Superconductivity and magnetism of the R$_6$Ni$_2$Sn (R = Y and rare earth) compounds

J.W. Chena,*, N.S. Joua, B.K. Wanga, Ching-Ray Changa, R.C. Yanga, Y.Y. Chenb

aDepartment of Physics, National Taiwan University, Taipei, Taiwan, ROC
bInstitute of Physics, Academia Sinica, Taipei, Taiwan, ROC

Abstract

We have performed AC electrical resistivity ρ, DC magnetic susceptibility χ_{DC} and heat capacity $C(T)$ measurements on the ternary compounds R$_6$Ni$_2$Sn (R = Y and rare earth). Our results show that La$_6$Ni$_2$Sn becomes superconducting with $T_c \sim 2.3$ K. Except for R = Y, Ce, and Pr, most of the R$_6$Ni$_2$Sn compounds undergo various magnetic transitions as revealed from the appearance of features in both $\chi(T)$ and $C(T)$ curves, and changes of the slopes in the $\rho(T)$ curves. Ce$_6$Ni$_2$Sn is a heavy fermion compound with its specific heat C/T increases logarithmically for 1 K $<$ T $<$ 7 K and reaches a value of \sim160 mJ/mol Ce–K2 at 0.35 K.

PACS: 71.27+a; 74.25.Fy; 75.30.Cr

Keywords: Superconductivity; Magnetic transition; Heavy fermion

The R$_6$Ni$_2$Sn (R = rare earth) compounds belong to the Ho$_6$Ni$_2$Ga-type structure with space group Immm [1]. Among them, Er$_6$Ni$_2$Sn has been mostly studied because of its usage for the magnetic refrigeration [2,3]. Recent study reveals that La$_6$Ni$_2$Sn is a type-II superconductor with a transition temperature T_c of 2.25 K [4]. To have further understanding about these compounds, we have studied the transport, magnetic, and specific heat properties of these systems.

Polycrystalline samples of R$_6$Ni$_2$Sn (R = Y and rare earth) were prepared by arc-melting stoichiometric amounts of the constituent elements (R: 99.99%, Ni: 99.99%, Sn: 99.9999%) together on a water-cooled copper hearth in a Zr-gettered argon atmosphere. The as-melted samples were subsequently wrapped in Ta foil, sealed in quartz tube in argon atmosphere, and annealed at 550°C for 3 days. AC electrical resistivity of bar-shaped samples has been measured in a 4He cryostat.
using a four-probe AC technique. DC magnetic susceptibility measurements were performed in a commercial superconducting quantum interference device (SQUID) magnetometer from 2 to 300 K in various applied magnetic fields. The specific heat of Ce$_6$Ni$_2$Sn was measured using in 3He microcalorimeter in the temperature range between 0.35 and 20 K with $H = 0$.

The normalized electrical resistance $R(T)/R(300 \text{ K})$ vs. T curves for the R$_6$Ni$_2$Sn (R = Y, La, Ce, and Pr) compounds are plotted in Fig. 1(a) for $0 \leq T \leq 300 \text{ K}$. The $R(T)/R(300 \text{ K})$ curves for these samples exhibit typical characteristics of common metal and decrease monotonically with decreasing temperature T. The abrupt drop of $R(T)/R(300 \text{ K})$ to zero value, as shown in the inset, reveals that La$_6$Ni$_2$Sn becomes superconducting below 2.3 K [4]. Shown in Fig. 1(a) is the $R(T)/R(300 \text{ K})$ curve for Nd$_6$Ni$_2$Sn. A rapid drop at 30 K and a change of the slope at 6.5 K in the $R(T)/R(300 \text{ K})$ curve indicates the occurrence of two magnetic transitions in this compound. This is consistent with the result of the magnetic susceptibility study which reveals that Nd$_6$Ni$_2$Sn undergoes antiferromagnetic transition at 29 K followed by an order–order transition at 6.2 K. Various magnetic transitions at low temperatures were also observed in the R$_6$Ni$_2$Sn compounds with R = Sm, Gd, Tb, Dy, and Ho [5].

The low-temperature specific heat of Ce$_6$Ni$_2$Sn is depicted in Fig. 2(a), where C/T vs. T^2 are plotted. The specific behaviour for this compound reveals characteristics of heavy fermion compounds. A characteristic logarithmic divergence of C/T data over the temperature range of $1 K < T < 7 K$ indicates non-Fermi liquid behaviour in this compound. The obtained value of C/T is $\sim 160 \text{ mJ/mol Ce–K}^2$ at 0.35 K. The $\chi(T)$
and $\chi^{-1}(T)$ vs. T curves for Ce$_6$Ni$_2$Sn, as plotted in Fig. 2(b), reveal that this compound is non-magnetic for $T > 2$ K. Above ~ 100 K, the $\chi(T)$ curve follows a Curie–Weiss behaviour with a value of effective moment $\mu_{\text{eff}} = 2.68 \mu_B$.

In summary, we have studied the electrical, magnetic, and specific properties of the R$_6$Ni$_2$Sn compounds. We found that La$_6$Ni$_2$Sn becomes superconducting below 2.3 K. Two magnetic transitions were observed in Nd$_6$Ni$_2$Sn at 30 and 6.5 K, respectively.

We found that Ce$_6$Ni$_2$Sn is a non-magnetic heavy fermion system with an obtained value of $C/ T = 160$ mJ/mol Ce–K2 at 0.35 K.

This work was supported by the ROC National Science Council under Grant no. NSC 92-2112-M002-031.

References