)x(ζk)
∑

k P (ζk)
(14)

with the corresponding variance

σ2 = Var
(

xk
t+∆T

)

=

∑

k P (ζk) (x(ζk) − µ)2
∑

k P (ζk)
. (15)

Effectively the equations (14) and (15) discard paths ζk that are inconsis-
tent with an identified statistical model for the entropy H(t). The approach
replaces setting up a regression model for the observations {xi} with per-
forming linear (or non-linear) regression on the entropy time series and sim-
ulating the future evolution of the system alongside all possible observation
trajectories.

3 Demonstration

The main reason for suggesting such an unusual entropy-based forecasting
method was (perhaps “deemed to fail” from the beginning) an attempt to
predict financial time series. The following two subsections show early re-
sults obtained using the two types of entropy: the local dynamic entropy
given by equation (3) and a physical entropy extracted from minority game
theory models.

3This is not a proper forecast of xt+∆T since the original time series xt has been mapped
onto λ discrete states A

{λ}. For small λ the transformation removes much of the vital
information about the magnitude of each move.
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Figure 1: Intraday GLOBEX foreign exchange futures data for the Japanese
Yen/US Dollar sampled at a 120 minute interval (left) with the correspond-

ing entropy h
(1)
n (right). The time series starts on 2007/01/02; only the first

1000 data points are shown.

3.1 Information-theoretic entropy

The analysis was performed on intraday Japanese Yen/US Dollar currency
futures data collected from GLOBEX between 2nd January and 31st October
2007. The first 1000 prices, sampled at regular two hour intervals, are shown
in figure (1). The same figure also shows the corresponding local entropy

h
(1)
n . For simplicity only two states are used with λ = 2. The local dynamic

entropy h
(1)
n was estimated using windows (subvectors) of length L = 100.

The observation time series was first transformed into a series of differences
{xi − xi−1} before being mapped onto two binary states: A{1} = “up′′

and A{2} = “down′′, which corresponds to the differenced series taking on
either positive or negative values. Since at 100 time steps the estimation
windows for n-gram (block) entropies are relatively short, accordingly short
subtrajectories of length n = 3 were selected in order to reduce frequentist
probability estimation errors associated with small sample sizes. As the
currency exchange time series does not exhibit a strong exponential growth
there was no need for taking logarithmic price changes. Instead normal
differences {xi − xi−1} were calculated.

The plot of the entropy time series resembles the one extracted in [5]
from the Dow Jones Industrial Average stock market index with λ = 3. The
system spends most of the time near the maximum entropy state of 1.0, only
very briefly visiting low entropy configurations. The distribution of entropy

values h
(1)
n (t) has been fitted with a two-component β-mixture model

pdfH(x) =
2

∑

i=1

πi
xαi−1(1 − x)βi−1

B(αi, βi)
, (16)

where the mixing coefficients πi are probabilities satisfying 0 ≤ πi ≤ 1,
∑2

i=1 πi =
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1. The maximum likelihood EM (Expectation-Maximisation) algorithm [11]
coupled with Simulated Annealing [12] (used in the M-step of the EM algo-
rithm) was employed to find the optimum parameters {π, α, β}. After fitting
the most probable value (the peak of the probability density function) for

h
(1)
n was identified at 0.98 which is very close to the maximum entropy value

of 1.0. At this point it is worth going back to statistical physics and recall
that:

1. in a disordered state of maximum entropy a system loses memory of
past events

2. literature ([3], [5], [6]) suggests existence of only limited pockets of
predictability in real financial time series, to be found when entropy
reaches temporary troughs.

In other words, although predicting financial time series may be very diffi-
cult most of the time, there may exist for very limited periods of time some
occasional trading opportunities. These opportunities would typically be
associated with low entropy states which do not persist for long, as can be
observed in figure (1). Therefore it may be worth trying to exploit the mean-
reversion exhibited by entropy time series through the concept of a binomial

entropy tree, shown in figure (2). Starting from a low value of entropy h
(1)
n

all possible future paths ζk of the price time series xt are simulated over a
time horizon ∆T and entropy is calculated. The mainstream econometrics
modelling framework (computational finance) assumes that prices of finan-
cial assets follow a stochastic Random Walk [13] process. As such, after
adjusting for the drift component and a risk free rate, at any given time
step financial time series have an equal probability of moving up or down.
Therefore any random path of length ∆T would be equally probable. How-
ever, according to entropy mean reversion, depending on the current value
of entropy certain future price trajectories — those leading to yet lower net
entropy over the time horizon ∆T — are deemed ”physically impossible”
(or statistically very unlikely). Therefore they could be excluded from the
Random Walk, which results in a “biased” Random Walk. Price forecasts
are given by a distribution of future prices from the modified (biased) Ran-
dom Walk that excludes low probability (“physically impossible”) paths, as
per equations (14) and (15). The effective forecasting horizon ∆T is it-
self governed by the relaxation time τ after which the entropy reverts to
mean. Following a temporary trough in entropy it does not seem reasonable
to be seeking forecasts long after the system has returned to its natural
maximum entropy state. For relatively short relaxation times τ it is suffi-
cient to use a binomial entropy tree instead of Monte Carlo simulations to
simulate possible paths ζk. If the number of possible paths λ∆T is large a
binomial tree becomes impractical. In general, for more complex cases with
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Figure 2: A conceptual binomial entropy tree corresponding to λ = 2, start-
ing from a low value of H(t). The paths k for which the net entropy ∆Hk is
negative are deemed physically impossible (highly improbable), hence they
are disallowed (assigned a very low probability). Labels “up” and “down”
refer to possible up and down moves in the foreign exchange rate (or share
price) xt, not the entropy H(t). The net entropy ∆H is measured along all
possible future movements of a financial asset.
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λ > 2 it may be beneficial to consider simulating an entropy-adjusted Ran-
dom Walk4. Taking a lead from econophysics, a power-law distribution [14]
could be used to model logarithmic returns of financial time series. Then
paths ζk drawn in a Monte Carlo simulation would approximate possible
trajectories a financial asset can follow between timesteps t and t+∆T . Af-
ter discretely mapping ζk onto λ states A{λ} the entropy-based forecasting
procedure would continue.

The aforementioned Japanese Yen/US Dollar time series contains 2544
samples of which the first 1000 quotes are used to initialise the entropy model

and train a committee of small neural networks for modelling h
(1)
n . For those

1000 points, shown in figure (1), the average entropy relaxation time 〈τ〉 has
been estimated at 3 steps. In 95% of the cases the entropy reverts to mean
within 7 time steps. The remaining 1544 prices serve as an out-of-sample
test set, with the forecasting horizon accordingly set to ∆T = 7 steps.
The overall out-of-sample forecasting accuracy without applying any trading
filters is just under 52% which is what could be expected from a purely
random coin toss. The figure (3) shows what happens when only the low-
entropy trades are included (the left chart). Improved forecasting accuracy
can be obtained by selecting only forecasts with the largest magnitudes, as
shown in the right chart in figure (3). This is achieved by linearly rescaling
all the forecasts so that they lie within the [−1, 1] interval. Afterwards
a forecasting threshold is applied to the magnitudes of the rescaled model
forecasts given by equation (14). By excluding forecasts with a magnitude
below the forecasting threshold, which is varied between 0 and 1, one can
estimate the forecasting accuracy of the remaining large magnitude (above-
threshold) predictions. To calculate the forecasting accuracy of low-entropy
trades, the forecasts that are taken into account are those where the initial
entropy H(t) (appearing in the left part of figure (2)) lies below an arbitrary
entropy threshold varied between 0 and 1. What is striking is that indeed,
as expected from statistical physics, forecasts initiated in low-entropy states
have a higher than 50% chance of being correct, with the trading accuracy
gradually reverting towards the average 50% after increasing the entropy
cut-off threshold. The accuracy also increases especially for large-magnitude
forecasts. However, these results have to be treated with extreme caution as
the rather high forecasting accuracy has been achieved on very few samples,

for example the number of cases found in the test data where h
(1)
n ≤ 0.5

was only 23. The same pattern of above-average forecasting accuracy for
low-entropy trades is repeated on out-of-sample data in previous years 2006
and 2005 (shown in figure (4)). Taken together, the limited study seems

4The fact that a Random Walk model is considered should not be seen as supporting
its supposed validity in describing the “true” generative model of financial assets. Rather,
it could be used in a Monte Carlo-style fashion to approximate possible future paths of a
financial asset.
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Figure 3: Out-of-sample forecasting accuracy for 120 minutes Japanese
Yen/US Dollar year 2007 futures data. The left plot shows the percentage
of successful forecasts starting from the initial entropy HN below a preset
threshold. The accuracy displayed in the chart to the right depends on
the forecasting threshold applied to the output from equation (14), varied
between 0 and 1.
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Figure 4: Percentage of successful out-of-sample low-entropy forecasts for
years 2006 (left figure, ∆T = 5) and 2005 (right figure, ∆T = 6).

to corroborate conclusions reached by other authors ([3], [5], [6]) dealing
with financial time series in that low entropy regions can be associated with
trading opportunities.

3.2 Minority Games

The previous subsection demonstrated an unusual forecasting technique that
relies on directly extracting local dynamic entropies from the time series
of observations xt. When applied to predicting financial time series the
method showed a weak positive result mostly associated with rare low-
entropy events. In contrast with direct entropy estimation [5, 6], in this
subsection an attempt will be made at using an indirect Boltzmann physi-
cal entropy extracted from minority game theory models in response to the
external time series xt. This will replace the previously used information-

theoretic entropy h
(1)
n .
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Over the past decade there has been considerable interest expressed by
the research community in applying Minority Games to study financial time
series. The use of the Minority Game Theory in financial markets can be
traced back to a seminal paper [15] published in 1997. Readers unfamiliar
with minority games may find the following references [8] and [16] useful. A
more detailed explanation of how to build realistic market models within the
context of Minority Games is provided in [17]. At the root of all minority
game theory models lies a simple observation: for a given level of risk in
financial markets no single investment strategy or a trading system remains
”excessively”5 profitable in the long term. In other words, stock markets
tend to be mean-reverting and exhibit zero-sum game characteristics. As
soon as a highly successful investment strategy is discovered, increasing num-
bers of traders tend to adopt it. When a majority of market participants
start using it, the profitability of such a strategy gradually diminishes. The
only entities that benefit from the profitable strategy are early adopters able
to take advantage of it in early stages when only a small minority of traders
are aware of it. This results in a minority of traders benefiting at the expense
of the majority.

The study published in [7] reinterprets Minority Games within the con-
text of statistical physics using the concept of entropy, and uses it in an
attempt to make practical predictions of financial time series. In most types
of minority games there are N binary computational agents that buy or sell
imaginary shares in a competitive setting. At each time step, of those N
agents N+ will be found placing buy orders and N− will be sellers. From
a physics perspective minority games resemble a spin glass — a disordered
magnetic material with a high level of frustration. By frustration one usually
means the inability of a system to remain in the lowest energetic state. The
“buy” decisions are equivalent to an “up” magnetic spin orientation, and
“sell” operations correspond to the “down” spin. It is possible to estimate
the level of disorder exhibited by such a simple system by defining a Boltz-
mann entropy S = kB lnW , where the state multiplicity W =

(

N
N+

)

is the
number of different realisations of a current state characterised by N+ and
N−. The maximum theoretically allowed entropy value Smax corresponds
to the case N+ = N−. Detailed studies of the internal dynamics of minority
games have been presented before, for instance in ([18],[19]). It is therefore
not the author’s intention to include a similar analysis in this paper. Instead
the current study focuses on the behaviour of entropy when minority game
theory models are presented with real financial time series, and on incor-
porating this entropy within the previously described forecasting approach.
In minority games it is possible to replace the internal binary time series
generated by the game with external real financial time series as demon-

5”Excessive” profits can be thought of as being above the long-term growth rate of the
economy.
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strated in [20]. Agents take trading decisions based on the binary series
ht = 0101101 . . . encoding the past winning groups (“1” for buyers and “0”
for the sellers). The history of real financial time series xt coming, for ex-
ample, from the foreign exchange market, can be transformed into a binary
form according to h(t) = H [xt − xt−1], where H [·] denotes the Heaviside
function, with h(t) then replacing the internal series ht. This is equivalent
to performing a discrete mapping of xt onto states A{λ} with λ = 2 for the
purpose of calculating the Shannon n-gram (block) entropies.

The literature on minority game theory models describes different varia-
tions of minority games. However, in most versions of the game agents take
trading decisions according to some sort of a risk criterion. For example,
a common element of minority models is keeping track of the success rates
for both the binary strategy tables used internally by the agents as well as
the overall prediction accuracies of each agent. During trading agents only
trade if their confidence to trade exceeds a risk threshold. The literature [17]
suggests using two types of thresholds: either based on agent scores or strat-
egy scores that can be used interchangeably. In [7] the following scheme was
adopted. Over a time horizon T = 100 N = 151 agents collect points +1 or
-1 each time they win or lose which then form the confidence to trade mea-
sure c(t). In addition they also keep a separate record of those values of c(t)
measured over a horizon Tc = 100. Individual minimum trading thresholds
rmin are set to µ + λσ where µ = 〈c(t)〉 and σ is the standard deviation of
c(t) calculated over Tc. The parameter λ controls the risk appetite of agents.
Another difference over standard minority games was to try to average out
the effects on recovered entropy of agents using different random strategy
tables. Instead of using a single minority game theory model, the average
entropy extracted from a committee of M models is used with M being as
high as 100. Agents have two distinct random strategy tables and the length
of the global price history set to m = 3.

After experimenting with different values of the risk parameter λ some
very interesting entropy time series have been observed for λ ≈ 3. Due to the
computational cost6 of simulating 100 separate minority games, in the actual
simulation the physical entropy, shown in the next figure (5), was averaged
over only 10 separate games. Prediction results using a long forecasting
horizon ∆T = 20 steps are shown in figures (6), (7) and tables (1), (2). It
can be observed that indeed low entropy regions can be positively associated
with a higher than average probability of directional forecasts being correct.
However, obtaining a certain degree of consistency across the three datasets
seems problematic. Overall, the forecasting accuracy for large-magnitude
trades, shown in figure (7) and table (2), rises well above 50%.

6Although executing standard minority games on modern computers is very fast, the
algorithm described in [7] involves significant overheads to do with simulating multiple
paths, running neural networks and calculating path probabilities. This is carried out in
a hybrid C/C++/Mathematica environment which introduces further overheads.
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Figure 5: In-sample S/Smax entropy time series averaged over 10 games
with a risk level λ = 3.0. The right plot shows a close-up snapshot of the
last 250 points.
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Figure 6: Forecasting accuracy of low-entropy trades using a forecasting
horizon ∆T = 20 steps for years 2005, 2006 and 2007. The bottom right
plot shows a combined accuracy after collating together trades from those
three years. Large fluctuations seen for low values of the entropy threshold
are likely caused by the scarcity of data points in those regions.
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Table 1: The accuracy and number of trades initiated when the entropy is
at or falls below a set threshold (out-of-sample data for the years 2005, 2006
and 2007).

year 2005
entropy threshold 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
accuracy [%] 75 58 62 56 51 49 48 50 51 51
number of trades 4 12 29 71 136 239 363 525 709 999

year 2006

entropy threshold 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
accuracy [%] 67 60 52 57 59 54 52 51 51 51
number of trades 3 5 25 79 144 246 379 522 733 1010

year 2007

entropy threshold 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
accuracy [%] 0 50 55 49 53 51 54 56 55 55
number of trades 2 10 40 78 145 237 328 439 584 837

Table 2: Combined years 2005, 2006 and 2007 out-of-sample forecasting
accuracy and number of trades initiated when the magnitude of the model
forecast is above a set threshold.

combined years 2005, 2006 and 2006
output threshold 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
accuracy [%] 52 53 51 50 51 51 53 55 63 83
number of trades 2846 2153 1663 1229 890 599 386 206 87 12

4 NeuroEntropy

Potential improvements could be brought about by the use of neural net-
works in place of simple binary look-up tables (as suggested in for exam-
ple [21, 22]) and perhaps also by using evolutionary minority games [23]. In
the future research one could examine how these changes affect the entropy
and the overall predictability of financial time series. For example, by tak-
ing advantage of the NVIDIA CUDA/OpenCL GPGPU programming en-
vironment, a new NeuroEntropy model has been developed. NeuroEntropy,
being a form of an entropy-adjusted Random Walk model, can be used as
a forward-looking short-term risk indicator in financial markets. However,
the early version appearing in [7] used binary minority games which ignored
the magnitude of returns in financial time series. This restriction can be
removed by replacing binary agents with real-valued multilayer perceptron
neural networks. Information-theoretic Shannon entropy is derived from a
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Figure 7: Combined years 2005, 2006 and 2007 out-of-sample forecasting
accuracy as a function of the output threshold set between 0 and 1. As the
output threshold is increased the number of samples (shown in table (2))
steadily decreases adversely affecting the accuracy of results.

set of N two-state neural networks using equation 17:

H = −
N

∑

i=1

[P (yi = +1) log P (yi = +1) + P (yi = −1) log P (yi = −1)] (17)

where P (yi = +1) and P (yi = −1) are probabilities of the ith neural net-
work being in the +1 or −1 state. Tsallis or Rényi entropies can also be
used. Figure 8 shows a ∆T = 5 steps ahead reconstruction/prediction of a
discretely-sampled sine function using NeuroEntropy. The subsequent fig-
ure 9 shows an example of an asymmetric forward risk profile yielded by
NeuroEntropy.

Instead of using the Shannon information-theoretic entropy, one could re-
place it with Approximate Entropy, introduced in [24] and [25]. Exponentially-
Weighted Smooth Approximate Entropy has also been developed by the
author to make it sensitive to more recent data.

5 Conclusions

The study represents an imperfect attempt to utilise entropy in the hope of
being able to predict financial time series. An alternative time series fore-
casting method has been demonstrated which relies on building a statistical
model of entropy. Instead of predicting directly the underlying time series
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Figure 8: Toy problem: reconstructing a discretely-sampled sine function
∆T = 5 steps ahead. The red curve shows the most probable future path as
recovered by NeuroEntropy. Potential path candidates have been sampled
randomly from a uniform distribution U (−1, 1).
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Figure 9: Entropy-adjusted Random Walk (vertical lines) versus standard
Random Walk (black solid line) for future logarithmic returns of the Nikkei
225 index as of 2010/01/15, just before major falls lasting over two weeks.
According to the NeuroEntropy model the forward risk is skewed to the
downside, in contrast with a symmetrical risk profile offered by the standard
Random Walk model.
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the method first extracts the corresponding entropy, subsequently perform-
ing predictions on the entropy time series. A weak trading advantage has
been found in financial forecasts of foreign exchange currency futures ini-
tiated in low entropy regions, which agrees with results from other, earlier
econophysics studies. Conversely, predicting time series in high entropy re-
gions is very difficult to achieve. This follows directly from statistical physics
which teaches that in a disordered state of maximum entropy complex sys-
tems lose memory of past events.

Established statistical time series forecasting techniques, both linear re-
gression and non-linear neural networks, do not take into account the phys-
ical generative aspect of financial time series. Such time series arise directly
as a result of interactions between a large number of traders. As a conse-
quence, from a physics point of view a much more attractive proposition is
to try to approximate the underlying processes responsible for generating
the time series in the first place. Therefore the paper attempted to replace
an information-theoretic entropy with a physical entropy extracted from mi-
nority game theory models. According to literature [18] such models could
provide a simplified approximation to the way real financial markets oper-
ate. One advantage of minority games is that they allow more control over
the type of disorder (or complexity measure) being extracted from the time
series. However, this comes at a price of having to decide how to choose the
“correct” model configuration. As yet there is no principled way of dealing
with this issue.

Summing up, the paper attempts to express quantitatively a qualitative
claim that “low entropy regions lead to improved predictability of financial
time series”. In doing so it makes a positive contribution towards greater
acceptance of econophysics by the mainstream computational finance. For
more comprehensive description of the method outlined in this paper readers
are encouraged to refer to [7].
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