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Abstract

We search for the regularities observed in the production of goods. Despite the hetero-

geneity in sectoral growth rates, second order time polynomial seems to explain accurately

enough the accumulation of production at every sector on different levels of aggregation.

This is our first observation from Finnish economy with annual data, and we call it an eco-

nomic law of production. Our second observation is that the measured acceleration at every

sector deviates from zero statistically significantly. This is inconsistent with the assumption

in neoclassical economics, that is, firms produce at their equilibrium flows of production.

A different framework is thus needed for modeling firms’ behavior. We test a Newtonian

model for production against the neo-classical one, and our observation is that the former

one works better with annual data at every tested industry in Finland.
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1 Introduction

A literature of economic laws of production started at 1850s by [1] by introducing the concept
of marginal productivity. Then [2] defined the law of decreasing marginal productivity, which
is a cornerstone in neo-classical theory of production. The second state in finding regularities
in production took place in the connection of estimating neo-classical production functions, see
[3] and [4]. In [3], Cobb-Douglas -type of production function was introduced and estimated by
aggregate level U.S. data of 1899-1922. In this estimation, the marginal productivity for labor
was estimated as 3/4 and that of capital as 1/4; thus constant returns to scale were observed
in aggregate production. However, the results in [3] have been questioned by [5] - [8]. In
these articles it is shown that the observed success in about 80 years in estimating neo-classical
production functions at aggregate and sectoral data has been based on a misunderstanding;
the true estimated relation has been an accounting identity rather than a physical production
function. Thus the whole research line of estimating production functions is in a new situation
where new kind of frameworks are welcome. This is the topic of our research.
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Other kinds of laws in production have been obtained by using company level data in several
countries. Refs. [9] and [10] report support for scaling laws for the distribution of firms’ value
added, growth of value added, sales, and employment by using Japanese and U. S. data. However,
these ‘laws of production’ characterize statistical properties of the behavior of several firms, and
not the properties of the possible aggregate level production functions as studied in [3] and others.

Here we introduce a fourth kind of empirical ‘law of production’. We show that second order
time polynomial is an accurate model for the accumulated production at industrial, sectoral, and
aggregate level in Finnish economy with annual data. Our approach is analogous to kinematics
in physics: ”Kinematics is the study of the geometry of motion; it deals with the mathematical
description of motion in terms of position, velocity, and acceleration. Kinematics serves as a
prelude to dynamics, which studies force as the cause of changes in motion” ([11], p. 25).

We describe economic production analogously to the motion of an ideal particle — a body
with no size and no internal structure. This ideal particle is represented by a point that measures
the accumulated production; the point illustrates the position of an industry, sector, or the whole
economy at a particular moment of time. This framework postulates that to understand why
an economy grows we should measure the ‘economic forces’ acting upon industrial (sectoral)
productions. We define the forces by transforming the neo-classical theory into a dynamic form
analogous to Newtonian framework in physics, and we test this model against the static neo-
classical one.

The study is organized as follows. The data is described in Section 2. The kinematics of
production is defined in Section 3, and in Section 4 the empirical results of modeling accumulated
production are shown. The two theories to be tested are presented in Section 5, and Section 6
shows the empirical results of testing the theories. Section 7 is a summary.

2 The data used in the study

We use annual sectoral production values at year 2000 prices measuring production volumes
in the Finnish economy. The data contains the following 9 main sectors [12] at 1975-2002: 1
= A (Agriculture, forestry and hunting) + B (Fishing), 2 = C (Mining and quarrying) + D
(Manufacturing) + E (Electricity, gas, and water supply), 3 = F (Construction), 4 = G (Trade,
repair of motor vehicles and household goods) + H (Hotels and restaurants), 5 = I (Transport,
storage and communication), 6 = J (Financial intermediation and insurance), 7 = K (Real estate
and business activities), 8 = L (Administration, compulsory social security) + M (Education),
9 = N (Health and social work) + O (Other community, social and personal services) + P
(Household service activities) – Financial intermediation services indirectly measured (FISIM).
These sectors cover all Finnish production.

In Finland, manufacturing is divided in 13 sectors: DA: Food products, beverages and to-
bacco, DB+DC: Textiles, textile products, leather and leather products, DD: Wood and wood
products, DE: Pulp, paper and paper products, publishing and printing, DF: Refined petroleum
products, coke and nuclear fuel, DG: Chemicals and chemical products, DH: Rubber and plas-
tic products, DI: Other non-metallic mineral products, DJ: Basic metals and fabricated metal
products, DK: Machinery and equipment, DL: Electrical and optical equipment, DM: Trans-
port equipment, DN: Other manufacturing and recycling. These sectors cover the whole Finnish
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manufacturing, and we have annual data of these from years 1975-2008.
In empirical analysis, derivatives are approximated by difference quotients, e.g., by ∆Qk(t)

∆t

with ∆t = 1 (year) is approximated Q′k(t).

3 Kinematics of production

Let time unit (t0, t), where t0 < t are two time moments, be partitioned in intervals ∆s (running
time is denoted by s). The kinematics of production at sector i can then be defined as follows:

Qi(t) = Qi(t0) +
∫ t

t0

qi(s)ds, Q′i(t) = qi(t), Q′′i (t) = q′i(t),

where Qi(t0) (unit) is the accumulated volume of production at sector i till time moment t0,
Q′i(t) = qi(t) (unit/y) the momentous flow, and Q′′i (t) = q′i(t) (unit/y2) the momentous accel-
eration of production at instant of time t; y is an arbitrary unit of time which can be a month,
year, etc.1 The measurement units of speed (unit/y) and acceleration (unit/y2) become thus
similar to those found in mechanics.

4 Empirical results for accumulated production

We estimate the following model for accumulated production Qi (unit),

Qi(t) =
∫ t

0

qi(s)ds = ai + bit +
ci

2
t2, i = 1, 2, ..., (1)

where t is time, qi (unit/y) the flow of production at sector (industry) i, ai, bi, ci are constants
with units: unit, unit/y, unit/y2, respectively, and y = year. These constants can be interpreted
as follows: qi(t) = bi +cit, q′(t) = ci; thus ci measures the acceleration of production, see Section
3. The estimation results for model (1) for the economy level of production in Finland are in
Table 1, those for the 9 main sectors are in Table 2, and those for the manufacturing industries
are in Table 3; D-W is the Durbin-Watson statistic.

Sector Constant (T-stat.) T ime (T-stat.) T ime2 (T-stat.) R2 D-W

Aggregate 49758.54 (8.97) 60403.68 (63.47) 892.40 (26.21) 0.999 0.25

Table 1: Estimated model for accumulated aggregate production in Finland

Tables 1-3 show that acceleration of production has been statistically significantly negative in
Sectors 1, 3 and in Industry DB+DC, and significantly positive in all other sectors and industries,
and in the aggregate economy. The neoclassical assumption, that firms produce an equilibrium
amount in a time unit, is thus rejected in every case. In other words, a statistically significant
linear time trend exists in flows of production at all sectors and industries. The only statistically
insignificant parameter estimate is â6 at Sector 6.

All the estimated models show a positive autocorrelation problem which implies that a cyclical
term is missing from the models. However, we did not get rid of the autocorrelation problem by

1Measurement units are in brackets after the quantities.
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Sector Constant (T-stat.) T ime (T-stat.) T ime2 (T-stat.) R2 D-W

1 2528.10 (6.18) 4514.18 (64.39) -15.33 (-6.11) 0.999 0.28

2 14478.27 (5.89) 10868.69 (25.77) 337.58 (22.37) 0.999 0.21

3 4127.73 (4.38) 7165.66 (44.32) -14.93 (-2.58) 0.999 0.20

4 5525.35 (3.90) 8461.88 (30.98) 73.74 (6.71) 0.999 0.20

5 6951.82 (8.55) 3734.97 (26.80) 141.12 (28.30) 0.999 0.20

6 -46.33 (-0.07) 2585.29 (21.24) 30.71 (7.05) 0.998 0.18

7 7679.09 (11.58) 7203.11 (63.34) 220.42 (54.17) 0.999 0.26

8 5689.64 (13.78) 8314.94 (117.41) 57.26 (22.60) 0.999 0.18

9 2560.25 (3.20) 7641.61 (55.71) 57.65 (11.75) 0.999 0.18

Table 2: Estimated models for accumulated production in 9 main sectors

Industry Constant (T-stat.) T ime (T-stat.) T ime2 (T-stat.) R2 D-W

DA 1618.68 (7.30) 1097.23 (35.26) 19.19 (21.06) 0.999 0.11

DB+DC 818.77 (4.90) 1311.96 (55.98) -15.74 (-22.93) 0.998 0.15

DD 986.50 (4.79) 511.80 (17.71) 15.96 (18.86) 0.998 0.11

DE 2452.06 (10.42) 3079.88 (93.32) 75.32 (77.92) 0.999 0.36

DF 746.00 (4.27) 66.44 (2.71) 9.60 (13.37) 0.992 0.22

DG 651.20 (8.43) 504.32 (46.58) 20.25 (63.85) 0.999 0.21

DH 293.25 (7.21) 295.96 (51.89) 11.68 (69.91) 0.999 0.36

DI 494.33 (3.57) 633.62 (32.59) 5.39 (9.46) 0.999 0.18

DJ 1794.50 (4.06) 557.44 (9.00) 50.81 (28.00) 0.998 0.18

DK 2180.18 (4.42) 1200.71 (17.35) 41.80 (20.62) 0.999 0.23

DL 14067.29 (3.22) -3928.76 (-6.42) 215.76 (12.04) 0.947 0.14

DM 874.27 (9.95) 777.84 (63.15) 0.90 (2.51) 0.999 0.23

DN 330.50 (5.32) 445.68 (51.14) 3.50 (13.71) 0.999 0.20

Table 3: Estimated models for accumulated production in manufacturing

adding cyclical terms in the model, and so we report the results as such. The estimated model
for the economy wide production is displayed in Figure 1, where the graph of the residual (the
one fluctuating around 0) displays the autocorrelation problem.

5 Comparison of the two theories of production

5.1 Neo-classical theory

According to the neo-classical theory, the flow of production of a firm maximizes its profit. Let
the profit Πi ($/y) of firm i in a perfectly competed industry be

Πi = piqi − Ci(qi),

where pi ($/unit) is the price of the product of the firm, qi (unit/y) the flow of production,
and Ci(qi) ($/y) the cost function. The assumption of profit maximization gives the following
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equation for the flow of production

∂Πi

∂qi
= 0 ⇔ pi = C ′i(qi) ⇒ qi = fi(pi), fi = C ′−1

i , (2)

when ∂2Πi/∂q2
i < 0 is assumed. Without losing generality we can assume any function for fi

that represents all possible cost functions for the firm. We use Eq. (2) in testing the neo-classical
theory. Industrial prices are approximated by price ratios ptqt/p0qt = pt/p0, where industrial
current value flows are divided by fixed price flows. The results are presented in Table 4.

5.2 Newtonian theory

In [13] the profit function of firm i in a perfectly competed industry is assumed as

Πi = pi(t)qi(t)− Ci(qi(t), t),

where the quantities are as earlier but now a time-dependence is assumed in the flow of pro-
duction, and in price and cost functions. The Newtonian theory of a firm can be stated as (see
[13]),

q′i(t) =
1

mi

∂Πi

∂qi
, (3)

where q′i(t) (unit/y2) is the acceleration of production (see Section 3), ∂Πi/∂qi the force acting
upon production, and positive constant mi with unit (y/unit)2×$ measures the inertia (”mass”)
in the firm’s adjustment of its flow of production; rigid technology, bottlenecks in the production
process, etc. Neoclassical theory is a zero force situation in (3) at a fixed time moment: ∂Πi/∂qi =
0 ⇒ q′i(t) = 0.

Equation (3) is our first testable form for the Newtonian theory. To get another testable form
of the theory, we assume the following time path for price

pi(t) = ai0 + ai1t + ai2sin(bit). (4)

A linear time trend exists in price if ai1 6= 0, and the trigonometric term represents possible
business cycle behavior with bi as the frequency parameter. Empirical results for Eq. (4) for
manufacturing industries are in Table 7 in Appendix. The results show that Eq. (4) works
reasonably well in explaining the industrial prices; only in Industry DF no reasonable model is
obtained. However, positive autocorrelation problem exists in the models, and it shows that the
cyclical behavior of prices should be modeled in a more detailed way. Except DH, DI, and DM,
all other industries show a statistically significant trigonometric term.

The cost function is assumed as

Ci(qi(t), t) = ci0 + ci1qi(t) +
1
2
ci2q

2
i (t)− ci3tqi(t),

where the last term represents possible decreasing costs with time (ci3 ≥ 0) due to technical
improvement. From these we get the marginal profit function as

∂Πi

∂qi
= (ai0 − ci1)− ci2qi(t) + (ai1 + ci3)t + ai2sin(bit).

The linear time trend in ∂Πi/∂qi may thus occur due to a positive time trend in price, or
a negative time trend in costs. The cyclical behavior in ∂Πi/∂qi originates solely from price
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fluctuation. The differential equation in (3) becomes then

miq
′
i(t) = zi0 − ci2qi(t) + zi1t + ai2sin(bit), (5)

where zi0 = ai0 − ci1, zi1 = ai1 + ci3, and its solution is

qi(t) =
zi0ci2 − zi1mi

c2
i2

+
ai2

b2
i m

2
i + c2

i2

(
ci2sin(bit) + bimicos(bit)

)
+

zi1

ci2
t + Ci1e

− ci2
mi

t
, (6)

where Ci1 is the constant of integration.
We compare empirically the neo-classical theory in (2) with the two forms of the Newtonian

one in (3) and (6). Notice that the frequency parameter bi and the exponential and linear time
trend parameters, ci2/mi and zi1/ci2, may differ between industries.

6 Empirical results of testing the theories

For brevity, the testing is made only at the industry data which suits better for these micro
level theories. Because time is abstracted in the neo-classical theory, and earlier on we observed
a statistically significant linear time trend in production flows at all sectors and industries, we
can conclude that as such the theory fails in describing the evolution of the industrial flows of
production. However, we can test whether the price and the flow of production in an industry
have a co-integration relation. In this testing we use Johansen’s Unrestricted Co-integration
Rank test, and these results are in Table 14 in Appendix. The results show that Industries
DB+DC, DE, DI, DL, and DN have at most one co-integration relation at 0.05 level, while other
industries show no such relation. Thus only in these industries the neo-classical theory has the
possibility to work.

The estimated neo-classical models for manufacturing industries are in Table 4. Because
quantities pi, p2

i , sin(pi), and exp(pi) — where pi is price at industry i — correlate at all
industries roughly at rate 0.9 (in Table 8 in Appendix are the correlations in Industry DA),
these variables cannot be used simultaneously in one model. Thus we chose the one of these
that correlates most with the flow of production, and estimated the equation this way. The
estimated models for the neo-classical theory show a reasonable rate of explanation at industries
DB+DC, DE, DG, DH, DI, DJ, DL, and DN. However, the D-W statistic shows a high positive
autocorrelation at every industry, and price negatively affects production at Industry DB+DC.
In Figures 3 and 4, the two best ones of all the estimated neoclassical models are displayed.
These models for Industries DG and DH show that autocorrelation in the residual (the graph
circulating around 0) is a severe problem, and it shows that a cyclical term is missing in the
model. Even though the models have a similar time trend as in the explained variable, the models
are not accurate. We tested also whether inserting lagged prices would improve the models, even
though they are not included in the theory as expressed in Eq. (2). However, lagged prices did
not essentially improve any of the models.

The estimated Newtonian models of form (3) for manufacturing industries are in Table 5. We
divided the industrial surplus by the flow of production to get the ‘unit profit’ in an industry, and
approximate marginal profitability by the unit profit. Only statistically significant parameters
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Industry Constant(T) price(T) price2(T) sin(price)(T) R2 D-W

DA 782.1(2.1) 1206.9(2.6) 0.18 0.08

DB+DC 1382.8(26.3) -781.0(-11.9) 0.82 0.26

DD 1348.9(21.1) 0.25 0.19

DE 8887.4(46.8) 0.79 0.42

DF 394.5(10.3) 0.00 0.37

DG 405.7(5.2) 832.2(10.6) 0.78 0.41

DH -146.0(-2.6) 1007.0(14.9) 0.87 0.78

DI 512.6(11.9) 470.8(7.9) 0.66 0.33

DJ 3025.5(27.2) 0.78 0.41

DK 986.1(3.3) 2547.0(6.1) 0.54 0.25

DL 28029.0(9.8) -27963.0(-8.5) 0.69 0.15

DM 812.4(54.6) 0.00 0.76

DN 368.0(12.5) 242.7(7.0) 0.60 0.57

Table 4: Estimated neo-classical models for manufacturing industries

are reported in the table. Notice that the explained variable in (3) is acceleration, not flow of
production as in Eq. (2) and (6). In the estimated Newtonian models of form (3), 7 out of

Industry Constant (T-stat.) unit profit (T-stat.) R2 D-W

DA

DB+DC -148.5 (-7.9) 784.0 (7.3) 0.63 1.59

DD

DE 611.9 (3.2) 0.07 2.44

DF

DG -154.4 (-2.12) 525.4 (2.7) 0.18 1.69

DH

DI -121.7 (-3.4) 526.8 (4.0) 0.34 1.17

DJ

DK -754.9 (-5.1) 4037.4 (6.1) 0.54 1.81

DL -979.1 (-3.4) 4283.1 (5.9) 0.53 1.07

DM

DN -118.9 (-3.0) 490.9 (3.2) 0.25 1.38

Table 5: Estimated Newtonian models (3) for manufacturing industries

13 industries show a statistically significant positive effect of unit profit on the acceleration of
production. Thus the model gets some support from the data, but the rates of explanation are
not impressive. We tested the Granger -causality between acceleration and unit profit at every
industry and found that industries DD, DK, DN show a statistically significant causal relation
from acceleration of production to unit profit, and only in industry DM a causal relation from
unit profit to acceleration of production was observed. Thus we cannot find a clear causal relation
between these quantities because they mostly move simultaneously. The best obtained model
for Eq. (3) in Industry BD+BC is displayed in Figure 2.

The estimated Newtonian models of form (6) for manufacturing industries are in Table 6.
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The frequency parameters of the trigonometric functions in the industries are: bDA = bDB+DC =
bDD = bDJ = bDL = 1/4, bDE = bDG = bDI = bDK = bDN = 1/3, bDH = bDM = 1/2,
bDF = 1/12, and the only industry where the exponential time parameter h deviates from 1 is
DM , hDM = 1/4. The correlations of the explaining variables in Tables 9-13 in Appendix show
that in no equation explaining variables with a higher absolute correlation than 0.46 are used.

The obtained models are quite satisfactory for all other industries except DM. However,
positive autocorrelation of residuals is still a problem, but not as big as with the neo-classical
theory. The obtained models for every industry are better than those in the neo-classical theory,
and the models for industries DG and DH are displayed in Figures 5, 6.

Industry Constant T ime sin(bit) cos(bit) exp(hit) R2 D-W

DA 1045.3(36.6) 41.1(28.1) 164.0(8.0) 0.96 1.11

DB+DC 1200.6(53.2) -24.3(-20.8) 123.6(7.6) -91.1(-5.5) 0.95 0.55

DD 467.0(15.8) 34.1(20.7) 149.4(6.9) 51.5(2.4) -0.0(-3.9) 0.95 1.42

DE 2977.5(36.0) 151.1(32.1) -175.3(-2.9) -0.0(-2.6) 0.98 1.48

DF 264.3(4.3) 25.9(8.0) -390.5(-3.7) -0.0(-3.9) 0.69 1.27

DG 513.8(23.1) 38.8(32.7) -49.8(-3.0) 0.98 1.12

DH 276.3(20.6) 24.0(34.0) 41.9(4.4) 0.97 1.16

DI 641.3(24.7) 10.1(7.0) -60.9(-3.2) -88.4(-4.8) 0.0(2.6) 0.86 0.82

DJ 498.0(6.0) 103.7(22.8) 271.1(4.5) 0.0(3.5) 0.96 0.99

DK 1315.2(13.8) 74.6(13.8) -207.2(-3.0) 0.0(7.4) 0.94 1.03

DL -3302.0(-7.4) 392.6(15.7) 2468.3(7.5) 1032.8(3.2) 0.0(7.2) 0.96 0.84

DM 800.7(58.4) -43.3(-2.5) 65.3(3.8) 0.0(2.6) 0.43 1.20

DN 433.2(29.6) 7.4(9.5) -51.1(-4.7) 0.83 0.93

Table 6: Estimated Newtonian models of form (6) for manufacturing industries

7 Conclusions

We evaluated empirically what kind of regularities exist in the production data of Finnish econ-
omy. Our first observation is that the second order time polynomial fits remarkably well in the
accumulated production with annual data at all tested levels of aggregation. Second, a sta-
tistically significant linear time trend is observed at all sectors and industries. This questions
the basic assumption in the neoclassical theory where time is abstracted from the analysis. We
tested a Newtonian type of model for production against the neo-classical one, and observed that
the former one works better in every industry. We used annual data from Finnish economy at
1975-2008. It would be interesting if similar tests were repeated with quarterly or monthly data,
or with different countries and different levels of aggregation.
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Appendix

Industry Constant (T) T ime (T) sin(bit) (T) R2 D-W

DA 0.8 (18.8) 0.0 (5.7) -0.2 (-7.1) 0.74 0.23

DB+DC 0.5 (25.0) 0.0 (19.0) -0.1 (-4.5) 0.93 0.32

DD 0.7 (16.4) 0.0 (6.0) -0.1 (-4.7) 0.67 1.03

DE 0.4 (9.8) 0.0 (9.2) 0.1 (1.9) 0.73 0.42

DF

DG 0.6 (19.7) 0.0 (14.4) -0.1 (-3.4) 0.90 0.47

DH 0.46 (23.8) 0.0 (21.5) 0.94 0.60

DI 0.4 (16.8) 0.0 (15.4) 0.88 0.30

DJ 0.6 (32.8) 0.0 (21.1) -0.1 (-4.1) 0.94 1.19

DK 0.5 (28.4) 0.0 (21.5) -0.1 (-6.9) 0.95 0.82

DL 0.9 (14.7) -0.0 (-11.9) 1.1 (12.7) 0.87 0.53

DM 0.5 (14.9) 0.0 (16.7) 0.90 0.80

DN 0.6 (19.2) 0.0 (11.5) -0.0 (-2.3) 0.84 0.23

Table 7: Estimated models for industrial prices

pa pa2 sin(pa) exp(pa)

pa 1.00 0.99 0.99 0.99

pa2 1.00 0.96 0.99

sin(pa) 1.00 0.96

exp(pa) 1.00

Table 8: Correlations of variables

t sin(t/4) cos(t/4) exp(t)

t 1.00 -0.08 0.12 0.42

sin(t/4) 1.00 0.05 0.29

cos(t/4) 1.00 -0.14

exp(t) 1.00

Table 9: Correlations of variables

exp(t/4) sin(t/2) cos(t/2)

exp(t/4) 1.00 -0.04 -0.32

sin(t/2) 1.00 0.05

cos(t/2) 1.00

Table 10: Correlations of variables

t sin(t/3) cos(t/3) exp(t)

t 1.00 -0.28 -0.28 0.42

sin(t/3) 1.00 0.10 -0.37

cos(t/3) 1.00 -0.04

exp(t) 1.00

Table 11: Correlations of variables
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t sin(t/12) exp(t)

t 1.00 0.45 0.42

sin(t/12) 1.00 -0.24

exp(t) 1.00

Table 12: Correlations of variables

t sin(t/2) cos(t/2) exp(t)

t 1.00 -0.08 -0.18 0.42

sin(t/2) 1.00 0.05 -0.21

cos(t/2) 1.00 -0.27

exp(t) 1.00

Table 13: Correlations of variables

Industry prob. for no relation prob. for at most 1 relation

DA 0.56 0.74

DB+DC 0.06 0.02∗

DD 0.29 0.20

DE 0.24 0.03∗

DF 0.12 0.07

DG 0.64 0.45

DH 0.30 0.25

DI 0.34 0.03∗

DJ 0.88 0.94

DK 0.75 0.53

DL 0.06 0.01∗

DM 0.07 0.31

DN 0.02∗ 0.01∗

Table 14: Results of co-integration relations between p and q

Figure 1: Estimated model for aggregate
accumulated production

Figure 2: Estimated Newtonian model (3) for
Industry DB+DC
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Figure 3: Neo-classical model for DG Figure 4: Neo-classical model for DH

Figure 5: Newtonian model for DG Figure 6: Newtonian model for DH
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