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Abstract We investigate the impact of bid-ask spreads on the financial market fluctua-

tions by defining an analytical model for time evolution of stock share prices. The defined
model is similar to the GARCH class of models, but can additionally exhibit bimodal

behaviour. Moreover, it differs from existing Ising-type models. It turns out that the con-

structed model is a solution of a thermodynamic limit of a Gibbs probability measure
when the number of traders and the number of stock shares approaches the infinity. The

energy functional of the Gibbs probability measure is derived from the Nash equilibrium

of the underlying game.
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1. Introduction

The motivation for this paper is to provide insight into the relationship between
bid-ask spreads and stock price fluctuations in the financial markets. Most financial
markets have nowadays become fully electronic [1]. In these markets, any market
participant can post limit orders — propositions to sell or buy a certain volume
of shares at a fixed minimum or maximum price. With that market participant
actually offer other traders the opportunity to trade at the posted price. At a given
moment of time, the best offer on the sell side, the ask price, is higher than the
best price on the buy side, the bid price, so no transaction occurs. For a transaction
to happen, an market participant must issue a market order to buy or to sell a
certain number of shares. The amount by which the ask price exceeds the bid is
usually called the bid-ask spread. This is essentially the difference in price between
the highest price that a buyer is willing to pay for an asset and the lowest price for
which a seller is willing to sell it [2]. The bid-ask spread partially characterize the
liquidity of the market, which is one of the most important attribute of financial
markets. The focus of recent research has been to estimate the bid-ask spread, and
its components, using transaction returns [3, 4]. In his seminal paper, Roll (1984)
derives an implicit spread estimator in the equity market [5]. He uses a relationship
between transaction price changes to estimate indirectly the effective spread in an
efficient market [6], and his method only requires the transaction prices themselves.
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Corwin and Schultz (2009) derive an estimator for the bid-ask spread based on daily
high and low prices [7]. To demonstrate the applicability of the high-low estimator
to non-U.S. markets, they estimate high-low spreads for individual stocks in Hong
Kong and India using daily high and low prices [8]. A question of both theoretical
and practical crucial importance is to know what impact have the spread on the
stock price fluctuation [1, 9, 10, 11, 12]. Roll (1984) [5] and French and Roll (1986)
[10] show that serial correlation and variance of observed price changes are both
affected by spreads . Here, we will develop a model of stock price evolution, which
would exhibit statistical properties very close to the empirical findings [13, 14, 15].
Based on the developed model and on the two aforementioned spread estimators,
we will show how bid-ask spread implies the positive autocorrelation in the absolute
stock price returns. Also, we will show that our research suggests that bid-ask spread
is responsible for the two-phase behaviour [15, 16] of the financial markets.

2. Model

Let pt be the price of a given stock. We define the stock price return as rt = ln pt

pt−4t
,

where 4t is a given time interval. Without loss of generality we will focus on a
one-period (one time step) case. A multi-period case will be considered later. In
one-period the stock price at time t = 0 is p0 and all market participants know
that. Based on available information [17, 18, 19] they estimate the expected return
at the time t = 4t in an interval form (µ − ε, µ + ε), where µ is the estimated
expected return, and ε is the estimation uncertainty.

2.1. Probability space

In order to define the probability space ΩN , we consider a company with M issued
stock shares on a market with N agents (market participants). Every agent in
every time step can buy or sell {0, . . . ,M} shares. Thus, agent i ∈ {1, . . . , N} at
every time step plays a strategy ωi ∈ {−M, . . . , M}. This defines the probability
(configuration) space as ΩN = {−M, . . . , M}N .

2.2. Personal preferences and interactions

Further, based on the assumptions, personal preferences of agents and interactions
between them are postulated. For the sake of simplicity, we first focus on a case
with no uncertainty, ε = 0. The difference between the supply and the demand
is[20]

∑N
i=1 ωi. Accordingly, the return is usually defined as[21, 22],

r =
1
λ

∑N
i=1 ωi

N
, (1)

where λ is the market depth, i.e., the excess demand needed to move the price by
one unit. If we assume that all trading is done at the return r, the gain of agent i is

gi = −ωi

(
1

λN

N∑
i=1

ωi − µ

)
i = 1, . . . , N. (2)
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For example, if agent i played strategy ωi = 10 (i.e. she wants to buy 10 shares) and
if others played such strategies that 1

λN

∑N
i=1 ωi > µ, then the agent has bought

shares at a higher price than a fair one and has achieved a negative gain.
If 4t is large enough, it can be assumed that between two discrete time steps

every agent’s behaviour converges to Nash equilibrium. In a Nash equilibrium, every
agent is doing the very best she can, given the actions of all others. It is evident
that when all agents have reached such a point, none has any incentive to change
unilaterally what she is doing, so the situation is regarded as an equilibrium. If
(ω∗1 , . . . , ω∗N ) is to be a Nash equilibrium, each agent maximises its own gain given
the other agents’ choices. Thus, (ω∗1 , . . . , ω∗N ) must satisfy the first-order conditions,

∂gi(ω∗1 , . . . , ω∗N )
∂ωi

= 0, i = 1, . . . , N. (3)

Here, for the purpose of differentiation we have extended the set of strategies, ωi ∈
R, i ∈ {1, . . . , N}. From Eqs. (2) and (3) Nash equilibrium can be easily calculated,

ω∗1 = ω∗2 = . . . = ω∗N =
λµ

1 + 1
N

. (4)

Evidently, for large N all agents prefer to play the strategies close to λµ. In a
variational form, each of them minimises (ωi − λµ)2 , i = 1, . . . , N . Given this, the
personal preferences of every agent can be modelled as

w1(ωi) =
π

λσ1
(ωi − λµ)2 + πλσ1, (5)

where σ−1
1 is the agent risk aversion[23] (σ1 is analogous to the temperature in phys-

ical systems) and π is a technical constant. The solution Eq. (4) is derived under the
assumption that all agents are behaving optimally. Due to possible false or incom-
plete information, this assumption may not always be true[24]. Regardless of the
others, the optimal strategy ω∗i = 1

2 (λµN−
∑

j 6=i ωj) for agent i is the solution of the

equation, ∂gi(ω1,...,ω∗i ,...,ωN )
∂ωi

= 0. For large N , agent i minimises
(

1
N

∑N
i=1 ωi − λµ

)2

.
Analogous to the personal preferences, the interactions between agents can then be
modelled with

w2(ω1, . . . , ωN ) =
π

λσ2

(
1
N

N∑
i=1

ωi − λµ

)2

+ πλσ2, (6)

where σ−1
2 is the agent regret aversion[23]. Thus, by minimising Eq. (5), the

agents maximise their gain at minimum risk and at the same time, by minimis-
ing Eq. (6), they minimise their maximal regret (opportunity cost). According to
that, a natural way to include uncertainty ε into the model is to replace Eq. (5)
and Eq. (6) with w1(ωi) = π

λσ1
(ωi − λ(µ− ε))2 + πλσ1, and w2(ω1, . . . , ωN ) =

π
λσ2

(
1
N

∑N
i=1 ωi − λ(µ + ε)

)2

+πλσ2, respectively. Finally, from behavioural finance
it is known[25, 17, 26] that the agents choose from set of strategies close to equilib-
rium in a different way than from set of extreme strategies. The difference between
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a gain of 100 and a gain of 200 appears to be greater than the difference between
a gain of 1100 and a gain of 1200. Mentioned fact is usually modelled with log
utility function[26]. Therefore, instead of using w1 and w2, the personal prefer-
ences of each agent and the interactions between agents will be modelled with,
u1(ωi) = lnw1(ωi), i ∈ {1, . . . , N} and u2(ω1, . . . , ωN ) = lnw2(ω1, . . . , ωN ).

2.3. Equilibrium probability measure

Personal preferences define what strategies agents prefer individually, and interac-
tions define how the other agents react when one agent decides to play a certain
strategy. Next, based on personal preferences and interactions, the equilibrium prob-
ability measure of the stock price return is derived. Summing the interactions over
all agents defines the energy[27],

UN (ω1, . . . , ωN ) =
N∑

i=1

lnw1(ωi) + lnw2(ω1, . . . , ωN ). (7)

With the introduced probability space and the energy defined on it, it is easy to
calculate the Gibbs probability measure[27, 28] on a set of N agents,

PN (ω1, . . . , ωN ) =
exp (−UN )

ZN
, (8)

where ZN =
∑

{ω1,...,ωN}∈ΩN
exp (−UN ) is the corresponding partition function

[27, 28]. The Gibbs probability measure converges to a Gibbs state for large N . Due
to the translation invariance of energy functional, the Gibbs state is an equilibrium
state of the system[27]. Using the probability measure Eq. (8) of a random vector
(ω1, . . . , ωN ), the distribution of the return r Eq. (1) can be easily determined. We
are particularly interested in the case of weak convergence[29]. For that purpose
we want to know the expectation of the arbitrary continuous function h ∈ C(R) of
random variable r,∫

Ω
h
(

1
λN

∑N
i=1 ωi

)
1

( 1
N

PN
i=1 ωi−λ(µ+ε))2

+(λσ2)2
Pρ(dω)∫

Ω
1

( 1
N

PN
i=1 ωi−λ(µ+ε))2

+(λσ2)2
Pρ(dω)

. (9)

Pρ denotes the product measure on ΩN = {−M, . . . , M}N with identical one-
dimensional marginal distributions[29] ρ =

∑M
i=−M

1
γw1(i)

δi, where δi is the Kro-

necker delta function and γ =
∑M

k=−M
1

w1(k) is a positive constant. With respect
to Pρ, the coordinates {ωi} are i.i.d. The ”obvious” step is to apply generalised
central limit theorem[30, 31, 32], which states that a sum of i.i.d. random variables,
when properly centred and scaled belongs to the domain of attraction of a stable
distribution[31, 32, 33]. Because of the properties that ρ inherits from w1(ωi), when
the number of stocks M and the number of agents N approach the infinity (ther-
modynamic limit), the distribution Pρ converges to a Levy stable distribution with
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index (1,0), i.e. to the Cauchy distribution[30, 31]. As a consequence, the whole
expression converges to∫

R h (x) 1
(x−(µ+ε))2+σ2

2
fC(x;µ− ε, σ1

γ )dx∫
R

1
(x−(µ+ε))2+σ2

2
fC(x;µ− ε, σ1

γ )dx
=

=

∫
R h (x) 1

(x−(µ+ε))2+σ2
2

1
(x−(µ−ε))2+(σ1/γ)2

dx∫
R

1
(x−(µ+ε))2+σ2

2

1
(x−(µ−ε))2+(σ1/γ)2

dx
. (10)

If the regret aversion and the risk aversion are in a specific relation σ2 = σ1/γ = σ,
then the following symmetric distribution is obtained

r =
1
λ

∑N
i=1 ωi

N

D−→ C
1

(x− (µ + ε))2 + σ2

1
(x− (µ− ε))2 + σ2

, (11)

where C is normalisation constant. According to the theory of truncated Levy
distributions[30] the same result can be obtained for large, but finite M and N .
The equation (11) can be rearranged in the following manner,

f(x | ε) = C
1

1 + (x−µ)2

ε2+ σ2
2

+ ((x−µ)2−ε2)2

2σ2ε2+σ4

. (12)

We now move from the one-period to the multi-period setting. For this purpose the
time dynamics of µ, σ and ε need to be determined. In the first approximation µ and
σ can be modelled as constants, since they primarily depend on the growth rate of a
company and the agents risk aversions. In the first approximation, the uncertainty
ε in estimation of the expected return µ depends on the difference between the
realised returns and the estimated expected return. If the realised returns, in a few
steps of a sequence, turn out greater or lower than the estimated expected returns
due to stochastic mechanisms, then the agents’ uncertainty in the estimation of the
expected return becomes greater. In line with that, local deviations of the realised
returns from the estimated expected returns are modelled with the variable y, whose
distance from zero represents the agent’s uncertainty, ε = |y|. Time dynamics of
y will be defined under three natural assumptions. First, y = 0 should be the
only equilibrium point of the mentioned dynamics. Second, return to equilibrium in
terms of percentile change of uncertainty should be greater if uncertainty is greater.
Third, the return to equilibrium should not depend on the sign of y. One simple
deterministic system with the above prescribed properties is[30],

yt − yt−4t

yt−4t
= −αy2

t−4t, (13)

where α is a constant that determines how fast the market returns to equilibrium.
Pursuant to the above, the deviation of the realised return from the estimated
expected return serves as the input to Eq. (13). Finally, the following model is
proposed for the time evolution of the random variable rt,

a) r0 = µ, y0 = 0,
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b) yt = yt−4t − αy3
t−4t + 1

α (rt−4t − µ)1{|yt−4t−αy3
t−4t+

1
α (rt−4t−µ)|<1},

c) f(xt | yt) = C(yt) 1

1+
(xt−µ)2

y2
t + σ2

2

+
((xt−µ)2−y2

t )2

2σ2y2
t +σ4

.

where f(xt|yt) is the probability density function of the random variable rt and 1A

is the indicator function, a function of a technical condition. The indicator function
ensures that the discrete dynamical system Eq. (13) is in a region where zero is the
only equilibrium point. The obtained distribution has fat tails and it is unimodal
for low values of uncertainty, whereas for higher values of uncertainty, the shape of
the distribution is bimodal. This is shown in Fig. 1.
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Fig. 1: Probability density function. The solid line is for f(xt|yt = 0.05), and the
dash-dot line is for f(xt|yt = 0).

3. Validation

A validation is performed to show how defined model statistically matches the
actual data. For this purpose, we have employed the daily returns for the S&P
500 index from January 3 1950 until September 3 2009. Using the Metropolis-
Hastings algorithm[34], 50,000 samples from the proposed model with the param-
eters

{
µ, σ2, α

}
=
{
2.75 · 10−4, 0.33 · 10−4, 15

}
have been generated. In Fig. 2, the

similarities between the distributions of the two data sets are examined.
From the above, it can be inferred that the estimated probability density func-

tions from S&P 500 returns and the returns from the model show satisfactory sim-
ilarity. Furthermore, the time dependence of the two time series has been explored
with the autocorrelation functions, Fig. 3. The concurrence between them is found
to be very good and consistent with the stylized facts[35, 32, 13] relating to time
dependence of returns, zero autocorrelation for returns, and positive autocorrelation
for absolute returns.
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Fig. 2: Comparison of probability density functions. Dash-dot line represents esti-
mated pdf from the proposed model returns and solid line represents the estimated
pdf from S&P 500 returns. The kernel based method was used for estimating the
pdf from data.
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Fig. 3: Comparison of the autocorrelation functions. (a) ’4’ - the autocorrelation
function of S&P 500 daily returns, ’o’ - the autocorrelation function of the returns
from the model, (b) ’4’ - the autocorrelation function of S&P 500 daily absolute
returns, ’o’ - the autocorrelation function of the absolute returns from the model.

4. Bid-ask spread modelling

One of the first models of the bid-ask spread is due to the Richard Roll and his
paper, ”A Simple Implicit Measure of the Effective Bid-Ask Spread in an Efficient
Market” [5]. Under Rolls ideal market assumptions, transaction prices can only
bounce either at the ask price or at the bid price. Based on that assumption and
based on efficient market hypothesis [6] he derived the following effective spread
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estimator,

S = 2
√
−Cov(4Pt,4Pt+1). (14)

Rolls measure is simple and easy to compute. Obviously positive values of the co-
variance price changes represents a problem for defined estimator. Several strategies
exist in literature which resolves the problem [7]. The most common approach is
to multiply the covariance by negative one, estimate the spread, and multiply the
spread by negative one. That approach we follow here and we also deal with the re-
turns, rather than with the price changes. Further, uncertainty y defined in Chapter
2 enters into the proposed model for stock return evolution with square. As our goal
here is to connect dynamics of the uncertainty y with the bid-ask spread dynamics,
we are primarily interested in the square values of the bid-ask spreads. According
to that, in Fig. 4. we compare behaviour of the square values of the y multiplied by
10 (proportionality factor) and square values of the bid-ask spreads obtained with
Roll’s estimator.
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Fig. 4: Roll’s estimator and uncertainty y (13). Red line represents a square of the
bid-ask spread estimation obtained with Roll’s estimator. Black line represents a
square of the uncertainty estimation multiplied by 10.

Analysis is performed on the data set from Chapter 3. Besides mentioned, there
exist several similar spread estimators in literature [3, 36]. One of the most recent
bid-ask spread estimator is due to Corwin and Schultz (2009) [7]. They derive an
estimator for the bid-ask spread based on daily high and low prices. Their estimator
is based on two ideas. Firstly, daily high prices are almost always buy orders and
daily low prices are almost always sell orders. Secondly, the component of the high-
to-low price ratio that is due to volatility increases proportionately with the length
of the trading interval, while the component due to bid-ask spreads is constant over
different trading intervals. Based on that, they derive an estimate of a stocks bid-
ask spread as a function of the high-to-low price ratio for a single two-day period
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and the high-to-low ratios for two consecutive single days. Here, we present their
final result,

β =
(

ln
Ht

Lt

)2

+
(

ln
Ht+1

Lt+1

)2

, γ =
(

ln
Ht,t+1

Lt,t+1

)2

, (15)

where, Ht (Lt) is the high (low) price for day t, and Ht,t+1 (Lt,t+1), is the high
(low) price for two day period. Further, from β and γ they calculate α as,

α =
√

2β −
√

β

3− 2
√

2
−
√

γ

3− 2
√

2
. (16)

Finally, they defined spread estimator as,

S =
2 (eα − 1)

1 + eα
. (17)

We present in Fig. 5. square values of the estimation of the bid-ask spread ob-
tained with high-low spread estimator and square values of the y multiplied by 10
(proportionality factor).
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Fig. 5: High-low estimator and uncertainty y (13). Red line represents a square of the
bid-ask spread estimation obtained with high-low estimator. Black line represents
a square of the uncertainty estimation multiplied by 10.

Analysis is also performed on the data set from Chapter 3, but from January 3rd
1962 until September 3rd 2009. This is because daily high and low prices needed by
the high-low estimator are available from January 3rd 1962. Obviously, the results
on the Fig. 5. and 6. are similar. Both bid-ask spread estimates are consistent with
uncertainty dynamics. We can conclude that our definition of uncertainty is actually
very similar to the bid-ask spread. Finally, in first approximation we can state that
bid-ask spread is good measure of the uncertainty in the expected return estimation.
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5. Conclusion

In this paper, the model for time evolution of stock returns was derived based
on a micro-level description of the financial market. The defined model is similar
to the GARCH class of models, but can additionally exhibit bimodal behaviour.
Moreover, it differs from existing Ising-type models. In many physical systems,
despite the fact that microscopic description is stochastic, macroscopic behaviour
is deterministic due to the law of large numbers, e.g. magnetisation in materials.
Surprisingly, in the case of a financial market, we have found that the macroscopic
variable, stock return, is a random variable. Particularly, we have found that positive
autocorrelation of absolute returns is consequence of the existence of the bid-ask
spread. This findings are completely in agreement with findings of Stoll [36], who
state that in an informationally efficient market, the spread is the only possible
cause for the serial covariance of price changes. Finally, it seems that the two-
phase behaviour of the financial markets is primarily caused by the appearance of
extremely large bid-ask spread.
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