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Abstract 

The fluctuation in the prices in a stock market can be separated into two time scales: a 
long term trend guided by financial principles and a short term trend governed by the 
trading mechanisms used. We proposed a mixed strategy for managing stock portfolios 
in which the long term trend is tracked by Markowitz’s theory of mean-variance 
analysis, and the short term fluctuation in stock price is monitored by a trading 
threshold. This strategy is tested with the 24 stocks in the Hang Seng Index for the two 
years period from July 9 2007 to July 8 2009, which covers the financial Tsunami in 
2008. In our strategy, the test is based on a trading period of two weeks (10 trading 
days). At the beginning of each trading period, a two-stock portfolio that has the largest 
Sharpe ratio among all of the possible combination of 24 chosen stocks from the Hang 
Seng Index is selected using mean variance analysis. On the day before the end of the 
trading period, we examine the price fluctuation of the chosen stocks to determine the 
trading strategy. A trading threshold is proposed to facilitate the trading decision so as 
to ensure that the updated portfolio still has the largest Sharpe ratio at the beginning of 
the next trading period. The yield of the portfolio based on this strategy is compared to 
the Hang Seng Index and the averaged price of the 24 stocks over the same period. The 
results show that this strategy of portfolio management yields a factor of 1.6 of the 
initial value, whereas the corresponding yield of the Hang Seng Index is a decrease in 
value by a factor of 0.8. Over the period of two years for the comparison, the 
investment using our portfolio management strategy maintains a positive return for a 
wide range of trading threshold. Our choice of a trading period of 10 days ensures that 
the effect of transaction fee is minimal. These positive results have also been obtained 
for different choice of trading period up to one month. Our strategy therefore allows 
higher flexibility in the trading scheme for investors of different trading habits. An 
important observation of our trading strategy is that it preserves the assets over the 
Tsunami in 2008, which is important to conservative investors who prefer protection in 
the worst situation. 
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1. Introduction 
 

Resource allocation in the financial portfolio management has been of continuous interest 
since the seminal work on the mean variance analysis by Markowitz [1, 2]. The mean 
variance analysis, which is based on the concept of diversification, suggests that the selection 
of two or more assets for investment can lower the risk involved in the investment of any 
individual asset, therefore providing a guideline in risk control in portfolio management. 
Markowitz's theory provides a simple and elegant solution for resource allocation, such as in 
the percentage of money invested in each constituent stock in the two-stock portfolios by 
specifying the investment frontier and the risk tolerable by the investor. In practice, however, 
one does not have a static picture of the mean nor the variance as they are time dependent. To 
handle this problem, pattern recognition [3,4], genetic algorithm[5,7], neural network[8], and 
fuzzy rule [9,10] are some of the approaches that have been applied in real application. In this 
paper, we introduce two time scales into the mean variance analysis. First of all, we assume 
that long term behavior provides a guidance to the trend of the stock in the near future. This 
point of view on the importance of long term behavior in resource allocation is very different 
from the point of view on time series forecasting, where the predictive power of a forecast 
relies heavily on an intelligent data-mining algorithm, applied not on the long or medium term 
data, but on the news and fluctuation of the market in the past few days. In order to 
accommodate the fluctuation in stock price in the short term, it will be desirable to 
incorporate these two different points of view, so that we have a general platform to construct 
a resource allocation algorithm, with the definition of the long time scale and short time scale 
given by the user. Recently, we have investigated a multi-agent system of stock traders, each 
making a two-stock portfolio using the mean-variance analysis [11]. The results of this work 
show that there exists portfolio with low risk and high return, in spite of the random nature of 
the stock price and the unknown mechanism between the price variations of individual stock. 
Indeed, in all the works on portfolio management involving stocks, a common goal is to 
pursue high return, low risk and consistent performance. Furthermore, we find that for the 
same set of data used in [11] that the short term fluctuation corresponds to a correlation of the 
stock price in about one to two days [12]. In this paper, we extend our previous works by 
considering both the long term and short term conditions for portfolio management with 
periodic trading. We perform the portfolio selection and trading over a fixed period (for 
example, trading can only take place at the end of a period of 10 days). This restriction can 
greatly reduce the effect of transaction fees on the performance of portfolio. This formulation 
allows more flexibility in the trading scheme for investors of different trading habits. The 
final result should produce an algorithm that avoid frequent trading, while providing a good 
guidance for selecting stock portfolios that yield good profit with low risks.   

 

 

 



2. Investment Strategy 

2.1 Mean-variance analysis for the long time scale 

We first consider the resource allocation problem of a portfolio consisting of two stocks and 

cash. Let’s denote the expected return ( )U t  and variance ( )Var t  by 
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  is the daily rate of return and ( )p t  is the daily closing price of 

the stock. The sample size is chosen to be 50 days, which we consider to be sufficiently long 
so that the mean and variance are rather smooth function of time. In our study of a two-stock 
portfolio, the expected return and variance for stock pair (1,2) are given by  
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where x and y are the fraction of the portfolio invested in stock 1 and in stock 2, 

respectively.  Note that the constraint 1x y+ = , with , (0,1)x y ∈ , implies that these 

quantities are function of t and x only. The covariance 12Cov  of the two stocks is defined as 
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while the standard deviation of the two-stock portfolio is expressed as:  

 ( ) ( )12 12, ,t x Var t xσ =  (6) 

To analyze this two-stock portfolio, we make use of a version of the Sharpe ratio defined 
as:  

 ( ) ( ) ( )12 12 12, , / ,F t x U t x t xσ=  (7) 

Note that this ratio is a function of x, so that we can find its maximum in the range of 
(0,1)x ∈ . In order to achieve maximum return per unit fluctuation or risk, we maximize 



( )12 ,F t x with respect to x and denote this maximum value as  ( )*
12F t  and the corresponding 

resource allocation at ( ) ( )* * *( ), ( ) , 1x t y t x y x= = − .  Note that this resource allocation of the 

portfolio refers to time t and stock pair (1,2). One may use exhaustive search with preset 

precision to obtain this value of ( )* *,1x x− where the maximum of ( )12 ,F t x  occurs. In real 

application, one should use some efficient search algorithm to obtain this time dependent 

optimal resource allocation value { }* ( ) | 1,... ,ijx t i N j i= > for all possible pair of stocks. 
 
 

 

2.2 Short term trading criterion 

With the selected portfolio according to the long term analysis, we introduce a trading 
criterion based on the short term condition. Since the averaged correlation length of the stock 
price is approximately 1.5 days in our previous analysis [12], we define the short term 
fluctuation of the portfolio as the price changes over two days: the trading day (t) and the day 
before the trading day (t-1). We then define the trading condition by examining the ratio 

( ) ( ) / ( 1)t P t P tρ ≡ −  where P(t) is the price of the selected portfolio at time t. We then 

introduce a trading threshold θ  to decide if a transaction is to be activated.  If the ratio ( )tρ , 

exceeds the trading threshold, a transaction on the portfolio is activated. In our present model, 

the transaction is to convert the two-stock portfolio into cash. If ( )tρ θ≤ , then there is no 

trading and we keep the original portfolio and wait for the end of next period. In this way, 
only portfolios with expected price higher than certain value can be traded. Setting low 
trading threshold reflects optimistic view to the stock market, while setting high trading 
threshold reflects conservative attitude.  

 

2.3 Trading period  

In this work, we set each trading period to be 10 trading days. In each trading period, at most 
one transaction takes place. At the beginning of a trading period, one portfolio is selected 
from the stock pairs from the N constituent stocks of Hang Seng Index. Then, the short term 
trading criterion is applied to determine if a transaction is actually activated. If the trading 

does not occur due to the portfolio price ratio ( )tρ  is lower than the trading threshold θ , the 

investor then waits till next trading period. If trading occurs, the investor will sell the portfolio 
at the end of the trading period to keep the asset as cash.  

 



3. Simulation Result 

To perform numerical test of our theory, we select 24(=N) stocks that make up the Hang Seng 

Index. These stocks were all in the Hang Seng Index during the period between July 9, 2007 

and July 8, 2009 (Table 1).  

Table 1. The stocks whose real price data are used in this study 

0001.HK 0002.HK 0003.HK 0004.HK 0005.HK 0006.HK 0011.HK 0012.HK 

0013.HK 0016.HK 0019.HK 0023.HK 0066.HK 0101.HK 0144.HK 0267.HK 

0291.HK 0293.HK 0330.HK 0494.HK 0762.HK 0883.HK 0941.HK 1199.HK 

 

With these 24 stocks, we have a collection of M = 276 distinct pairs of stocks that can be 
the candidate of the optimum two-stock portfolio in the context of mean-variance analysis. 
The initial condition for the simulation is that the portfolio contains only cash. The transaction 
cost is 1 % of the stock price for each buying or selling. We numerically calculate the 
resource allocation of our money on optimum stock pair over the period from July 9, 2007 to 
July 8, 2009, which consists of 500 trading days. For a trading period of 10 days, the 500 
trading days are then divided into 50 trading periods and there are at most 50 transactions. 
The term return ratio, defined by the ratio of the final asset to the initial asset, is used indicate 
the final asset in the following discussion.  

By adopting the strategy introduced in section 2 with the trading thresholdθ =1.01, the 
evolution of the asset is shown in Figure 1 in dark squares, as compared with the Hang Seng 
Index in open circles and the averaged stock price variation in dark triangles. At the end of 
the trading period, our strategy increases the asset by 60%, while Hang Seng Index drops 20% 
from the initial value.  

From Fig.1, we see that before Sept 04, 2008, the return ratio, overcoming the 1% 
transaction fee, does not deviate much from the averaged stock price variation. The return is 
less than a portfolio that tracks the Hang Seng Index, since we tend to keep cash unless the 
stock market rises rather sharply. Nevertheless, the return is still impressive, making more 
than 15% increase in mid 2008 before the tsunami. The shape of the simulation curve looks 
similar to the Hang Seng Index, though generally with less fluctuation. This implies that the 
proposed strategy can predict the portfolio with above-average return at least in most of the 
“good” days. Indeed, if our strategy has no intelligence, for example, in the case of a random 
transaction, the transaction cost will incur great lost (each 10-day period when trading 
happens, one loses 1%, and over a period of 500 days, the loss can be really great). During the 
months of financial tsunami (September-October 2008), the stock price and Hang Seng Index 
nosedive while our portfolio strategy is more or less immune to the crash, because we mainly 
keep cash as determined by the short term trading criterion. From November 2008 onward, 



the return ratio is growing in pace with the stock price variation, indicating that during that 
rising period, the strategy can keep up with an early sign of a bull market and take profits by 
investing in a pair of good stocks, at a good combination provided by mean variance analysis 
with two time scales. As a result, the overall performance of this strategy in the “bad” days  
better than the stock price variation as well as the Hang Seng Index. In summary, our 
investment strategy provides good and stable return in good times, while in the crash period, 
it keeps cash due to a conservative decision mechanism using short term correction. Overall, 
it is a conservative strategy that can avoid penalty of transaction cost, avoid crash, and 
provide stable positive return in both the bull and the bear market.   
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Fig.1 The return ratio by the proposed trading strategy in comparison with the stock 
average price variation and the Hang Seng Index over the same period.  

To see more clearly the effect of the trading threshold in the short term trading criterion, 
we test the trading performance in the absence of transaction cost. This provides a fair 
comparison without the effect of transaction cost difference introduced by the trading 
frequency. The results are shown in Fig.2. The open circles represent the return ratio with the 
strategy with the trading threshold, and the open triangles represent the return ratio with the 
strategy without the trading threshold. In both cases, the transaction fee is zero. In this 
comparison, we see that even though the aggressive strategy without the trading threshold 
earns more than the conservative strategy with threshold at the beginning, the former loses 
quite a lot (more than 70% as referenced from the initial asset during the period) during the 
financial tsunami, whereas the latter preserves the assets as cash very well. In Fig.2, the solid 
line represents the return ratio with transaction cost and trading threshold (also shown as 
triangles in Fig.1). We notice that out of 50 possible transactions during the period of 500 
days, only 8 transaction are actually activated. This implies that the trading threshold has been 



applied frequently to prevent unprofitable trading. This threshold definitely plays an 
important part in the decision process to make the strategy a more conservative and stable one.  
In Fig.2, we also show the return ratio with threshold  1.01θ =  and a transaction fee of 1% 
for reference (solid line). We see that even with transaction cost, the good features of our 
strategy with threshold are maintained.   
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Fig.2 The return comparison between the trading strategy with trading threshold 1.01θ =  
(open circles) and without (open triangles) trading threshold, both without transaction cost. 
The solid line represents the simulated return ratio with transaction cost shown in Fig.1 for 
comparison.  

Now we discuss the effect the threshold on the probability of trading. We show in Fig.3 
(in open circles) the result of the threshold dependent return ratio at the end the period of 500 
days.From Fig.3, we see that the return ratio increases with the trading threshold, but cuts off 
when the threshold factor is larger than 1.025, when this threshold value prevents any trading. 
The probability of the trading, defined as the number of days when trading actually happens 
divided by the total number of possible trading days, is shown on the right axis of Fig.3 with 
solid line. This probability of trading has a negative correlation with the return ratio. This 
confirms that a high return ratio can be designed by increasing the threshold factor and 
reducing the trading probability in the theoretical framework of mean-variance analysis. We 
suggest that investors initially set a high trading threshold, such as 1.05, and then gradually 



decrease the trading threshold until the trading is actually activated. According to Fig. 3, the 
process will provide the investors with high return ratio around the peek shown in the solid 
line.  
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Fig.3 The return ratio by the proposed strategy as a function of the trading threshold 
(open circles). The trading probability is shown on the right axis (solid line). 

 

4. Conclusion 

We proposed a rather conservative strategy of investment using the time dependent mean-
variance analysis on a two-stock portfolio. The time dependence covers both the long term 
aspect of the pair of stocks, as well as the short term stock price change. The long term aspect 
is determined by computing the “Sharpe ratio” at time t, while the short term stock price 
return provides a risk control. By setting a critical value for the trading threshold, we can 
avoid loss caused by the transaction fees. Numerical simulation of this trading strategy with 
real data on a set of blue chips in the Hang Seng Index indicates good return on bull market 
and small loss on bear market. The overall performance of our strategy beats the performance 



of the chosen set of stocks without short term control as well as the Hang Seng Index. This 
strategy should therefore be suitable for conservative investors.  
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