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Abstract

Dynamic linear oligopolies are examined with continuous time scales
and information delays. Systems dynamics are compared with fixed and
continuously distributed time lags. We first show that by assuming con-
stant speeds of adjustment stability is preserved if the firms use instanta-
neous information on their outputs and have delays in the outputs of the
competitors, and the stability might be lost if time delays are present in
the firms’ own outputs. Similar results are obtained if each firm adjusts
its growth rate proportionally to a change in its profit. In the case of
stability loss Hopf bifurcation occurs giving the probability of the birth of
limit cycles around the stationary state.

1 Introduction
Oligopoly models play a central role in the literature of mathematical economics.
Since the pioneering work of Cournot (1838), a large number of researchers dis-
cussed and examined the classical Cournot model and its variants and exten-
sions. The existence and uniqueness of the equilibrium was the main focus of
studies in the early stages and later the research turned to the dynamic analysis
of oligopolistic markets. A comprehensive summary of earlier results can be
found in Okuguchi (1976), and their multiproduct generalization with several
case studies are discussed in Okuguchi and Szidarovszky (1999). The attention
was focused on linear and linearized models at the beginning which provided
the local asymptotic properties of the equilibria. During the last two decades
however an increasing attention has been given to the analysis of global dynam-
ics. A survey of the newer results can be found in Bischi et al. (2009) which
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contains models with both discrete and continuous time scales. In the cases of
most models discussed earlier in the literature, it was assumed that each firm
has instantaneous information about its own output and also on the outputs of
the competitors. This assumption has mathematical convenience, however it is
unrealistic in real economics, since there are always time delays due to deter-
mining and implementing decisions. In addition to these facts, in fast changing
industries the firms do not want to follow sudden market changes, they rather
want to react to averaged past information. Hence there are always time de-
lays between the times when information is obtained and the times when the
decisions are implemented.
Howroyd and Russel (1984) constructed a linear continuous dynamic oligopoly

model in which the outputs were adaptively adjusted and the adjustments were
subject to fixed time delays. Their conclusions were very clear: stability is not
affected by the information lags about the rivals’ outputs while it is affected by
the information lags about the firms’ own outputs. There are many economic
situations in which the lags are uncertain or the firms are reacting to averaged
past information. In such situations, continuously distributed time lags are use-
ful. In this study, we have two main purposes: we first examine whether or
not the Howroyd-Russel results still hold in a dynamic oligopoly model with
continuously distributed time lags; second, we reconstruct the model such that
the growth rate of the outputs are adjusted with the gradient method and show
the existence of complex dynamics when a stationary state loses stability.
The paper is organized as follows. Section 2 constructs a basic duopoly

model with linear price and cost functions. Section 3 assumes constant speed
of adjustment and introduces information time delays into the basic model.
Section 4 introduces a nonlinear extension of the basic model by adopting the
growth rate adjustment process. Section 5 concludes the paper.

2 Model
Dynamics in a classical duopoly model is considered. Let x and y be the quan-
tities produced by firm x and firm y with linear production costs where the
marginal costs are denoted by cx and cy. The price function is also assumed to
be linear,

p = a− b(x+ y) with a > 0 and b > 0.
The profit functions are given by

πx(x, y) = (a− b(x+ y))x− cxx
and

πy(x, y) = (a− b(x+ y)) y − cyy.
Firm x determines its output to maximize its profit with respect to x and so
does firm y with respect to y. Assuming interior optimal points and solving the
first-order conditions for the outputs yield the best reply function for firm x,

Rx(y) =
a− cx − by

2b
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and the best reply function for firm y,

Ry(x) =
a− cy − bx

2b
.

A Cournot point is an intersection of these best reply functions and its coordi-
nates are

xc =
a− 2cx + cy

3b

and
yc =

a− 2cy + cx
3b

.

In this paper we assume that the firms continuously adjust their outputs pro-
portionally to the change in their profits (i.e., gradient dynamics),

ẋ = α(x)
∂πx
∂x

and ẏ = β(y)
∂πy
∂y

(1)

where α(x) and β(y) are positive adjustment functions of firm x and firm y.

3 Delay Linear Duopolies
In this section, we start with a simple case and assume constant adjustment
coefficients:

Assumption 1. α(x) = α > 0 and β(y) = β > 0.

The continuous dynamic duopoly model is⎧⎨⎩ ẋ(t) = α(a− cx − 2bx(t)− by(t))

ẏ(t) = β(a− cy − bx(t)− 2by(t)).
(2)

Using the best reply functions, the dynamic system can be rewritten as⎧⎨⎩ ẋ = ᾱ (Rx(y)− x)

ẏ = β̄ (Ry(x)− y)
(3)

where ᾱ = 2bα and β̄ = 2bβ. In system (3), each firm adaptively adjusts its
output in such a way that the adjustment rate of the output is proportional
to the difference between the profit maximizing output and the current output.
That is, each firm adjusts its output into the direction toward its best reply.
The transformation from (2) to (3) or vice versa implies that for the firms, the
gradient adjustment of the output is the same as the adaptive adjustment toward
best reply. To examine the stability of system (2), we consider its coefficient
matrix,

J =

⎛⎝ −2bα −bα

−bβ −2bβ

⎞⎠
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with trace
trJ = −2b(α+ β) < 0

and determinant
detJ = 3b2αβ > 0.

Since (2) is linear, and the above conditions imply local asymptotical stability,
we confirm the following well-known result:

Theorem 1 The continuous dynamic duopoly model (2) is globally asymptoti-
cally stable.

Howroyd and Russel (1986) introduced the fixed delay adjustment process
in a general n-firm oligopoly model and showed two main conclusions: first, the
information delays in the competitors’ outputs are harmless to the stability of
the models and second, stability is affected if all information available to the
firms is subject to a delay. A duopoly version of their model is presented by⎧⎨⎩ ẋ(t) = α(a− cx − 2bx(t− Sx)− by(t− Tx))

ẏ(t) = β(a− cy − bx(t− Ty)− 2by(t− Sy))
(4)

where the firms adjust their current outputs based on delayed information at
some preceding times t− Si and t− Ti for i = x, y. They consider the situation
based on information in which each firm experiences a time lag Ti in obtain-
ing information about the rival’s output and a time lag Si in implementing
information about its own output.
The characteristic equation of system (4) can be obtained by looking for the

solutions as
x(t) = eλtu and y(t) = eλtv

and substituting them into the corresponding homogeneous equations:⎧⎨⎩ λeλtu = α(−2beλ(t−Sx)u− beλ(t−Tx)v),

λeλtv = β(−beλ(t−Ty)u− 2beλ(t−Sy)v).

Nontrivial solution exists if and only if the determinant of the coefficient matrix

JF =

⎛⎝ λ+ 2bαe−λSx bαe−λTx

bβe−λTy λ+ 2bβe−λSy

⎞⎠ (5)

is zero, which provides a mixed exponential-polynomial equation for λ:¡
λ+ 2bαe−λSx

¢ ¡
λ+ 2bβe−λSy

¢
− b2αβe−λTxe−λTy = 0.

Multiplying both sides by eλSxeλSyeλTxeλTy , we get¡
λeλSx + 2bα

¢ ¡
λeλSy + 2bβ

¢
eλTxeλTy − b2αβeλSxeλSy = 0. (6)
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To clarify the effects caused by the time lags on dynamics, we first examine
the case in which the firms adjust their outputs using correct information on
their own outputs and have uncertainty about their rival’s output (i.e., Sx =
Sy = 0 while Tx > 0 and Ty > 0) and then consider the opposite case in which
the firms have lags on their outputs (i.e., Tx = Ty = 0 while Sx > 0 and Sy > 0).
Substituting Sx = Sy = 0, Tx > 0 and Ty > 0 into (6), we obtain the

characteristic equation

(λ+ 2bα)(λ+ 2bβ)− b2αβe−λ(Tx+Ty) = 0.

Notice first that λ = 0 cannot be a solution. So assume that λ 6= 0 and R(λ) ≥ 0
where λ = μ+ iξ. Then we have

|λ+ 2bα| |λ+ 2bβ| ≥ 4b2αβ

and ¯̄̄
b2αβe−λ(Tx+Ty)

¯̄̄
= b2αβ

¯̄̄
e−μ(Tx+Ty)

¯̄̄ ¯̄̄
e−iξ(Tx+Ty)

¯̄̄
≤ b2αβ

The last two inequalities imply that no λ with R(λ) ≥ 0 can solve the charac-
teristic equation. Hence any solution of the characteristic equation must have
negative real parts. The information lags on the rival’s outputs are harmless
and do not affect the stability of (4).
Taking Tx = Ty = 0, Sx > 0 and Sy > 0 and repeating the same procedure

yield the characteristic equation of the form

λ2 − b2αβ + 2bαλe−λSx + 2bβλe−λSy + 4b2αβe−λ(Sx+Sy) = 0. (7)

In the absence of information lags, the linear system (4) is locally asymptotically
stable. The characteristic equation implies that λ = 0 is not a solution of (7).
By continuity, all eigenvalues of (7) have negative real parts for sufficiently
small Sx+Sy > 0. Freedman and Rao (1986) estimated the range of Sx+Sy for
which the Cournot point remains asymptotically stable. In particular, according
to their theorem (i.e., (ivβ) of Theorem 3.1), the following estimates on Sx and
Sy imply asymptotical stability:

max[Sx, Sy] ≤ Γ,

Sx + Sy <
η

4b2αβ
,

Cos[Γv+] =
η

2b(α+ β)
,

where
0 < η < 2b(α+ β)

and

v+ =
b

2

n
2(α+ β) +

p
(α+ β)2 + 12αβ

o
.
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Figure 1 illustrates two time trajectories of x when α = β = 1, b = 1 and η = 4.
Under these parameter specifications, the Cournot point is asymptotically stable
for max[Sx, Sy] ≤ 0.262 and Sx + Sy < 1. We take Sx = 0.24 and Sy = 0.26
in Figure 1(A) and Sx = 0.7 and Sy = 0.8 in Figure 1(B). It can be seen that
the large information lags on the own outputs of the firms have an instabilizing
effect. We thus have confirmed the results of Howroyd and Russel (1986) in the
duopoly case.

(A) Converging trajectory (B) Diverging trajectory

Figure 1. Time trajectories of x(t) generated by (4)

In real economic situations, the lags are usually uncertain and can be consid-
ered to be fixed only under special circumstances. Therefore, we will model time
lags in a continuously distributed manner. Given Assumption 1, the continuous
dynamic duopoly model with continuously distributed time lags is⎧⎨⎩ ẋ(t) = α(a− cx − 2bxε(t)− bye(t)),

ẏ(t) = β(a− cy − bxe(t)− 2byε(t)),
(8)

with expectations on its own outputs

xε(t) =

Z t

0

ω(t− s, Sx, nx)x(s)ds and yε(t) =
Z t

0

ω(t− s, Sy, ny)y(s)ds

and expectations on its rival’s outputs

xe(t) =

Z t

0

ω(t− s, Tx,mx)x(s)ds and ye(t) =
Z t

0

ω(t− s, Ty,my)y(s)ds.

The weighting function ω is assumed to have the form

ω(t− s,Γ, `) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

Γ
e−

t−s
Γ if ` = 0,

1

`!

µ
`

Γ

¶`+1
(t− s)`e− `(t−s)

Γ if ` ≥ 1.
(9)
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Here we assume that Γ > 0 and ` is a nonnegative integer. Substituting (9) into
the expectation formations defined above, and the resulting expressions of the
expectations into (8) yield a system of integro-differential equations. In order
to analyze the dynamic behavior of the system, we consider the corresponding
homogeneous system. Letting xδ and yδ denote the deviations of x and y from
their Cournot levels of outputs, xc and yc, the homogeneous system can be
formulated as follows:⎧⎪⎪⎨⎪⎪⎩

ẋδ = α
n
−2b

R t
0
ω(t− s, Sx, nx)xδ(s)ds− b

R t
0
ω(t− s, Tx,mx)yδ(s)ds

o
,

ẏδ = β
n
−b
R t
0
ω(t− s, Ty,my)xδ(s)ds− 2b

R t
0
ω(t− s, Sy, ny)yδ(s)ds

o
.

(10)
We seek the solutions in the exponential form

xδ(t) = e
λtu and yδ(t) = eλtv.

Substituting these solutions into equation (10) and arranging terms yield³
λ+ 2bα

R t
0
ω(t− s, Sx, nx)e−λ(t−s)ds

´
u+ bα

R t
0
ω(t− s, Tx,mx)e

−λ(t−s)ds · v = 0,

bβ
R t
0
ω(t− s, Ty,my)e

−λ(t−s)ds · u+
³
λ+ 2bβ

R t
0
ω(t− s, Sy, ny)e−λ(t−s)ds

´
v = 0.

Introducing a new variable z = t − s, we can simplify the integral terms by
noticing that Z t

0

ω(t− s,Γ, `)e−λ(t−s)ds =
Z t

0

ω(z,Γ, `)e−λzdz.

Allowing t→∞, we have

lim
t→∞

Z t

0

ω(z,Γ, `)e−λzdz =

µ
1 +

λΓ

q

¶−(`+1)
with

q =

⎧⎨⎩ 1 if ` = 0,

` if ` ≥ 1.

Then equations (10) can be simplified as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ã
λ+ 2bα

µ
1 +

λSx
qx

¶−(nx+1)!
u+ bα

µ
1 +

λTx
q̄x

¶−(mx+1)

v = 0

bβ

µ
1 +

λTy
q̄y

¶−(my+1)

u+

Ã
λ+ 2bβ

µ
1 +

λSy
qy

¶−(ny+1)!
v = 0.
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which can be rewritten in the matrix form:µ
Ax(λ) Bx(λ)
By(λ) Ay(λ)

¶µ
u
v

¶
=

µ
0
0

¶
where

Ax(λ) =

"
λ

µ
1 +

λSx
qx

¶nx+1
+ 2bα

#µ
1 +

λTx
q̄x

¶mx+1

,

Ay(λ) =

"
λ

µ
1 +

λSy
qy

¶ny+1
+ 2bβ

#µ
1 +

λTy
q̄y

¶my+1

,

Bx(λ) = ba

µ
1 +

λSx
qx

¶nx+1
and

By(λ) = bβ

µ
1 +

λSy
qy

¶ny+1
.

A non-trivial solution exists if and only if

Ax(λ)Ay(λ)−Bx(λ)By(λ) = 0. (11)

We denote the left hand side by ϕ(λ) and call it the characteristic polynomial
of system (10).
There is an interesting relation between the characteristic polynomials (6)

and (11) of the systems with fixed and continuously distributed time lags. As-
sume that nx, ny, mx and my converge to infinity. Since qi = ni − 1 and
q̄i = mi − 1 for i = x, y, we have the limits

Ax(λ)→
¡
λeλSx + 2bα

¢
eλTx ,

Ay(λ)→
¡
λeλSy + 2bβ

¢
eλTy ,

Bx(λ)→ bαeλSx

and
By(λ)→ bβeλSy ,

therefore in the limiting case, the characteristic equation of the continuously
distributed delay model converges to the characteristic equation of the fixed
delay model.

3.1 Information lags about the rival’s output

In this section we confine our analysis to the case in which firms experience no
information lags on their own outputs:

Assumption 2. Sx = 0 and Sy = 0.
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Under Assumption 2, the characteristic equation has the form

(λ+ 2bα)(λ+ 2bβ)

µ
1 +

λTx
q̄x

¶mx+1µ
1 +

λTy
q̄y

¶my+1

− b2αβ = 0 (12)

We will prove that all roots of equation (12) have negative real parts implying
the global asymptotical stability of the Cournot point. Assume in contrary that
there is a root λ = α + iβ with α ≥ 0. Notice first that with any real positive
numbers A and B,

|A+Bλ|2 = |(A+Bα) + i(Bβ)|2

= (A+Bα)2 + (Bβ)2

≥ (A+Bα)2

≥ A2.

Therefore the two terms of (12) have to be different, since¯̄̄̄
¯(λ+ 2bα)(λ+ 2bβ)

µ
1 +

λTx
q̄x

¶mx+1µ
1 +

λTy
q̄y

¶my+1
¯̄̄̄
¯ ≥ 4b2αβ > b2αβ.

Consequently λ cannot satisfy equation (12). This observation implies that the
stability part of the result of Howroyd and Russel (1986) remains true in the
case of continuously distributed lags.

3.2 Information lags on the own outputs

In this section we confine our analysis to the case in which the firms have no
information lags on their rivals’ outputs.

Assumption 3. Tx = 0 and Ty = 0.

Under Assumption 3, the characteristic equation has the formÃ
λ

µ
1 +

λSx
qx

¶nx+1
+ 2bα

!Ã
λ

µ
1 +

λSy
qy

¶ny+1
+ 2bβ

!
−b2αβ

µ
1 +

λSx
qx

¶nx+1µ
1 +

λSy
qy

¶ny+1
= 0

(13)
Since it is difficult to check whether the real parts of the roots are negative or
positive in general, we will show some simple special cases in which analytical
results can be obtained.

Case 1. Sx > 0 with nx = 0 and Sy = 0.

As a special case, we assume first that firm x has information lag on its own
output, however, firm y uses instantaneous information about its own output,
that is, Sx > 0 and Sy = 0. We also assume exponential weighting function
with nx = 0.Then equation (13) reduces to the following cubic equation:

a0λ
3 + a1λ

2 + a2λ+ a3 = 0

9



where the coefficients are defined as

a0 = Sx > 0,
a1 = 1 + 2bβSx > 0,
a2 = 2b(α+ β)− b2αβSx R 0,
a3 = 3b

2αβ > 0.

Furthermore, we have

a1a2 − a0a3 = 2b
©
−b2αβ2S2x + 2bβ2Sx + (α+ β)

ª
. (14)

If a2 > 0 and a1a2 − a0a3 > 0 are confirmed, then the Routh-Hurwitz stability
theorem implies that the system (10) is globally asymptotically stable. It suffices
for our purpose to show that a1a2 − a0a3 > 0 in this case since a0 > 0, a1 > 0
and a3 > 0 imply that a2 > 0. Let f(Sx) be the right hand side of (14). Since
f(0) > 0 and f 0(0) > 0, equation f(Sx) = 0 has one positive root,

S0x =
β +

p
α2 + αβ + β2

bαβ
> 0.

Hence we have a2 > 0 and a1a2 − a0a3 > 0 for Sx < S0x. We summarize this
result as follows:

Theorem 2 If Sx > 0 with nx = 0 and Sy = 0 under Assumption 3, then the
delay dynamic system (8) is globally asymptotically stable when 0 < Sx < S0x
and it is unstable when Sx > S0x where

S0x =
β +

p
α2 + αβ + β2

bαβ
.

Case 2. Sx > 0 with nx = 0 and Sy > 0 with ny = 0.

In the second special case, we assume that both firms have information lags
about their own outputs and have exponentially declining weighting functions.
Then equation (12) reduces to the following fourth degree polynomial equation:

a0λ
4 + a1λ

3 + a2λ
2 + a3λ+ a4 = 0

where the coefficients are defined as

a0 = SxSy > 0,
a1 = Sx + Sy > 0,
a2 = 1 + 2b(αSy + βSx)− b2αβSxSy R 0,
a3 = 2b(α+ β)− b2αβ(Sx + Sy) R 0,
a4 = 3b

2αβ > 0.

The Routh-Hurwitz stability theorem implies that the roots of the characteristic
equation have negative real parts if and only if all coefficients are positive and
the following determinants are positive:

J2 =

¯̄̄̄
a1 a0
a3 a2

¯̄̄̄
> 0 and J3 =

¯̄̄̄
¯̄ a1 a0 0
a3 a2 a1
0 a4 a3

¯̄̄̄
¯̄ > 0.
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Notice that
J2 = Sx + Sy + 2b(αS

2
y + βS2x) > 0

and
J3 = a3J2 − a21a4.

We can easily show that the single condition J3 > 0 implies that all roots have
negative real parts. Since J2 and a1 and a4 are positive, J3 > 0 implies a3 > 0.
Then relation J2 = a1a2 − a0a3 > 0 implies that a2 also have to be positive.

Theorem 3 Given Assumption 2, if Sx > 0 with nx = 0 and Sy > 0 with
ny = 0, then the delay dynamic system (8) is globally asymptotically stable for
(Sx, Sy) below the partition line, J3 = 0, and unstable for (Sx, Sy) above the line
where

J3 = b
©£
Sx + Sy + 2b(αS

2
y + βS2x)

¤
[2(α+ β)− bαβ(Sx + Sy)]− 3bαβ(Sx + Sy)2

ª
It is possible to obtain the analytic form of the partition line with larger

values of nx and ny. It becomes, however, much more complicated as shown in
Theorem 3. Therefore we check numerically the shapes of the partition lines.
Taking α = β = 1, b = 1 and repeating the above procedure with increasing
values of nx = ny = 1, 2, 3, 4, we obtain the four partition lines illustrated
in Figure 2 in which Pi means the partition line when nx = ny = i. Since
the partition line divides the parameter space into the stable and the unstable
regions, stability of the dynamic system (4) is clearly affected by the information
lags about the firms’s own outputs, similarly to the case of fixed time lags as
shown by Howroyd and Russel (1986). Figure 2 indicates that the stable region
becomes larger as the partition line shifts upward with increasing values of nx
and ny and converge to the stable region with fixed time delay when nx and ny
tend to infinity.

Figure 2. Partition lines
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4 Delay Nonlinear Duopolies
In this section we consider the case in which the adjustment speeds are posi-
tive functions of the outputs of the firms. In particular, we adopt the linear
dependency:

Assumption 4. α(x) = αx with α > 0 and β(y) = βy with β > 0.

The continuous dynamic system (1) under Assumption 4 can be written as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋ(t)

x(t)
= α(a− cx − 2bx(t)− by(t)),

ẏ(t)

y(t)
= β(a− cy − 2by(t)− bx(t)).

(15)

This implies that each firm adjusts its growth rate of the outputs proportionally
to a change in the profit. As we have done before, system (15) can be also
expressed in terms of the best reply functions,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ(t)

x(t)
= ᾱ(Rx(y(t))− y(t)),

ẏ(t)

y(t)
= β̄(Ry(x(t))− x(t)),

(16)

which can be interpreted as each firm adjusts its growth rate proportionally
to the difference between its profit maximizing output and its actual output.
The discrete versions of the duopoly dynamic model (15) or (16) are considered
by Huang (2002) adopting a feedback controlling method to stabilize a discrete
system and also by Hassen (2004) showing that the stability region of the Nash
equilibrium can become larger in a delayed duopoly model.
As in the case of linear duopoly, we first introduce fixed information lags on

the own behavior and rewrite (15) as⎧⎨⎩ ẋ(t) = αx(t) (a− cx − 2bx(t− Sx)− by(t)) ,

ẏ(t) = βy(t) (a− cy − bx(t)− 2by(t− Sy))

which has the same dynamic structure as the Lotka-Volterra type models. Ap-
plying the results obtained by Shibata and Saito (1980), we can demonstrate
that this fixed delay Cournot model displays various dynamic behavior ranging
from periodic solutions to chaotic solutions. Figure 3 illustrates emergence of

12



chaotic oscillation under α = β = 1, cx = cy = 1, a = 3, Sx = 1.6 and Sy = 0.9.

Figure 3. Chaotic solution of the fixed delay Cournot model

We now introduce continuously distributed lags into (15),⎧⎨⎩ ẋ(t) = αx(t) (a− cx − 2bxε(t)− bye(t)) ,

ẏ(t) = βy(t) (a− cy − bxe(t)− 2byε(t)) ,
(17)

where the expected values of the firms’ own outputs, the expected values of the
competitors’ outputs and their weighting functions are given as in the previous
section.
To examine local dynamics of the above system in a neighborhood of the

equilibrium point (xc, yc) where xc = xe = xε and yc = ye = yε, we need to ex-
amine the linearized version of system (17). By considering the right hand sides
as three-variable functions (depending on x, xε, ye and y, xe, yε, respectively),
the linearized system becomes

ẋδ(t) = αxc
µ
−2b

Z t

0

w(t− s, Sx, nx)xδ(s)ds− b
Z t

0

w(t− s, Ty,my)yδ(s)ds

¶
,

ẏδ(t) = βyc
µ
−b
Z t

0

w(t− s, Tx,mx)xδ(s)ds− 2b
Z t

0

w(t− s, Sy, ny)yδ(s)ds
¶
,

which has exactly the same form as the linear system (10) if α and β are replaced
by αxc and βyc. Thus the characteristic equation is given by

Āx(λ)Āy(λ)− B̄x(λ)B̄y(λ) = 0
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where

Āx(λ) =

Ã
λ

µ
1 +

λSx
qx

¶nx+1
+ 2bαxc

!Ãµ
1 +

λTx
q̄x

¶mx+1
!
,

Āy(λ) =

Ã
λ

µ
1 +

λSy
qy

¶ny+1
+ 2bβyc

!Ãµ
1 +

λTy
q̄y

¶my+1
!
,

B̄x(λ) = bαx
c

µ
1 +

λSx
qx

¶nx+1
,

B̄y(λ) = bβy
c

µ
1 +

λSy
qy

¶ny+1
.

4.1 Effects of the information lag about the own output

Following the same procedure as in the previous section, we have the following
result:

Theorem 4 If Sx > 0 with nx = 0 and Sy = 0 under Assumption 3, then the
delay dynamic system (17) is locally asymptotically stable when 0 < Sx < S0x
and it is locally unstable when Sx > S0x where

S0x =
βyc +

p
(αxc)2 + (βyc)2 + αβxcyc

bαβxcyc
.

The a1a2− a0a3 = 0 line divides the parameter space into two parts: one in
which the system is locally stable and the other in which it is locally unstable.
We call it the partition line. Substituting a3 = a1a2

a0
into the characteristic

equation ϕ(λ) = 0 and factorizing it yield (a1 + a0λ)(a2 + a0λ
2) = 0 which can

be solved for λ. Two of the characteristic roots are purely imaginary and the
third is real and negative:

λ1,2 = ±
r
−a2
a0
= ±iξ

and
λ3 = −

a1
a0
< 0.

We show the appearance of Hopf bifurcation giving the possibility of the birth
of limit cycles. To this end, we need to confirm whether the real part of the
complex roots is sensitive to a change in a bifurcation parameter. We select Sx
as the bifurcation parameter and suppose that λ is a function of Sx. Implicitly
differentiating the characteristic equation gives

dλ

dSx
=

λ3 + 2bβycλ2 + (−b2αβxcyc)λ
−(3a0λ2 + 2a1λ+ a2)

.
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Substituting λ = iξ with ξ2 = a2
a0
, rationalizing the right hand side and noticing

that the terms with λ and λ3 are imaginary and the constant and quadratic
terms are real yield the following form of the real part of the derivative of λ
with respect to the bifurcation parameter:

Re

µ
dλ

dSx

¶
=
a2
£
4(bβyc)2(bαxcS0x − 1)

¤
2a0(a1a3 + a22)

> 0.

We summarize this result as follows:

Theorem 5 The stationary point (xc, yc) of delay system (17) is destabilized
via a Hopf bifurcation when Sx increases from S0x.

Figure 4 shows the birth of a limit cycle in this case. In the opposite case in
which Sy = 0 with ny = 0 and Sx = 0, we have the same results as Theorems 4
and 5 if Sx, xc and α are replaced by Sy, yc and β.

Figure 4. Birth of a limit cycle

Applying Theorem 3, we also have the following result:

Theorem 6 Given Assumption 3, if Sx > 0 with nx = 0 and Sy > 0 with
ny = 0, then the delay dynamic system (17) is locally asymptotically stable for
(Sx, Sy) below the partition line, J3 = 0, and locally unstable for (Sx, Sy) above
it where

J3 = b
£
Sx + Sy + 2b(αx

cS2y + βycS2x)
¤
[2(αxc + βyc)− bαβxcyc(Sx + Sy)]

−3b2αβxcyc(Sx + Sy)2.

The curve of J3 = a1a2a3 − (a0a23 + a21a4) = 0 is the partition line between
the stable and unstable regions. Substituting

a4 =
a1a2a3 − a0a23

a21

15



into the characteristic polynomial and factoring it yield

(a3 + a1λ
2)(a1a2 − a0a3 + a21λ+ a0a1λ2) = 0

Two of the characteristic roots are purely imaginary,

λ1,2 = ±
r
−a3
a1
= ±iξ,

and the other roots are the solutions of the quadratic equation

a0a1λ
2 + a21λ+ a1a2 − a0a3 = 0,

which have negative real parts, since all coefficients are positive. The appearance
of Hopf bifurcation as the value of Sx crosses the partition line can be examined
similarly to the previous case.

Case 3. Sx > 0 with nx = 1 and Sy > 0 with ny = 1.

In the third special case we assume that both firms have information lags
about their outputs and the weighting function has a bell-shaped curve peaked
around t− s = Si for i = x, y. Substituting these values into the characteristic
equation and arranging terms indicate that the eigenvalues are the roots of the
following sixth degree polynomial,

ϕ(λ) = a0λ
6 + a1λ

5 + a2λ
4 + a3λ

3 + a4λ
2 + a5λ+ a6,

where the coefficients are defined as

a0 = (SxSy)
2 > 0,

a1 = 2SxSy(Sx + Sy) > 0,
a2 = S

2
x + 4SxSy + S

2
y − b2αβxcycS2xS2y ,

a3 = 2(Sx + Sy) + 2b(αx
cS2y + βycS2x)− 2b2αβxcycSxSy(Sx + Sy),

a4 = 1 + 4b(αx
cSy + βycSx)− b2αβxcyc(S2x + 4SxSy + S2y),

a5 = 2b(αx
c + βyc)− 2b2αβxcyc(Sx + Sy),

a6 = 3b
2αβxcyc > 0.

The Routh-Hurwitz determinants are defined as follows: J2= a1a2 − a0a3,

J3 =

¯̄̄̄
¯̄ a1 a0 0
a3 a2 a1
a5 a4 a3

¯̄̄̄
¯̄ , J4 =

¯̄̄̄
¯̄̄̄ a1 a0 0 0
a3 a2 a1 a0
a5 a4 a3 a2
0 a6 a5 a4

¯̄̄̄
¯̄̄̄ and J5 =

¯̄̄̄
¯̄̄̄
¯̄
a1 a0 0 0 0
a3 a2 a1 a0 0
a5 a4 a3 a2 a1
0 a6 a5 a4 a3
0 0 0 a6 a7

¯̄̄̄
¯̄̄̄
¯̄ .

It is very hard to analyze the signs of these determinants analytically, there-
fore we perform numerical simulations. We take a = 10, b = 1, α = β = 1 and
cx = cy = 1 and numerically confirm that the J5 = 0 curve is the partition line
in Figure 5 where the curves, a2 = 0, J3 = 0 and J4 = 0 are located outside the
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region shown in the figure. In the shaded region below the J5 = 0 curve, the
Routh-Hurwitz stability conditions are satisfied.

Figure 5. Tthe partition line and stable region

We also numerically confirm that with the selection of Sx = 0.4 and Sy =
0.2 the dynamic system (17) generates complex dynamics. It is illustrated in
Figure 6 where the time trajectory is plotted in the (lnx, ln y) space. It is well
known that the weighting function (9) converges to the Dirac delta function
when nx and ny tend to infinity. We also showed earlier that the characteristic
polynomial of continuously distributed delay models also converge to that of
the fixed delay, so in the limiting case, the model with continuously distributed
time lag becomes identical with the fixed time delay model. Comparing Figure
3 with Figure 6 reveals the similarity between dynamics generated by the model
with continuously distributed time lag and dynamics by the fixed time delay
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model even when nx = ny = 1.

Figure 6. Trajectory in the (ln x, ln y) space

4.2 Effects of the information lag about the rival’s output

In this section we assume again that there are no information lags about the own
outputs of the firms, similarly to the model introduced in Section 3.1, however
we assume the nonlinear adjustment process (15). In this case the characteristic
equation (11) has the form

(λ+2bαxc)(λ+2bβyc)

µ
1 +

λTx
q̄x

¶mx+1µ
1 +

λTy
q̄y

¶my+1

−b2αβxcyc = 0. (18)

This is the same equation as (12) when α and β are replace by αxc and βyc,
respectively. In Section 3.1 we have proved that all roots of equation (12)
have negative real parts, which also holds for equation (18) showing that the
stationary state is always locally asymptotically stable.

5 Conclusion
Dynamic duopolies were examined with linear price and cost functions. We
assumed first constant speeds of adjustment in a gradient adjustment process.
It is well-known that the stationary state is always globally asymptotically sta-
ble. If the firms have fixed or continuously distributed time delays only on the
outputs of the rivals, then stability is preserved. The stability might be lost if
the firms have delays in their own outputs.
Similar results were shown in the case when the firms adjust their growth

rates of the outputs proportionally to the changes in their profits. The resulting
dynamic systems are nonlinear, and we have shown that similar results hold
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about the local asymptotical stability of the steady state. In the case of stability
loss Hopf bifurcation occurs giving the possibility of the birth of limit cycles
around the stationary state.
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