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Abstract

Volatility plays crucial role in many areas of �nance and economics. It
is not directly observable and must be estimated.Since volatility estimated
from daily close prices only is quite imprecise, volatility estimators based
on daily open, high, low and close prices were developed. These are called
range-based estimators, since range, the di¤erence between high and low
prices is natural candidate to be used for volatility estimation.

First we analyze properties of these estimators and �nd that the best
estimator is Garman-Klass (1980) estimator. Second, we correct some
mistakes in existing literature. Third, and most importantly, we �nd that
when we use Garman-Klass volatility estimator to calculate returns nor-
malized by their standard deviations, we we can obtain the same results
from daily data as Andersen, Bollerslev, Diebold, and Ebens (2001) ob-
tained from high-frequency (transaction) data.
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1 Introduction

Volatility, which is a measure of risk, plays crucial role in many areas of �nance
and economics. Literature on volatility modelling and forecasting is huge. How-
ever, since volatility is not directly observable, the �rst problem which must be
dealt with is always volatility measurement (or, more precisely, estimation).
Let�s have daily stock returns for several days. Volatility of the stock returns

over this period is typically de�ned as a (squared) standard deviation of these
returns. However, this way we can get only average volatility over investigated
time period. This might not be su¢ cient, because volatility changes on daily
basis. If we have only daily closing prices and we need to estimate volatility on
a daily basis, the only estimate we have is squared daily return.1 This estimate
is of course very noisy, but since it is very often the only one we have, it is
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1For most af the assets, mean daily return is zero and therefore we don�t need to take into
consideration nonzero mean.
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commonly used. In fact, we can look at most of the volatility models (e.g.
GARCH class of models) in such a way that daily volatility is �rst estimated as
squared returns and consequently processed, e.g. by applying moving average.
If we have available not only daily closing prices, but intraday high frequency

data (the whole price process during the day), we can estimate daily volatility
much more precisely. However, high frequency data are in many cases not avail-
able at all, available only over a shorter time horizon and typically must be
purchased. Moreover, due to market microstructure e¤ects is volatility estima-
tion from high frequency data rather complex issue, as can be documented by
the volume of literature on this topic.
However, closing prices are not the only daily data easily available. For

most �nancial data, open high and low daily prices are available too. Range,
he di¤erence between high and low prices is natural candidate to be used for
volatility estimation. Parkinson (1980) realizes this and introduces a volatility
estimator (based on high and low prices) which is much less noisy than squared
returns. Garman-Klass (1980) subsequently introduce estimator based on open,
high, low and close prices, which is even less noisy. Even though these estimators
are already more than 30 years old, they have been rarely used in the past
by both academics and practitioners. However, this has changed recently and
literature using (and developing new) range-based estimators is growing.
Even though range-based estimators recently started to be commonly used,

some of their properties are still not understood well enough, as we document
by pointing out to some mistakes in existing literature (Bollen, Inder (2002),
Bali, Weinbaum (2005)). We study these properties.
The property we focus the most is the e¤ect of the use of range-based volatil-

ity estimators on the distribution of returns scaled by standard deviations. Are
returns standardized by their standard deviations normally distributed? This
question is important, because, in the words of Andersen, Bollerslev, Christof-
fersen and Diebold (2005): "The near log-normality of realized volatility, to-
gether with the near-normality of returns standardized by realized volatility,
holds promise for relatively simple-to-implement lognormal / normal mixture
models in �nancial risk management." Using volatility estimated from high fre-
quency data, Andersen, Bollerslev, Diebold, and Ebens (2001) show that stan-
dardized returns are indeed Gaussian.2 . Thamakos, Wang (2003) con�rm their
�ndings on di¤erent data set. Contrary, returns scaled by sigmas estimated
from GARCH type of models (based on daily returns) are not Gaussian, they
have fat tails. This well-known fact is the reason why all the GARCH models
with t-distributed residuals have been introduced. Are returns standardized
by range-based volatility estimates Gaussian? Does standardization by range-
based volatility estimates cause any bias in standardized returns? These are the
questions we answer.
The rest of the paper is organized in the following way. In Section 2, we

describe existing range-based volatility estimators. In Section 3, we analyze

2We �nd that the unconditional distributions of [...] are approximately Gaussian, as are
the distributions of the returns scaled by realized standard deviations.

2



properties of range-based volatility estimators and mention some caveats related
to use of these estimators. In Section 4 we empirically study the distribution
of returns normalized by their standard deviations (estimated from range-based
volatility estimators)on DJI stocks. Finally, Section 5 concludes.

2 Overview

Let�s assume that price P follows a geometric Brownian motion such that log-
price ln(p) during a day follows Brownian motion with zero drift and di¤usion
�. Let�s denote highest price of the day H, and the lowest price of the day L,
opening price O and closing price C. For brevity, let�s use notation

ct = ln(Ct)� ln(Ot) (1)

ht = ln(Ht)� ln(Ot) (2)

lt = ln(Lt)� ln(Ot) (3)

Then return ct is a random variable drawn from a normal distribution with
time-varying volatility

ct � N(0; �2t ) (4)

Our interest is to estimate volatility �2t , which varies from day to day. However,
we are interested how to estimate �2t for a given day and therefore we drop the
subscript where it is not necessary. First of all, we know that c2 is unbiased
estimator of �2. c�2s = c2 (5)

However, this estimator is quite noisy. Intuitively, high and low prices provide
additional information about volatility. Parkinson (1980) develops an estimator
(Park) which utilizes this information

c�2P = (h� l)2

4 ln 2
(6)

Garman and Klass (1980) who �nd that minimum variance analytic estima-
tor (GK) is given by formula

\�2GKprecise = 0:511 (h� l)
2 � 0:019 (c(h� l)� 2hl)� 0:383c2 (7)

However, they recommend "more practical" estimator which possesses nearly
the same e¢ ciency but eliminates the small cross-product terms.

d�2GK = 0:5 (h� l)2 � (2 ln 2� 1) c2 (8)

This estimator simply combines simple and Parkinson volatility estimators into
a new estimator with smaller variance. Further on we use this version of their
estimator.
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Meilijson (2009) derives another estimator, outside the class of analytical es-
timators, which has even smaller variance than GK. This estimator is as follows.

d�2M = 0:27352�21 + 0:160358�
2
simple + 0:365212�

2
3 + 0:20091�

2
4 (9)

where
�21 = 2

h
(h0 � c0)2 + l0

i
(10)

�23 = 2 (h
0 � c0 � l0) c0 (11)

�24 = �
(h0 � c0) l0
2 ln 2� 5=4 (12)

where c0 = c; h0 = h; l0 = l if c > 0 and c0 = �c; h0 = �l; l0 = �h If c < 0.
E¢ ciency of a volatility estimator b�2 is de�ned a

Eff(b�2) � var
�
�2simple

�
var (b�2) (13)

Simple volatility estimator has by de�nition e¢ ciency 1, Parkinson volatility
estimator has e¢ ciency 4.9, Garman-Klass 7.4 and Meilijson 7.7. There are two
other estimators worth mentioning.
Rogers, Satchell (1991) derive an estimator which is independent on the

zero-drift assumption. d�2RS = h(h� c) + l(l � c) (14)

E¢ ciency of this estimator is 6.0 for zero drift and larger than 2 for any drift.
Kunitomo (1992) derives a drift-independent estimator, which has e¢ ciency

equal to 10. However, "high" and "low" prices used in this estimator are not
the highest and lowest price during the day, but are the highest and the lowest
of the transformed prices. This is unknown unless we have tick-by-tick data and
therefore the use of this estimator is very limited.
Yang and Zhang (2000) derive another drift-independent estimator. How-

ever, this can be used only for volatility estimation over multiple days. Therefore
we do not discuss it in this paper.

3 Properties of range-based volatility estimators

3.1 Bias in �

All the previously mentioned estimators are unbiased estimators of �2. There-
fore, square root of any of these estimators will be biased estimators of �. This is
direct consequence of well known fact that for random variable � the quantities
E(�2) and E(�)2 are generally di¤erent. However, as I document later, usingpc�2 as b�, as an unbiased estimator of �, is not uncommon. Moreover, in many
cases we are interested in sigmas, not volatilities. Therefore, it is important to

understand the size of the error we are introducing by using
pc�2 instead of b�.
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This of course depends on particular estimator. It can be easily derived that

unbiased estimator based on
qc�2s is

b�s =qc�2s �r�2 = jcj �p�=2 (15)

Parkinson (1980) shows that unbiased estimator of sigma is

c�P =qc�2P �
r
� ln 2

2
=
h� l
2

�
p
�=2 (16)

Similarly, we want to �nd constants cGK , cM and cRS such that

d�GK =qd�2GK � cGK (17)

d�M =

qd�2M � cM (18)

d�RS =qd�2RS � cRS (19)

We haven�t found analytical solutions for these constants and therefore we solve
this problem numerically. We ran 500000 simulations, one simulation repre-
senting one trading day. In every trading day log-price ln(p) follows Brownian
motion with zero drift and daily di¤usion � = 1. We approximate continuous
Brownian motion by n = 100000 discrete intraday returns, each drawn from
N(0; 1=

p
n). We save high, low and close log-prices (h, l, c) (open log-price

is always normalized to zero) for every trading day. We estimate volatility ac-
cording to (5), (6), (8), (9), (14) and calculate mean of the square root of these
volatility estimates. We �nd that cs = 1:253, cP = 1:045 (what is in accordance
with theoretical values

p
�=2 = 1:253 and

p
� ln 2=2 = 1:043) and cGK = 1:034,

cM = 1:033 and cRS = 1:043. We see that taking square root of simple volatility
estimator will result in severely biased estimator of sigma (bias is 25%), whereas
bias in square root of range-based estimators is rather small (3%-4%).

Even though it seems obvious that
pc�2 is not an unbiased estimator of �,

it is quite common even among academicians to use
pc�2 as an estimator of �

and use it for tests which are designed for unbiased estimators of �. I document
this on two examples.
Bali and Weinbaum (2005) empirically compare range-based volatility esti-

mators. The criteria they use are: mean squared error

MSE (�estimated) = E
�
(�estimated � �true)2

�
(20)

mean absolute deviation

MAD (�estimated) = E [j�estimated � �truej] (21)

and proportional bias

Prop:Bias (�estimated) = E [(�estimated � �true)=�true] (22)

For daily returns they �nd:
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"The traditional estimator [(5)in our paper] is signi�cantly bi-
ased in all four data sets. [...] it was found that squared returns do
not provide unbiased estimates of the ex post realized volatility. Of
particular interest, across the four data sets, extreme-value volatil-
ity estimators are almost always signi�cantly less biased than the
traditional estimator."

This conclusion sounds surprising only until we realize that their these re-

sults are based on assumption �estimated �
pc�2, which, as we just showed, is

not unbiased estimator of � and is most severely biased for simple volatility
estimator. Generally, if our interest is unbiased estimate of sigma, we should
use formulas (15)-(19).
Similar mistake is made by Bollen, Inder (2002). In testing for bias in

estimators of �, they correctly adjust
qc�2s using formula (15), but they do not

adjust
qc�2P and qd�2GK by constants cP and cGK .

3.2 Distributional properties of range-based estimators

Volatility estimates are typically further used in volatility models. In estima-
tion of these models is relevant not only e¢ ciency of our estimates, but their
distributional properties too. It is very useful for estimation of volatility models
if estimates of relevant volatility measure (whether it is �2, � or ln�2) has ap-
proximately normal distribution.3 Therefore the knowledge of the distribution

of c�2, pc�2 and lnc�2 for di¤erent estimators is important. Under the assump-
tion of Brownian motion, the distribution of absolute value of return and the
distribution of range are known (Karatzas and Shreve (1991), Feller (1951)).
Using their result, Alizadeh, Brandt, Diebold (2002) derive the distribution of
log absolute return and log range. Distribution of other range-based volatility
estimators is unknown. We therefore use the simulated data (h, l, c) to study
these distributions.4

First we study the distribution ofc�2 for di¤erent estimators. These distribu-
tions are plotted in Figure 1. Since all these estimators are unbiased estimators
of �2, all have the same mean (in our case one). Standard deviation is given
by their e¢ ciency. Let us look at the shape of these distributions. Density
function of volatility estimates c�2 is approximately lognormal for range-based
estimators. On the other hand, distribution of squared returns reaches maxi-
mum at zero. Therefore, for most of the purposes, distributional properties of

3E.g. Gaussian quasi-maximum likelihood estimation, which plays an important role in
estimation of stochastic volatility models, depends crucially on the near-normality of log-
volatility.

4The fact that we do not search for analytical formula is not limiting at all. The analytical
form of density function for the simplest range-based volatility estimator, range itself, is so
complicated (it is an in�nite series) that in the end even skewness and kurtosis must be
calculated numerically.
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Figure 1: Distribution of variances estimated as squared returns and from
Parkinson, Garman-Klass, Meilijson and Rogers-Satchell formulas.
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Figure 2: Distribution of square root of volatility estimated as squared returns
and from Parkinson, Garman-Klass, Meilijson and Rogers-Satchell formulas.

range-based estimators are much better than of squared returns. The di¤erences
in distributions among range-based estimators are rather small.

The distributions of
pc�2 (Figure 2) are somehow similar to the distribu-

tions of c�2. Again, the distributions of pc�2 for range range-based estimators
have much better properties than the distribution of absolute returns. To distin-
guish between di¤erent range-based volatility estimators, we calculate summary
statistics and present them in Table 1. No matter whether we rank these dis-

Table 1: Summary statistics for square root of volatility estimated as squared
returns and from Parkinson, Garman-Klass, Meilijson and Rogers-Satchell for-
mulas.

abs:returns

qc�2P qd�2GK qd�2M qd�2RS
mean 0:7980 0:9565 0:9670 0:9677 0:9585
std 0:6034 0:2856 0:2445 0:2417 0:2750

skewness 0:9954 0:9658 0:6044 0:5446 0:4560
kurtosis 3:8670 4:2390 3:4006 3:2838 3:4438

tributions according to the mean (which should be preferably 1) or according
to their standard deviations (which should be the smallest possible), ranking is
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Figure 3: Distribution of logaritm of volatility estimated as squared returns and
from Parkinson, Garman-Klass, Meilijson and Rogers-Satchell formulas.

the same as in the previous case: the best is Meilijson volatility estimator, then
Garman-Klass, next Roger-Satchell, next Parkinson and last absolute returns.
In the end, we investigate the distribution of lnc�2 (see Figure 3). As we

can see, logarithm of squared returns is highly nonnormally distributed, but
logarithm of range-based volatility estimators are very close to normal. To see
the di¤erence among various range-based estimators, we again calculate their
summary statistics (see Table 2). Note that since true volatility is normalized

Table 2: Summary statistics for logaritm of volatility estimated as squared
returns and from Parkinson, Garman-Klass, Meilijson and Rogers- Satchell for-
mulas.

abs:returns

qc�2P qd�2GK qd�2M qd�2RS
mean �1:2716 �0:1726 �0:1305 �0:1279 �0:1716
std 2:2242 0:5745 0:5051 0:5021 0:6075

skewness �1:5341 0:1662 �0:0926 �0:1409 �0:7122
kurtosis 6:9809 2:7651 2:8593 2:8623 5:4108

to one and normality is desirable for practical reason, the ideal estimator should
have mean, standard deviation and skewness close to zero and kurtosis close to
one. We see that Garman-Klass and Meilijson volatility estimators, in addition
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to being most e¢ cient, have best distributional properties.

3.3 Normality of normalized returns

As was empirically shown by Andersen et al. (2002) and con�rmed by Thamakos,
Wang (2003) on di¤erent data, standardized returns (returns divided by �) are
approximately normally distributed. In other words, daily returns can be writ-
ten as

rt = �tzt (23)

where zt � N (0; 1). This �nding is very important for three reasons. First of
all, it shows that e¤ort to �nd a distribution which captures heavy-tails of stock
returns is to big extend pointless - heavy tails are caused simply by changing
volatility. Second, this knowledge can contribute to build better (more accurate
and more simple) volatility models, which are in turn crucial for risk manage-
ment, derivative pricing, portfolio management etc. Third, this signi�cantly
contributes to overall understanding of �nancial markets.
Intuitively, normality of standardized returns follows from Central Limit

Theorem: since daily returns are just sum of high-frequency returns, daily re-
turns will be drawn from normal distribution. This intuition is so appealing
that Bollen, Inder (2002) use normality of standardized returns as a criterion
for evaluating di¤erent volatility estimators. (in their paper Criterion 2 tests the
shape of the distribution and Criterion 3 tests whether the standard deviation
is equal to one).
Andersen et al. estimate daily volatilities from high frequency transaction

data and their volatility estimates can be therefore considered to be a true
volatility, because it contains very little noise. As I will show now, returns
standardized by estimate of the true volatility do not need to (and generally
will not) have the same properties as returns standardized by true volatility.
Therefore, these tests are not capturing what they are supposed to capture.
There are two problems associated with these volatility estimates: they are
noisy and they might be (and typically are) correlated with return. These two
problems might cause that returns normalized by volatility estimates are not
normal anymore.

3.3.1 Noise in volatility estimators

We want to know the e¤ect of noise in volatility estimates b�t on the distribution
of returns normalized by these estimates (bzt = rt=b�t) when true normalized
returns zt = rt=�t are normally distributed. To do this, we generate one million
observations of rt, t 2 f1; :::; 1000000g, all of them are iid N(0,1)5 . Next we
generate b�t;i in such a way that b� is unbiased estimator of �, i.e. E (b�t;i) = 1
and i represents the level of noise in b�t;i. There is no noise for i = 0 and
therefore b�t;0 = �t;0 = 1. To generate b�t;i for i > 0 we must decide upon
distribution of b�t;i. Since we know from the previous section that range-based

5 In other words, without loss of generality, we set �t = 1.
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volatility estimates are approximately lognormally distributed, we draw sigmas
from lognormal distributions in such a way that E (b�t;i) = 1 and Var(b�t;i) = i.
This is accomplished by setting parameters � and s2 of lognormal distribution
equal to � = � 1

2 ln (1 + i), s
2 = ln (1 + i). For every i, we generate one million

observations of b�t;i. Next we calculate normalized returns bzt;i = rt=b�t;i. Their
summary statistics is in the Table 3.

Table 3: Summary statistics for random variable obtained as ratio of normal
random variable with zero mean and variance one and lognormal random vari-
able with constant mean equal to one and variance increasing from 0 to 0.8.

Var(b�i) mean(bzt;i) std(bzt;i) skewness(bzt;i) kurtosis(bzt;i)
0:0 0:0001 1:0017 0:0048 3:0000
0:2 0:0003 1:3159 0:0156 6:2166
0:4 0:0013 1:6566 �0:0061 11:7954
0:6 �0:0007 2:0255 0:0315 19:7640
0:8 0:0025 2:4277 0:0123 34:5983

Obviously, bzt;0, which is by de�nition equal to rt, has zero mean, standard
deviation equal to 1, skewness equal to 0 and kurtosis equal to 3. We see that
normalization by noisy sigma b� does not change E(bz) and skewness of bz. This
is natural, because rt are distributed symmetrically around zero. On the other
hand, adding noise increases standard deviation and kurtosis of bz. When we
divide normally distributed random variable rt by random variable b�t, we are
e¤ectively adding noise to rt, making its distribution �atter and more dispersed
with more extreme observations. Therefore, standard deviation increases. Since
kurtosis is in�uenced mostly by extreme observations, it increases too.

3.3.2 Bias introduced by normalization of range-based volatility es-
timators

Previous analysis suggests that the more noisy volatility estimator we use for
normalization of returns, the higher will be the kurtosis of normalized returns.
Therefore we could expect to �nd highest kurtosis when using Parkinson volatil-
ity estimator (6). As we will see, this is not the case. Returns and volatility
estimates were independent in the previous section, but this is not the case when
we use range-based estimators.

Let us denote �PARK �
q
\�2PARK , �GK �

qd�2RS , �M �
qd�2M and �RS;t �qd�2RS . We study the distribution of bzPARK;t � rt=�PARK;t, bzGK;t � rt=�GK;t,bzM;t � rt=�M;t, bzRS;t � rt=�RS;t. Histograms for these distributions are in the

Figure 4 and corresponding summary statistics are in Table 4.
Since returns are symmetrically distributed around zero and all studied es-

timators are symmetric, true mean and skewness are zero. However, it seems
from Table 4 that distribution of bzRS;t is skewed. There is another surprising
fact about bzRS;t. It has incredibly heavy tails (high kurtosis), which means that
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Figure 4: Distribution of normalized returns. "true" is the distribution of stock
returns normalized by true sigma. This distribution is by assumption N(0,1).
PARK, GK, M and RS is distribution of the same returns after normalization
by volatility estimated using Parkinson, Garman-Klass, Meilijson and Rogers-
Sanchell volatility estimators.

Table 4: Summary statistics for square root of volatility estimated as squared
returns and from Parkinson, Garman-Klass, Meilijson and Rogers-Satchell for-
mulas.

ztrue;t bzP;t bzGK;t bzM;t bzRS;t
mean 0:0038 0:0035 0:0045 0:0044 0:0067
std 1:0005 0:8847 1:0130 1:0156 1:3517

skewness �0:0007 �0:0022 0:0024 0:0007 1:6222
kurtosis 3:0019 1:7914 2:6158 2:3592 123:9582
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it has many very extreme observations. Why is it so? Remember that formula
(14) is derived without assumption of zero drift. Therefore, when stock price
performs one-way movement, this is attributed to the drift term and volatility
is estimated to be zero. (If movement is mostly in one direction, estimated
volatility will be nonzero, but very small). Moreover, this is exactly the situ-
ation when stock return will be unusually high. Dividing the largest returns
by the smallest estimates of volatility causes together with noisiness a lot of
extreme observations, i.e. very heavy tails.6

We get exactly opposite result when we use Parkinson volatility estimator for
normalization. Kurtosis is now much smaller than for normal distribution, which
is basically result of missing tails. This estimator is based on range (di¤erence
between high and low). Even though range seems to be independent of return,
which is based on the open and close prices, opposite is the case. Range is
always at least as large as absolute value of the return. Therefore, always when
return is high, range will be high. Obviously, jrtj =�PARK will never be larger
than

p
4 ln 2. Actually, the correlation between jrtj and �PARK is 0:7922, what

supports our argument. Another problem is that the distribution of bzRS;t is
bimodal.
As we can see from histogram, distribution of bzM;t does not have any tails

either.
Garman-Klass volatility estimator combines Parkinson volatility estimator

with simple squared return. Even though both, Parkinson estimator and squared
return are highly correlated with size of the return, the overall e¤ect partially
cancels out, because these two quantities are subtracted. Correlation between
jrtj and �GK is indeed only 0:3615. bzGK;t has approximately normal distribu-
tion.
We can conclude that the only estimator appropriate for study of normalized

returns is Garman-Klass volatility estimator. We use this estimator later in the
empirical part.
Let�s look at the tests of Bollen, Inder (2002). They �nd that returns nor-

malized by �PARK are not normally distributed (Jarque-Bera test statistic equal
to 7.9), mostly because of kurtosis equal to 2.55. This is in accordance with
our explanation that use of Parkinson volatility estimator will underscore true
kurtosis of normalized returns. The di¤erence from theoretical value is can be
caused by two factors: 1. there are jumps in the data they study 2. we cannot
be sure if true normalized returns are really normally distributed.
However, they very strongly reject normality (Jarque-Bera test statistic

equal to 7964) of returns normalized by �GK , because of skewness 1.7 and
kurtosis 18.6. This must be the result of using incorrect formula (27). To show
this, we try to replicate their results. With the S&P500 Index Futures data that
we have, formula (27) can produce very high kurtosis. Sometimes it produces
even negative volatility. However, when we use the correct formula (26), the

6Nonzero skewness is a problem of "small sample". Even though we have huge number
of observations (500000), they are so widely spread that skewness is largery in�uenced by
outliers.
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skewness is -0.01 and the kurtosis is 2.69. This is very much in accordance with
what we should expect.
Lastly, if returns are normally distributed N(0; �2t ), then returns normalized

by true volatility will be not only normally distributed, but normally distributed
with variance 1. Bollen, Inder (2002) test this as Criterion 3. However, this test
has exactly the same problems as normality test. First, even if returns are truly
normally distributed, uncertainty in estimating sigma causes problems. Noise in
estimation of sigma increases the variance of estimated normalized returns, as
is documented in Table 3. Moreover, the correlation between jrtj and volatility
estimator causes another bias. As we can see from Table 4, this is a problem
particularly with Parkinson volatility estimator.

3.4 Jump component

Previous formulas refer to the return between open and close. Most of the
assets are not traded continuously 24 hours a day. Therefore, opening price
is not necessarily equal to the closing price from the previous day. People are
typically interested in daily returns

rt = ln(Ct)� ln(Ct�1) (24)

If we do not adjust range-based estimators for the presence of opening jumps,
they will of course underestimate the true volatility. Parkinson volatility esti-
mator adjusted for the presence of opening jumps is

c�2P = (h� l)2

4 ln 2
+ j2 (25)

where jt = ln(Ot)�ln(Ct�1) is the opening jump. Jump-adjusted Garman-Klass
volatility estimator is:

d�2GK = 0:5 (h� l)2 � (2 ln 2� 1) c2 + j2 (26)

Other estimators should be adjusted in the same way. Unfortunately, including
opening jump will increase noisiness of the estimator when opening jumps are
signi�cant part of daily returns.7 However, this is the only way how to get
unbiased estimator without imposing some additional assumptions. If we knew
what part of the overall daily volatility opening jumps account for, we could �nd
optimal weights for the jump volatility component and for the volatility within
the trading day to minimize the overall variance of the composite estimator.
This is what Hansen and Lunde (2005) do. However, this knowledge is a priori
not available and therefore adding jump component is the only way to make
range-based estimators unbiased.
This is not as obvious as it seems to be and even academicians make quite

often mistakes when adjusting for the opening jumps. Let�s use Bollen, Inder
(2002) as an example. Their simple volatility estimator is squared return over

7Jump volatility is estimated with smaller precision than volatility within trading day.
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the whole day and therefore already contains jump component. They do not
adjust Parkinson volatility estimator to the presence of jumps. On the other
hand, they adjust Garman-Klass estimator, but in a wrong way:

�2GKwrong;t = 0:5 (lnHt � lnLt)
2 � (2 ln 2� 1) (lnCt � lnCt�1)2 (27)

This "Garman-Klass volatility estimator" will be on average even smaller than
Garman-Klass estimator not adjusted for jumps. Moreover, it sometimes pro-
duces negative estimates for volatility (�2). Moreover, Bollen and Inder (2002)�s
result is that normalization by Garman-Klass volatility estimator produces highly
nonnormal standardized returns (they �nd kurtosis 7964 using S&P index fu-
tures. Using correct formula (26) provides completely di¤erent result - kurtosis
equal to approximately 3.

4 Normalized returns - empirics

Andersen, Bollerslev, Diebold, and Ebens (2001) �nd that "although the uncon-
ditional daily return distributions are leptokurtic, the daily returns normalized
by the realized standard deviations are close to normal." Their concluson is
based on standard deviations obtained these from high frequency data. We
study whether (and to which extend) this result is obtainable when standard
deviations are estimated from daily data only.
We study stocks which were the components of Dow Jow Industrial average

at January 1, 2009, namely AA, AXP, BA, BAC, C, CAT, CVX, DD, DIS,
GE, GM, HD, HPQ, IBM, INTC, JNJ, JPM, CAG8 , KO, MCD, MMM, MRK,
SFT, PFE, PG, T, UTX, VZ and WMT. We use daily open, high, low and close
prices. The data covers years 1992 to 2008. Stock prices are adjusted for stock
splits and similar events. We have 4171 observations for every stock. These
data were obtained from CRSP database. We study DJI components to make
our results directly comparable to the results of Andersen, Bollerslev, Diebold,
and Ebens (2001).
For brevity, we use only two estimators: Garman-Klass estimator (8) and

Parkinson estimator (6). We use Garman-Klass volatility estimator because our
previous analysis shows that it is the most appropriate one. We use Parkinson
volatility estimator to demonstrate that even though this estimator is the most
commonly used range-based estimator, it should not be used for normaliza-
tion of returns. Moreover, we study the e¤ect of including or excluding jump
component into range-based volatility estimators.
First of all, let us distinguish daily returns and trading day returns. By daily

returns we mean close-to-close returns, calculated according to formula (24). By
trading day returns we mean returns during the trading hours, i.e. open-to-close
returns, calculated according to formula (1). Consequently, we need to estimate
two di¤erent volatilities: volatility of trading day returns and volatility of daily

8Since historical data for KFT (component of DJI) are not available for the complete
period, we use its biggest competitor CAG instead.
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returns. We estimate volatility of trading day returns using (6) and (8) and
volatility of daily returns using (25) and (26). Next we calculate standardized
returns. We calculate three di¤erent standardized returns: trading day returns
standardized by trading day sigma (square root of trading day volatility), daily
returns standardized by daily sigma and daily returns standardized by trading
day sigma.
First we study trading day returns normalized by trading day sigma. How-

ever, for most applications, those are daily returns, not trading day returns,
which are relevant. Therefore, our main interest is to investigate normality of
standardized daily returns. This is why we study daily returns standardized by
daily sigma.
Why do we investigate daily returns standardized by trading day sigma

too? Theoretically, this does not make much sense because the return and the
volatility we are dividing it by are related to di¤erent time spans. However, e.g.
Andersen, Bollerslev, Diebold, and Ebens (2001) normalized daily returns by
standard deviations of trading day returns. They do this because volatility of
the trading part of the day can be estimated very precisely from high frequency
data, whereas estimation of daily volatility is always less precise because of ne-
cessity of including opening jump component. Therefore, trading day volatility
is commonly used as a proxy for daily volatility. This approximation is satis�ed
as long as opening jump is small in comparison to trading day volatility, what
is typically the case.
Results are presented in Table 5. We can see that these results are in line

with predictions from our simulations. Whether we consider daily returns or
trading day returns, the results are the same for every single stock. First,
return distributions have heavy tails (kurtosis signi�cantly larger than 3). Sec-
ond, the daily returns normalized by the standard deviations calculated from
Garman-Klass formula are close to normal (kurtosis is close to 3). Third, the
daily returns normalized by the standard deviations calculated from Parkinson
formula have no tails( kurtosis is signi�cantly smaller than 3). Fourth, normal-
ization of daily returns by standard deviation estimated for trading day only,
will cause upward bias in kurtosis. The last result is a consequence of division
by inappropriate sigma - sometimes (particularly in a situation when opening
jump is large), returns are devided by too small sigma, which will cause too
many large observations for normalized returns.
Normality of returns normalized by sigma estimated from Garman-Klass

returns scaled by sigmas estimated from GARCH type of models (based on
daily returns) are not Gaussian, they have fat tails.

5 Conclusion

Range-based volatility estimators provide signi�cant increase in accuracy com-
pared to simple squared returns. E¢ ciency of these estimators is generally well
known and these estimators are usually ranked according to it. Other properties
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Table 5: Kurtosis of stock returns. rtd is open to close return, rd is close to
close return. b�GK;td (b�P;td) is square root of Garman-Klass (Parkinson) volatil-
ity estimate without opening jump component. b�GK;d (b�P;d) is square root of
Garman-Klass (Parkinson) volatility estimate including opening jump compo-
nent.

trading day returns daily returns
rtd

rtdb�GK;td

rtdb�P;td rd
rdb�GK;d

rdb�P;d rdb�GK;td

rdb�P;td
AA 9,63 2,84 1,76 11,63 2,73 1,87 3,48 2,56
AXP 8,46 3,03 1,81 9,62 2,84 1,91 4,10 2,70
BA 6,42 2,99 1,81 10,76 2,75 1,91 3,12 2,62
BAC 19,47 2,87 1,78 26,81 2,78 1,91 3,50 2,85
C 34,05 3,12 1,82 38,79 2,95 1,96 3,62 2,70
CAT 5,71 2,93 1,80 7,31 2,78 1,90 3,88 2,78
CVX 11,28 2,99 1,80 13,44 2,80 1,90 3,89 2,43
DD 7,07 2,98 1,81 7,53 2,84 1,95 3,54 2,63
DIS 6,75 2,93 1,81 11,04 2,76 1,94 4,23 3,78
GE 10,29 2,80 1,77 10,07 2,71 1,93 3,20 2,68
GM 43,27 2,93 1,82 26,30 2,74 1,89 3,73 2,80
HD 6,43 2,93 1,80 19,21 2,70 1,90 3,23 2,73
HPQ 7,63 2,92 1,80 9,29 2,77 1,93 3,30 2,81
IBM 6,87 2,82 1,78 9,44 2,75 1,91 3,74 3,90
INTC 6,45 2,62 1,76 8,59 2,57 1,87 3,89 4,56
JNJ 5,70 3,02 1,83 10,56 2,88 1,97 3,17 2,63
JPM 14,60 3,00 1,83 12,05 2,80 1,96 3,46 2,79
CAG 8,64 3,54 1,93 16,43 3,37 2,08 4,42 2,78
KO 7,81 3,12 1,86 8,56 2,94 1,98 3,41 2,57
MCD 8,56 3,05 1,84 7,48 2,84 1,95 3,14 2,48
MMM 6,86 3,08 1,84 7,60 3,01 1,99 3,59 2,68
MRK 6,64 2,96 1,82 24,22 2,78 1,92 4,35 4,83
MSFT 5,22 2,63 1,78 8,61 2,55 1,91 5,81 9,43
PFE 5,36 2,83 1,78 6,17 2,74 1,90 3,40 2,86
PG 8,22 2,96 1,83 75,61 2,89 1,97 3,46 3,11
T 6,23 3,00 1,81 7,40 2,90 1,96 3,32 2,42
UTX 9,11 3,01 1,79 32,55 2,81 1,91 3,83 3,01
VZ 6,89 2,98 1,79 7,80 2,88 1,93 4,67 2,61
WMT 6,59 3,19 1,86 5,98 2,99 1,97 3,72 3,19
XOM 11,30 2,91 1,77 12,62 2,81 1,91 3,21 2,44

mean 10,25 2,97 1,81 15,45 2,82 1,93 3,71 3,15
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of these estimators are less known, even though they are quite often empirically
tested. We study these properties.
First, we correct some mistakes in existing literature. Second, we study

di¤erent properties of range-based volatility estimators and �nd that for most
of the purposes, the best volatility estimators are Garman-Klass estimator and
its slightly improved version Meilijson estimator. Meilijson estimator is a little
bit more precise, is calculated in a more complicated way.
Returns standardized by volatility are known to be normally distributed.

This is fact is important for volatility modelling. However, it was not clear
before what the distribution normalized returns look like when they are nor-
malized by (imprecise) volatility estimates. Using simulations we show that
even when returns are normally distributed, returns standardizes by (impre-
cisely) estimated volatility are not neccesarily normally distributed. The most
pronounce di¤erence among range-based volatility estimators is when we they
are used for normalization of returns. We �nd that Garman-Klass volatility
estimator is the only one appropriate for this purpose. Puting all the results
together, we rate Garman-Klass volatility estimator as the best volatility esti-
mator based on daily (open, high, low and close) data. We test this estimator
empirically and we �nd that we can indeed obtain the same results from daily
data as Andersen, Bollerslev, Diebold, and Ebens (2001) obtained from high-
frequency (transaction) data. This is important, because high-frequency data
are very often not available. Since returns scaled by sigmas estimated from
GARCH type of models (based on daily returns) are not Gaussian (they have
fat tails), our results show that GARCH type of models are not precise enough
to capture volatility properly. Therefore, in absence of high-frequency data,
volatility models based on open, high, low and close prices should be used.

References

[1] Andersen, T. G., Bollerslev, T. Diebold F.X. and Ebens, H. (2001). The dis-
tribution of realized stock return volatility. Journal of Financial Economics,
61, 43-76.

[2] Garman, Mark B. and Klass, Michael J., (1980), On the Estimation of
Security Price Volatilities from Historical Data, The Journal of Business,
Vol. 53, No. 1, 67-7

[3] Parkinson, M. (1980). The extreme value method for estimating the vari-
ance of the rate of return. Journal of Business, 53, 61�65.

[4] Bernard Bollen, B., and Inder, B., (2002). Estimating daily volatility in
�nancial markets, Journal of Empirical Finance, 9, 551�562.

[5] Bali, T. G., and Weinbaum, D. (2005). A comparative study of alternative
extreme-value volatility estimators. Journal of Futures Markets, 25, 873�
892.

18



[6] Andersen, Bollerslev, Christo¤ersen and Diebold (2005):

[7] Thomakos, D. D., Wang, T., (2003), Realized volatility in the futures mar-
kets, Journal of Empirical Finance, 10, 321�353.

[8] Meilijson, I., (2009), The Garman�Klass volatil-
ity estimator revisited, working paper available at:
http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.3492v2.pdf

[9] Rogers, L. C. G., and Satchell, S. E. 1991. Estimating variance from high,
low and closing prices. Annals of Applied Probability 1: 504�12.

[10] Kunitomo, N. 1992. Improving the Parkinson method of estimating security
price volatilities. Journal of Business 65:295�302.

[11] Yang, D., and Zhang, Q. (2000). Drift-independent volatility estimation
based on high, low, open, and close prices. Journal of Business, 73, 477�
491.

[12] Karatzas, Ioannis, and Steven E. Shreve, 1991, Brownian Motion and Sto-
chastic Calculus (Springer-Verlag, New York).

[13] Feller, W. (1951). The asymptotic distribution of the range of sums of
independent random variables. The Annals of Mathematical Statistics, 22,
427�432.

[14] Alizadeh, S., Brandt, M. W., and Diebold, F. X. (2002). Range-based esti-
mation of stochastic volatility models. Journal of Finance, 57, 1047�1091.

[15] Hansen, P. R., and Lunde, A. (2005). A realized variance for the whole day
based on intermittent high-frequency data. Journal of Financial Economet-
rics, 3, 525�554.

19


