SECRETS OF ACTIN-BASED MOTILITY REVEALED BY A BACTERIAL PATHOGEN

Lisa A. Cameron, Paula A. Giardini, Frederick S. Soo and Julie A. Theriot

Actin-based cell motility is a complex process involving a dynamic, self-organizing cellular system. Experimental problems initially limited our understanding of this type of motility, but the use of a model system derived from a bacterial pathogen has led to a breakthrough. Now, all the molecular components necessary for dynamic actin self-organization and motility have been identified, setting the stage for future mechanistic studies.

AMOEBOID MOTILITY
A distinctive form of cell
crawling typified by *Amoeba*proteus, which involves
extension of pseudopodia and
cytoplasmic streaming.

FIBROBLAST
Common cell type found in
connective tissue in many parts
of the body, which secretes an
extracellular matrix rich in
collagen and other
macromolecules and connects
cell layers.

Department of Biochemistry, Stanford University School of Medicine, 279 Campus Drive West, Stanford, California 94305-5307, USA. e-mail: theriot@cmgm.stanford.edu Correspondence to: J.A.T. The ability to move in a directed, purposeful manner is one of the properties we most closely associate with living cells. Many forms of cell motility, such as the intracellular movement of organelles by molecular motors, rely on discrete and stable protein machines. By coupling energy release to a protein conformational change, myosin and kinesin carry their cargo a single step along their substrate, and larger-scale movement is simply the linear addition of many such discrete steps. These types of motility have been extensively studied in purified or semi-purified systems, and a great deal is known about the molecular and biophysical requirements for movement¹.

In contrast, amoeboid motility is not driven by discrete machines acting additively. Instead, it is a complex process involving an interconnecting network of nonequilibrium, dynamic, whole-cell events. Although detailed descriptive studies of amoeboid motility have graced the cell biological literature for over fifty years, it could not be easily investigated at the molecular level using classic biochemical or genetic techniques. However, the past ten years have seen remarkable advancements in our understanding of the molecular basis of amoeboid motility. The breakthrough came. oddly, from a bacterial pathogen called Listeria monocytogenes. Like many cell biologists, this pathogen chose actin-based motility as its field of study, but it has had the advantage of millions of years of evolutionary experimentation. This review tells the story of how the secrets of amoeboid motility known to this tiny bacterium have been revealed.

Actin dynamics in locomoting cells Crawling cells, such as epithelial cells, fibroblasts or neurons, have at their front a broad, flat region, usually less

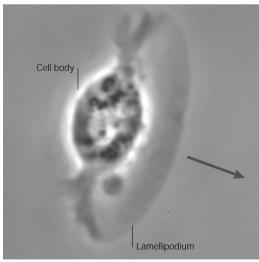


Figure 1 | A rapidly moving cell; a keratocyte from the skin of a fish. This is a phase-contrast micrograph, a single frame from a video sequence. The lamellipodium and cell body are labelled. This cell is moving in the direction of the large arrow.

Movie online

KERATOCYTE A small, motile cell type found in the epidermis of fish and amphibians.

LEADING EDGE The thin margin of a lamellipodium spanning the area of the cell from the plasma membrane to about 1 um back into the lamellipodium.

GROWTH CONE Motile tip of the axon or dendrite of a growing nerve cell, which spreads out into a large cone-shaped appendage.

than one micrometre thick, filled with a dense meshwork of actin filaments. Referred to as a lamellipodium, this region of the cell contains all of the machinery necessary for amoeboid motility. Rapidly moving cells, such as the fish epidermal KERATOCYTE, consist basically of a large lamellipodium that carries the cell body on its dorsal surface (FIG. 1) (Movie 1). Small lamellipodial fragments sliced off from a cell body can crawl on their own, essentially forming a tiny nucleus-free cell^{2,3}. The crawling process can be broken down into three subprocesses: the assembly of actin into a coherent meshwork at the LEADING EDGE of the lamellipodium, the coupling of this meshwork to the external substrate, and the controlled depolymerization of the meshwork for recycling and reuse of the actin monomer. Understanding how each of these subprocesses is regulated and how they interconnect and work together is critical to the study of how cells crawl.

Several experiments established the principle that actin assembly (BOX 1) occurs primarily at the front of lamellipodia. In fibroblasts and neuronal GROWTH CONES. a spot photobleached in the actin meshwork of the lamellipodium translocates backwards slowly and moves rearward relative to the leading edge in a coherent fashion^{4,5}. When a stationary neuronal growth cone is allowed to recover after the actin meshwork is completely depolymerized by treatment with the toxin cytochalasin, the actin network reforms exclusively at the leading edge and then moves rearward6.

Across cell types, the rate of rearward flux of the actin meshwork is negatively correlated with the speed of forward protrusion. In rapidly moving fish keratocytes, photoactivated spots of fluorescent actin that have incorporated into the lamellipodium remain stationary with respect to the substrate as the leading edge moves

Box 1 | Actin filament dynamics

Actin is one of the most abundant proteins in eukaryotic cells, and is a primary determinant of cell shape and cytoplasmic structure. It exists in two forms, G-actin (for globular), the soluble 43 kDa protein subunit, and F-actin (for filamentous), a helical polymer of arbitrary length where individual subunits self-associate in a head-to-tail fashion. About half the actin in a typical cell (up to $50\,\mu\text{M}$) is in the form of G-actin, and the other half is in the form of F-actin. Actin is an ATPase, and ATP hydrolysis affects the kinetics of polymerization.

The rate-limiting step in the formation of F-actin from a solution of pure G-actin is the formation of a stable 'nucleus'. When two molecules of G-actin collide in solution, they will form a dimer, but the dimer comes apart rapidly and no filament can grow. When three or four molecules collide simultaneously, they form a more stable trimer or tetramer, which can be rapidly elongated by further collisions of individual subunits with either end of the growing filament. In cells, spontaneous nucleation is rare. Cells regulate the location of new F-actin formation by regulating nucleation.

Within the cell, the dynamic behaviour of F-actin and G-actin is modified and regulated by a group of over 100 actin-binding proteins. These include proteins that bind to G-actin and prevent it from polymerizing, proteins that bind to F-actin and prevent it from depolymerizing, accessory proteins that affect the rate of nucleotide hydrolysis, proteins that sever long filaments into smaller bits, proteins that bypass the slow steps of nucleation, myosin motors that carry cargo along filaments ... in short, proteins to speed up or slow down every dynamic behaviour of this remarkable polymer. In addition, F-actin crosslinking proteins can assemble multiple filaments into larger-scale structures, including bundles where all the filaments align in parallel and meshworks where the filaments cross orthogonally.

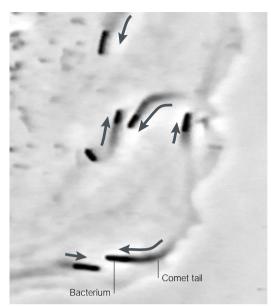


Figure 2 | Movement of Listeria monocytogenes in an infected host cell. This is a phase-contrast micrograph, a single frame from a video sequence. The kidney epithelial cell was infected about five hours before the acquisition of this video sequence. All of the bacteria in this cell are clonal descendants of a single individual. A bacterium and its associated comet tail are labelled. Bacteria are moving in the direction of the blue arrows.

forward7. In slowly moving fibroblasts, the actin meshwork moves rearward with respect to the substrate, even as the leading edge continues to move forward8. To use the treadmilling activity of actin assembly in the lamellipodium for efficient forward extension of its leading edge, the cell must anchor the actin meshwork through the plasma membrane to the underlying substrate. A keratocyte has an efficient 'clutch' mechanism that allows rapid forward protrusion and little or no rearward flux, whereas a fibroblast has a 'slippery clutch' that results in significant rearward flux and slow forward protrusion. Within a given cell type, there is no correlation between the rate of centripetal movement of actin and the rate of lamellipodial protrusion, so the components that control the rate of protrusion by regulating actin dynamics must be localized at the leading edge8.

The depolymerization of actin from the meshwork seems to be tightly controlled. Depending on the cell type, the average lifetime of actin filaments in the lamellipodium is very short — around 20 seconds to 2 minutes^{7,8}. The rate of filament loss is correlated with cell speed: rapidly moving cells have more labile actin filaments in their lamellipodia, whereas filaments in slowly moving cells are more stable9. But most importantly, in all cells, the turnover of actin filaments is at least two orders of magnitude faster than the turnover of pure actin filaments in solution, indicating that other proteins inside the cell must be actively disassembling the filaments in the lamellipodia.

Such cell-based experiments established organizational principles for making a functional lamellipodium that could not have been predicted from in vitro properties of actin polymerization. First, actin filaments are nucleated and grow primarily at the leading edge, immediately adjacent to the plasma membrane. Second, filaments are crosslinked into a coherent meshwork that either remains stationary with respect to the substrate as the cell moves forward (in rapidly moving cells) or moves rearward towards the cell body (in stationary or slowly moving cells). And last, actin filaments in the bulk of the meshwork, away from the leading edge, depolymerize rapidly so that steady-state, selforganized movement can be maintained. Cell motility requires that these three processes be properly coordinated in space and time.

In a lamellipodium, there must be modulatory factors that govern these phenomena. This raises several specific molecular questions. What factors catalyse nucleation and elongation of actin filaments at the leading edge? How are filament nucleation and elongation suppressed elsewhere? What is causing the older filaments to depolymerize so rapidly? What holds the meshwork together, and is it important for motility that this meshwork be coherent?

Technical problems have impeded attempts to answer these questions. Genetic systems have been of limited use in identifying the full complement of components that make up the machinery necessary for actin-based motility. Yeast, unfortunately, do not crawl. Genetic and reverse genetic approaches in model metazoans and in Dictyostelium successfully defined the cellular functions of some of the individual components of the motility apparatus. However, because the actin polymerization machinery necessary for amoeboid motility is so critical for other aspects of cellular behaviour, many cells with lesions in important cytoskeletal loci are inviable and therefore difficult to evaluate for motility phenotypes. In addition, functional redundancy is rampant in the actin cytoskeleton, so many null mutants in genes that encode interesting proteins have no detectable phenotype. Biochemical reconstitution of amoeboid motility has been hindered by the need for an intact cell plasma membrane, which must serve to localize filament nucleation¹⁰ and might contribute to force generation¹¹. A decade ago, the identification of a genetically manipulable model system that could mimic the actin filament dynamics of lamellipodial protrusion without the requirement for a plasma membrane was desperately needed to understand actin-based motility at the molecular level.

Actin-based motility of bacterial pathogens In the late 1980s, several research groups found that Factin is responsible for the intracellular movement of two unrelated bacterial pathogens, Listeria monocytogenes^{12,13} and Shigella flexneri^{14,15}, which live within the cytoplasm of the host cell. Because L. monocytogenes is less virulent and easier to handle experimentally than S. flexneri, most laboratories investigating this form of actin-based motility have chosen to focus on L. monocytogenes, and we will concentrate on the L. monocytogenes model system in this review.

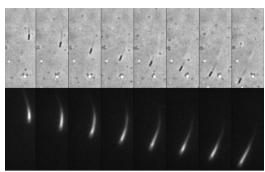


Figure 3 | Reconstitution of Listeria monocytogenes motility in a cytoplasmic extract. Top row | Phasecontrast images showing the position of the bacterium. Adjacent frames are separated by ten-second intervals. Bottom row | Fluorescent signal arising from rhodamine-actin added as a tracer. The fluorescent images were captured less than one second after the corresponding phase image. The online movie shows a polystyrene bead coated with ActA moving in a similar extract.

Movie online

Actin-based motility is essential in the L. monocytogenes life cycle. In a natural food-borne infection, the bacteria induce phagocytosis by the epithelial cells lining the small intestine, an event that can be replicated in the laboratory in a wide variety of tissue-culture lines. The bacteria then secrete a pore-forming toxin (listeriolysin O) that degrades the enclosing membrane, and escape into the cytoplasm of the host cell. After a few hours of growth and division, host-cell actin filaments begin to form a dense cloud on the surface of the bacteria. Subsequently, the actin cloud becomes polarized into a comet tail made up of an oriented, crosslinked network of actin filaments with their barbed ends pointing towards the bacterium¹². Bacteria associated with comet tails move very rapidly within the host cytoplasm, at rates of up to 1 μm per second ¹⁶ (FIG. 2) (Movie 2). Finally, the infection spreads as the bacteria push their way into neighbouring cells through plasma membrane projections^{17,18}.

The L. monocytogenes comet tail resembles a simplified lamellipodium, and the bacterial surface imitates the plasma membrane at the leading edge. Labelled exogenous actin monomers preferentially incorporate into the actin tail near the bacterial surface in living and permeabilized cells^{19,20}, recapitulating the behaviour in lamellipodia, where new incorporation is primarily at the leading edge. Fluorescence photoactivation experiments reveal that filaments in the tail of a moving bacterium remain stationary and only the bacterium moves forward²¹, as in rapidly moving lamellipodia. The rate of filament depolymerization in the comet tail is independent of either position in the tail or bacterial speed, and the filaments have very short half-lives, of the order of 30 seconds²¹.

In contrast to amoeboid motility, bacterial actinbased motility does not require the host cell plasma membrane and could therefore be reconstituted in a cell-free cytoplasmic extract, which has facilitated biochemical approaches to study the regulation of actin

Box 2 | Special features of the lamellipodium

In general, it is thought that the dynamic behaviour of the actin-binding proteins described here is comparable between comet tails and lamellipodia. However, there are important differences. For example, ActA is not found in eukaryotic systems. The search for the eukaryotic equivalent of ActA led to the characterization of a new protein family called WASP/Scar. Wiskott-Aldrich syndrome protein (WASP) is expressed only in human haematopoietic cells and contains a GTPase binding domain⁶⁹ that binds the small GTPases, Cdc42 and Rac, known to be involved in regulating the triggering of actin polymerization in fibroblasts⁷⁰. Its close relative N-WASP is expressed widely in vertebrate cells⁷¹, and causes filopodial formation when co-expressed with Cdc42 in cultured cells⁷². The more distantly related protein Scar (for suppressor of cyclic AMP receptor mutation) was discovered in Dictyostelium, where its deletion causes cytoskeletal defects⁷³. WASP and Scar interact with the p21 subunit of Arp2/3⁷⁴ and, like ActA, Scar activates Arp2/3 to nucleate actin filaments⁷⁵. Finally, polystyrene beads coated with WASP are capable of forming actin comet tails and moving in cytoplasmic extracts, in a manner apparently identical to the movement of L. monocytogenes or ActA-coated beads⁷⁶.

Much of what is known about cell motility and lamellipodial protrusion has come from descriptive observations. Two of the most visually striking behaviours of lamellipodia include ruffling and rearward flux. Ruffling is a phenomenon where the protruding leading edge detaches from the substrate and folds back on the dorsal surface of the lamellipodium. Rearward flux, described in the section 'Actin dynamics in locomoting cells', requires myosin⁷⁷. Neither of these characteristic behaviours can be investigated using L. monocytogenes as a model system.

dynamics²² (FIG. 3). The exclusive localization of actin filament growth close to the bacterial surface indicated that factors either secreted by the bacterium or expressed on the bacterial surface must trigger actin polymerization. Because L. monocytogenes continue to move in cells in the presence of drugs that inhibit bacterial protein synthesis²⁰, the key factor was probably a stable protein on the surface of the bacterium rather than a factor secreted continually by the bacterium.

The bacterial factors involved in actin polymerization are required for the spread of bacteria from cell to cell. To identify the gene(s) required for actin assembly, screens were designed to identify mutant bacteria deficient in the ability to spread from cell to cell, but capable of normal initial cell invasion, membrane lysis and bacterial division. The only gene ever isolated in such L. monocytogenes screens is actA^{23,24}. Furthermore, ActA confers actin-based motility on normally immotile bacteria, for example if actA is expressed in the non-pathogenic strain *Listeria innocua*²⁵, or if purified ActA protein is attached asymmetrically to Streptococcus pneumoniae²⁶. Polystyrene beads coated with purified ActA protein have been shown to form comet tails and move in cytoplasmic extracts, proving that no other bacterial surface components are required for motility²⁷ (Movie 3).

Dissection of the comet tail and lamellipodium A flurry of experimental work followed the identification of ActA and the reconstitution of motility in cytoplasmic extracts. Today, researchers in the field largely agree on the identities and the functions of all the main molecules required for regulating actin filament dynamics in the self-organized motile system of the comet tail. The similarities, and differences, between the simplified bacterial comet tail and the far more complicated, dynamic lamellopodial structure have given great insight into the organization and regulation of these systems at many levels.

Factors catalysing nucleation and elongation. Although ActA is sufficient to cause polymerization at the bacterial surface, it does not interact directly with actin to form a comet tail, indicating that it probably interacts with other host-cell factors. As ActA is a surface protein, initial efforts focused on host-cell factors that localize to the bacterial surface and not throughout the comet tail. Two proteins that fulfil this criterion were initially identified by immunofluorescence surveys: the G-actinbinding protein profilin²² and an F-actin associated protein called vasodilator-stimulated phosphoprotein (VASP)²⁸. Both proteins require ActA to associate with the bacterial surface. VASP binds directly to ActA²⁸, and profilin binds to VASP²⁹. It seemed unlikely that these factors were responsible for localized actin nucleation, however, as cytoplasmic extracts depleted of profilin could still support nucleation of actin clouds by L. monocytogenes^{22,30}. Furthermore, VASP binds to F-actin²⁹ but does not show nucleating activity, and profilin significantly inhibits nucleation³¹. Profilin can serve as a nucleotide exchange factor for actin³², and it can also lower the effective critical concentration for actin polymerization in a cellular environment³³. So, it was concluded that the combination of VASP and profilin may accelerate filament elongation at the bacterial surface, but neither one is the nucleator.

Systematic ActA deletion studies carried out in bacteria indicated that VASP and profilin are localized by a central polyproline-rich region in the middle of the protein, and that four consensus FPPPP repeats act in an additive fashion to bind multiple molecules of VASP³⁴. Bacteria containing an ActA construct that lacks the VASP-binding domain still mediate actin nucleation, although they move more slowly than wild-type bacteria in both cytoplasmic extracts35 and in infected cells34. Interestingly, the rate of motility is linearly related to the number of proline-rich repeats present³⁴. Immunolocalization shows that the central proline-rich domain recruits VASP³⁶, and biochemical experiments show that the consensus motif is sufficient for VASP binding³⁷. Subsequently, the VASP-related proteins mammalian Enabled (Mena) and Ena/VASP-like protein (Evl) were found to act interchangeably with VASP in bringing profilin to the bacterial surface and in

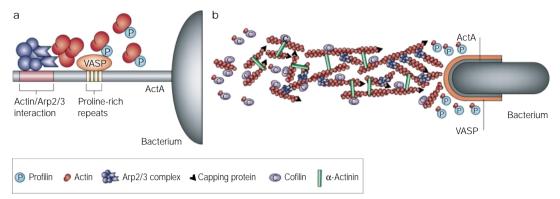


Figure 4 | Diagram of the molecular components required for actin-based motility of Listeria monocytogenes. a | Interactions between host-cell proteins and ActA at the bacterial surface. Two domains of ActA are required for normal motility. The amino-terminal domain activates actin filament nucleation through Arp2/3. The central proline-rich domain binds VASP and profilin interacts with VASP, enhancing filament elongation. **b** | Host protein functions throughout the comet tail. In addition to the factors that act at the bacterial surface, capping protein binds to the barbed end of actin filaments to prevent elongation of older filaments, α -actinin crosslinks filaments to stabilize the tail structure, and ADF/cofilin disassembles old filaments. (VASP, vasodilator-stimulated phosphoprotein.)

enhancing the speed of actin-based motility38,39. Profilin tagged with green fluorescent protein (GFP-profilin) associates with moving bacteria in infected cells and, strikingly, the concentration of GFP-profilin at the bacterial surface is closely correlated with bacterial speed⁴⁰. This indicates that the prolinerich repeats, VASP and profilin may act together as an accelerator for bacterial movement.

VASP and profilin may also have independent effects on filament elongation. Experiments using human platelet extracts show that movement of L. monocytogenes is still enhanced in the presence of a mutant profilin that does not bind proline-rich sequences and therefore cannot associate with VASP. Conversely, VASP still accelerates L. monocytogenes motility in profilindepleted extracts³⁹. Surprisingly, overexpression of members of the Ena/VASP family in mammalian cells causes them to move at less than half the speed of wildtype cells, and removal of Ena/VASP proteins by sequestration to the mitochondrial surface causes cells to move faster than wild-type cells⁴¹. This observation indicates that enhancement of the rate of filament elongation by VASP may not directly translate into an increase in crawling speed in mammalian cells, possibly highlighting an important difference between lamellipodia and L. monocytogenes motility (for other differences, see BOX 2).

But regardless of the nature of the accelerator, what turns the ignition key by catalysing F-actin nucleation in the first place? The answer to this question came from a biochemical study. Platelet extracts, rich in actin-associated cytoskeletal proteins and easy to obtain in large quantities, were fractionated, and the fractions examined using a visual assay to determine which could support the formation of F-actin clouds around L. monocytogenes. The most purified active fraction contained a tightly associated protein complex consisting of seven polypeptide chains⁴². This complex, named Arp2/3 after two of its members (actin related proteins 2 and 3), had initially been isolated as a profilin-binding complex by affinity chromatography of Acanthamoeba castellanii cytosol⁴³, but its function in the regulation of actin dynamics had previously been unclear. The nucleating activity of Arp2/3 can be measured in vitro44, but it is

'	•	•		
System	Structure formed	Host factors	Special features	References
Shigella flexneri	Comet tail similar to <i>Listeria</i>	N-WASP, Arp2/3, profilin	Bacterial factor lcsA (VirG) has no homology with ActA Actin dynamics are identical to L. monocytogenes	14, 15, 25, 50, 80, 81
Rickettsia spp.	Comet tail, made of long twisted bundles		 Bacterial factor not identified Tails are straight Dynamics are distinct from <i>L. monocytogenes</i> and <i>S. flexneri</i> 	82–85
Enteropathogenic Escherichia coli	Pedestal	WASP, Arp2/3	• Signalling from bacterium occurs across host cell membrane • Bacterial factors intimin and Tir required	86, 87
Vaccinia virus	Comet tail similar to <i>Listeria</i>	N-WASP, Nck, WIP, Src-family tyrosine kinase	Intracellular enveloped form moves Actin-based movement may contribute to viral budding	88–90
Vesicles	Transient comet tail similar to <i>Listeria</i>	Ptdlns(4,5)P ₂ , Cdc42, N-WASP, Arp2/3	• Endosomal rocketing induced by phorbol esters, metal ions • May occur normally with nascent endosomes	91–95

Nck, non-catalytic region of tyrosine kinase; Ptdlns(4,5)P₂, phosphatidylinositol-4,5-bisphosphate; N-WASP, neural Wiskott-Aldrich syndrome protein; WASP, Wiskott-Aldrich syndrome protein; WIP, Wiskott-Aldrich syndrome protein interacting protein

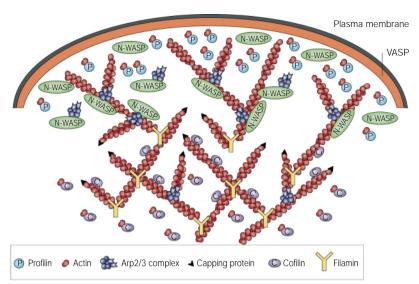


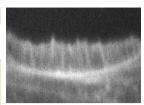
Figure 5 | Functions of similar proteins in the lamellipodium. N-WASP activates Arp2/3 to nucleate actin filaments. VASP and profilin, which are localized to the leading edge, facilitate elongation. Capping protein caps the barbed ends of older filaments. Filamin crosslinks filaments into an actin network. Finally, ADF/cofilin accelerates depolymerization throughout the lamellipodium, except for a cofilin-free zone at the immediate leading edge (reviewed in REF. 78). The localization of N-WASP is not well known. Here we show it at the leading edge, binding and activating Arp2/3 in the cytoplasm, and associated with Arp2/3 at filament branches. (VASF vasodilator-stimulated phosphoprotein; N-WASP; neural Wiskott-Aldrich syndrome protein.)

markedly activated by the presence of ActA (REF. 45). The amino-terminal domain of ActA, which was implicated by the deletion studies as being sufficient to cause actin nucleation inside of cells, is also sufficient for full activation of Arp2/3 (REF. 46). Arp2/3 can also bind to the side of a pre-existing actin filament and initiate nucleation of a new filament at that location, creating a branch at a 70° angle from the original filament⁴⁴. Such branches are found throughout the lamellipodium⁴⁷ with Arp2/3 at the branch points. Arp2/3 is localized to the leading edge of several cell types^{42,43,48}, and it is found throughout the actin comet tail associated with L. monocytogenes⁴⁹. So, activated Arp2/3 is responsible for the nucleation of actin polymerization at the bacterial surface (FIG. 4a).

Activation of Arp2/3 by ActA is essential for L. monocytogenes motility. No full-length homologues of ActA exist in mammalian cells, so how is Arp2/3 activated in lamellipodia? Similarly, IcsA (VirG), the bacterial surface protein required for S. flexneri actin-based motility, does not interact directly with Arp2/3, indicating that some other factor mediates the activation of Arp2/3 in this system. Recently, it has been found that Wiscott-Aldrich syndrome protein (WASP) and its relatives, N-WASP and Scar (for suppressor of cyclic AMP receptor mutation), have a function similar to ActA, activating Arp2/3 downstream of signalling through small GTPases (BOX 2). In the case of S. flexneri motility, N-WASP binds IcsA (VirG) and activates Arp2/3 at the bacterial surface⁵⁰ (TABLE 1).

Factors suppressing nucleation and elongation. New actin filaments are continuously nucleated and elongated exclusively at the bacterial surface or at the leading edge of the cell, suggesting that some mechanism exists to prevent the continuing elongation of old filaments.

The simplest mechanism to achieve this would involve capping the growing barbed ends of the older filaments. Several proteins with barbed-end F-actin capping activity are known, including capping protein (also known as CapZ) and gelsolin. Biochemical studies indicate that ActA may suppress capping close to the bacterial surface³⁰, although ActA probably exerts this effect indirectly. Capping protein is strongly associated with comet tails⁵¹. Gelsolin is localized throughout the tail and, paradoxically, is enriched at the bacterial surface⁵², but it may be inactive there. The combination of barbed-end capping suppression at the bacterial surface, exclusive localization of the elongation enhancers VASP and profilin at the bacterial surface, and potent activation of Arp2/3 by ActA, seems to be sufficient to enable nucleation and elongation only at the front of the comet tail.


Factors causing filament depolymerization. An important feature of both lamellipodial and bacterial motility dynamics is the rapid depolymerization of the actin meshwork far from the leading edge and the bacterial surface, suggesting the existence of depolymerizing factors. Another functional study using *L. monocytogenes* elucidated the specific role of the protein that controls filament depolymerization. This protein, called ADF (actin depolymerizing factor) or cofilin, was first identified in biochemical assays as a factor that accelerates actin depolymerization. ADF/cofilin binds cooperatively to the sides of actin filaments and increases the twist of Factin⁵³, destabilizing the filament structure and causing an increase in the rate of spontaneous filament breakage⁵⁴ and a significant acceleration of subunit dissociation from the filament pointed end⁵⁵. It has a higher affinity for ADP-containing filaments, and so preferentially accelerates the turnover of old filaments after nucleotide hydrolysis has occurred, rather than the newest filaments, which still contain ATP. This combination of activities makes cofilin the leading candidate as the factor responsible for the 10-100-fold higher actin turnover rate in cells compared with the turnover rate of pure actin.

Immunodepletion of ADF/cofilin from cytoplasmic extracts supporting L. monocytogenes motility alters the morphology of the comet tails, making them five times longer than normal⁵⁶. Conversely, addition of excess exogenous ADF/cofilin to extracts causes shortening of the actin tail and increases the rate of bacterial motility⁵⁵. ADF/cofilin is localized throughout the *L. monocytogenes* comet tail⁵⁶, consistent with the previous finding that depolymerization occurs uniformly everywhere in the tail²¹.

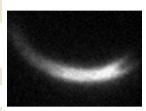

Experiments done in intact cells also show that ADF/cofilin is important for acceleration of actin turnover⁵⁷. ADF/cofilin is localized to the leading edge and ruffling membrane of motile cells⁵⁸. Rapidly moving keratocytes show an ADF/cofilin-free zone at the very leading edge of the lamellipodium⁴⁷. This narrow ADF/cofilin-free margin may be the geometrical correlate of the hydrolysis kinetics of ATP; the newest ATPcontaining filaments at the front are briefly protected from rapid disassembly by ADF/cofilin. The spatial separation between nucleation and elongation at the front,

Table 2 | Similarities between lamellipodia and comet tails

Protein	Function	Localization in lamellipodia	Localization in comet tails
F-actin*	Cell shape and cytoplasmic structure	Enriched in stress fibres and focal contacts	Throughout tail ¹⁶
Arp2/3*	Nucleation Filament crosslinking Pointed-end capping	Leading edge and throughout lamellipodium ^{47,49} Filament branches ⁴⁷	Bacterial surface and throughout tail ⁴²
Capping protein*	Barbed-end capping	Cytoplasm and cell–cell contacts ⁹⁶	Throughout tail ⁵¹
Gelsolin‡	Barbed-end capping, severing	Cytoplasm and focal contacts ⁹⁷	Bacterial surface and throughout tail ^{52,56}
VASP	Binds F-actin and profilin, binds proline- rich region of ActA	Leading edge ⁹⁸ and focal contacts ²⁹	Bacterial surface ³⁴
Profilin	Actin monomer binding	Leading edge, focal contacts ⁴⁰	Bacterial surface ²²
ADF/cofilin*	Depolymerizes ADP filaments	Lamellipodium ⁵⁸ (1 µm from edge ⁴⁷)	Throughout tail ⁵⁶
α-actinin	Crosslinking	Focal contacts and stress fibres ⁹⁹	Throughout tail ¹⁶

Lamellipodium

Comet tail

and disassembly further back, helps to maintain the steady-state organization of the motile F-actin meshwork in both lamellipodia and comet tails.

Factors that crosslink filaments. Because Arp2/3 frequently binds to the side of a pre-existing filament as it nucleates the growth of a new filament, the meshwork forming at the front of the comet tail or the leading edge of the lamellipodium is effectively crosslinked at birth, in a dendritic web44,47. In addition, numerous F-actin crosslinking proteins are found throughout the comet tail, including fimbrin⁵⁹ and α-actinin¹⁶. Microinjection of a dominant-negative fragment of α -actinin, which inhibits crosslinking by the endogenous protein, causes L. monocytogenes in infected cells to stop moving⁶⁰. This observation indicates that strong crosslinking is important for movement through the highly viscous cytoplasm of a living cell, although its mechanical contribution may be less important in cytoplasmic extracts (see below).

Fimbrin and α-actinin, which crosslink F-actin to form tight parallel bundles, are not generally found in lamellipodia. Instead, lamellipodia are enriched in a different type of crosslinking protein, filamin (also called ABP-280), which tends to crosslink filaments at right angles to form a web. Mutant melanoma cells that fail to express filamin show very poor motility⁶¹. These complementary results in comet tails and in lamellipodia seem to indicate that crosslinking is indeed important for mechanical stability of a protrusive self-organized actin structure, but that the nature of the crosslinker required is probably different depending on the details of filament organization in each case.

Establishment of a purified system. Using the molecular information provided by the studies detailed above, we might hypothesize that *L. monocytogenes* motility could be reconstituted in vitro with a mixture of the following host proteins: actin, Arp2/3, VASP, profilin, capping protein, ADF/cofilin and α-actinin, along with a steady supply of ATP. This impressive feat has recently been accomplished⁶² (FIG. 4b). Of these proteins, only actin, Arp2/3, ADF/cofilin and capping protein are absolutely required for motility. VASP and profilin increase the rate of movement, and α -actinin stabilizes the tail. The success of this purified system definitively establishes the minimal components necessary for this type of self-organized actin-based motility. In addition, it clearly shows that this form of force generation does not require a myosin motor⁶², and that actin polymerization alone can act as a bona fide molecular motor⁶³. Moreover, the functional conservation between the lamellipodium and the comet tail is striking (TABLE 2, FIG. 5), proving that L. monocytogenes is an excellent tiny cell biologist.

Open questions

The establishment of a purified protein motility system that includes all of the bacterial and host components necessary and sufficient for actin-based movement⁶² represents a satisfying culmination of the past decade of molecular research in this field. Work from numerous laboratories has brought us to the point where we now know most of the critical molecules involved in actin regulation at the leading edge of cells. However, despite this list of molecules, we still cannot formulate the set of rules needed to generate a motile cell, or a lamellipodium, or even a comet tail. The purified system has confirmed the supposition that actin polymerization alone must produce the force necessary for motility, but provides no further information about the actual microscopic mechanism of force generation. It will, however, provide a useful experimental system for investigating some of the open mechanistic questions about cell movement.

Translating the minimal requirements for bacterial actin-based motility to a mechanism of cell motility or even the protrusion of a lamellipodium requires a significant increase in complexity, the most important difference being the presence of a plasma membrane. Further understanding of cell motility will also require knowledge of how the regulation of cell adhesion and nuclear translocation are integrated with lamellipodial protru-

Absolutely required for motility in the reconstituted system. ‡ Can be substituted for capping protein.

BROWNIAN RATCHET MODEL

A proposed model for actinbased motility in which actin filaments are thought to flex away from the bacterial surface to allow addition of monomer at the end of the filament. When the filament flexes back, it is one subunit longer and pushes the bacterium forward that distance

BULK ELASTIC MODEL A proposed model for actinbased motility, which treats the actin comet tail as a cohesive elastic gel that responds elastically to deformation. This indicates that the energy from actin polymerization may be stored as elastic energy in the actin gel to produce force that propels the bacterium forward.

sion to move the entire cell. But even within the comparatively simple system of the actin comet tail, many basic mechanistic questions remain to be addressed. We suggest that the answers to the following questions will begin to reveal the rules needed to organize an actin comet tail, and may lead to insights into how to address the more difficult questions of whole-cell locomotion.

How is force generated? In theory, motile force for actinbased motility can come solely from the chemical potential of actin polymerization^{63,64}. Several models for the mechanism by which this conversion takes place have been proposed, including Brownian RATCHET-TYPE MODELS⁶⁵ and BULK ELASTIC MODELS⁶⁶. Current data are inconclusive about which of these models, if any, are correct, and have been limited in large part by the natural variations in the extract and cultured-cell preparations used to assay motility. With the purified protein system, force generation by the self-organizing actin polymerization machinery should now be amenable to detailed biophysical experimentation analogous to the studies that defined the protein conformational changes responsible for force generation by the discrete motor proteins myosin and kinesin1.

How is movement initiated? Actin-associated bacteria in cells seem to exist in two states: moving with a comet tail, or stationary with a uniform cloud12. The same two states are seen in cytoplasmic extracts, both for bacteria and for ActA-coated polystyrene beads27. These two states can readily interconvert in a classic bistable system. What makes a bacterium or a bead start moving? Stochastic modelling based on the elastic Brownian ratchet mechanism for force generation has suggested that this symmetry breaking event might be caused by a form of dynamic positive feedback. Small variations in the polymerization rate on one side of the bacterium versus the other side can be amplified to cause largescale symmetry breaking⁶⁷. The quantitative theoretical predictions of this model could be confirmed or refuted using the purified system.

What causes variations in speed? Within a population of genetically identical bacteria moving in a single host-cell type, there are wide variations in average speed from one bacterium to another 17,21,34. This wide variation is not due to sampling error, but rather to

the fact that some individual bacteria are intrinsically faster than other individual bacteria (P.A.G and J.A.T., unpublished observations). What is responsible for these intrinsic differences? Changes in ActA surface density do not affect speed^{27,34}, so the source of variation must lie elsewhere. Even within the trajectory of an individual bacterium, there are significant variations in speed over time, often over an order of magnitude within a period of a few minutes. Are variations in the subcellular environment responsible for this? If so, can this property be used to map out the positions of biochemically distinct microenvironments within a living cell?

What causes curvature in trajectories? It is extremely rare to find a bacterium that moves in a straight line; most bacterial tails are gently curved (FIG. 2, FIG. 3). What causes these curves? Is there a correlation between variations in curvature and variations in speed? Some bacterial strains carrying point mutations in ActA show curvature behaviours that are very different from wild-type bacteria, including one mutant that makes tighter smooth curves and one mutant that can 'skid', making occasional sharp turns at apparently random intervals (P. Lauer, S. Rafelski, D. Portnoy and J.A.T, unpublished observations). How do these mutations affect interactions with the host-cell proteins that govern actin self-organization and movement?

These mechanistic questions, and many others, can now be definitively addressed in the purified protein system⁶², exploiting the ability of ActA to confer motility on artificial particles whose geometry can be controlled²⁷. So, with a set of proteins in hand, and a simple system in which to study these interactions, the time is ripe for a powerful convergence of molecular, biochemical and physical techniques on a single area: the organization and control of the actin cytoskeleton.

This review has detailed an experimental success story, in which an unusual bacterial system has been successfully exploited as a robust, reproducible proxy for eukaryotic actin-based amoeboid motility. Using immunofluorescence, biochemical and genetic techniques, proteins putatively involved in motility were identified and found to be necessary and sufficient for motility, as shown by a minimal reconstituted system. As a whole, this experimental journey can serve as a lesson on how to approach molecular mastery of a dynamic, self-organizing cellular system. Now that the molecular basis of this type of motility is fairly well understood, attention can be focused on the biophysical mechanisms⁶⁸, bringing us one step closer to a detailed understanding of the beautiful and complex process of amoeboid motility.

DATABASE LINKS actin | actA | profilin | VASP | Mena | Evl | Ena | Arp2/3 | VirG | WASP | N-WASP | Scar | CapZ | gelsolin | | cofilin | fimbrin | α -actinin | filamin FURTHER INFORMATION L. monocytogenes | Theriot lab homepage ENCYCLOPEDIA OF LIFE SCIENCES Actin and actin filaments

- Vale, R. D. & Milligan, R. A. The way things move: looking under the hood of molecular motor proteins. Science 288 88-95 (2000).
- Euteneuer, U. & Schliwa, M. Persistent, directional motility of cells and cytoplasmic fragments in the absence of microtubules. *Nature* **310**, 58–61 (1984).
- Verkhovsky, A. B., Svitkina, T. M. & Borisy, G. G. Selfpolarization and directional motility of cytoplasm. Curr. Biol
- Wang, Y. L. Exchange of actin subunits at the leading edge of living fibroblasts: possible role of treadmilling. *J. Cell Biol.* **101**, 597–602 (1985).
- These photobleaching studies show that actin monomers are added at the leading edge and that the actin meshwork translocates backward towards the centre of the cell in a stationary lamellipodium.
- Okabe, S. & Hirokawa, N. Actin dynamics in growth cones J. Neurosci. 11, 1918-1929 (1991).
- Forscher, P. & Smith, S. J. Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone. J. Cell Biol. 107, 1505-1516
- Theriot, J. A. & Mitchison, T. J. Actin microfilament dynamics in locomoting cells. Nature 352, 126-13
 - Shows that the rate of cell motility is directly related

- edge and that filaments further back in the lamellipodium remain stationary as the rapidly
- moving cell translocates over them.
 Theriot, J. A. & Mitchison, T. J. Comparison of actin and cell surface dynamics in motile fibroblasts. J. Cell Biol. 119, 367-377 (1992)
- Zigmond, S. H. Recent quantitative studies of actin filament turnover during cell locomotion. *Cell Motil. Cytoskeleton* **25**, 309–316 (1993).
- Shariff, A. & Luna, E. J. Diacylglycerol-stimulated formation of actin nucleation sites at plasma membranes. Science **256**, 245–247 (1992).
- Oster, G. F. & Perelson, A. S. The physics of cell motility. *J. Cell Sci.* **8**, S35–S54 (1987).
- 12. Tilney, L. G. & Portnoy, D. A. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J. Cell Biol. 109, 1597-1608 (1989).
 - This is the initial publication showing that the bacterial pathogen, Listeria monocytogenes, associates with host cytoplasmic actin, suggesting that these bacteria move within and between cells in some manner involving the actin cytoskeleton.

 Mounier, J., Ryter, A., Coquis-Rondon, M. & Sansonetti, P. J
- Intracellular and cell-to-cell spread of Listeria monocytogenes involves interaction with F-actin in the enterocytelike cell line Caco- 2. Infect. Immunol. 58 1048–1058 (1990). Makino, S., Sasakawa, C., Kamata, K., Kurata, T. &
- Yoshikawa, M. A genetic determinant required for continuous reinfection of adjacent cells on large plasmid in S. flexneri 2a. Cell **46**, 551–555 (1986).
- Bernardini, M. L., Mounier, J., d'Hauteville, H., Coquis-Rondon, M. & Sansonetti, P. J. Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin. *Proc. Natl Acad. Sci. USA* **86**, 3867–3871 (1989).
- Dabiri, G. A., Sanger, J. M., Portnoy, D. A. & Southwick, F. S Listeria monocytogenes moves rapidly through the hostcell cytoplasm by inducing directional actin assembly. Proc. Natl Acad. Sci. USA 87, 6068–6072 (1990).
- Robbins, J. R. et al. Listeria monocytogenes exploits normal host cell processes to spread from cell to cell. *J. Cell Biol.* **146**, 1333–1350 (1999).
- Theriot, J. A. The cell biology of infection by intracellular bacterial pathogens. *Annu. Rev. Cell. Dev. Biol.* 11,
- 213–239 (1995). Sanger, J. M., Sanger, J. W. & Southwick, F. S. Host cell actin assembly is necessary and likely to provide the propulsive force for intracellular movement of *Listeria* monocytogenes. *Infect. Immunol.* **60**, 3609–3619 (1992). Shows that actin monomers add to the tail only at the bacterial surface whereas α-actinin and tropomyosin are found throughout the tail, and suggests that actin polymerization may provide the force for motility.
- Tilney, L. G., DeRosier, D. J., Weber, A. & Tilney, M. S. How Listeria exploits host cell actin to form its own cytoskeleton. II. Nucleation, actin filament polarity, filament assembly, and evidence for a pointed end capper. J. Cell Biol. 118, 83–93 (1992).
- Theriot, J. A., Mitchison, T. J., Tilney, L. G. & Portnoy, D. A. The rate of actin-based motility of intracellular *Listeria* monocytogenes equals the rate of actin polymerization Nature 357, 257–260 (1992).

 Shows that the rate of bacterial motility is the same
 - as the rate of actin polymerization and that actin depolymerization is independent of position in the
- Theriot, J. A., Rosenblatt, J., Portnoy, D. A., Goldschmidt-Clermont, P. J. & Mitchison, T. J. Involvement of profilin in the actin-based motility of *L. monocytogenes* in cells and in cell-free extracts. *Cell* **76**, 505–517 (1994).
- Kocks, C. et al. L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 68, 521–531 (1992).
 - Shows that the bacterial surface protein ActA is required for actin-based motility of *Listeria* monocytogenes.
- Domann, E. et al. A novel bacterial virulence gene in Listeria monocytogenes required for host cell microfilament interaction with homology to the proline-rich region of vinculin. *EMBO J.* **11**, 1981–1990 (1992).
- Kocks, C. et al. The unrelated surface proteins ActA of Listeria monocytogenes and IcsA of Shigella flexneri are sufficient to confer actin-based motility on Listeria innocua and Escherichia coli respectively. Mol. Microbiol. 18, 413-423 (1995)
- Smith, G. A., Portnoy, D. A. & Theriot, J. A. Asymmetric distribution of the Listeria monocytogenes ActA protein is

- required and sufficient to direct actin-based motility. *Mol. Microbiol.* **17**, 945–951 (1995).
- Cameron, L. A., Footer, M. J., van Oudenaarden, A. & Theriot, J. A. Motility of ActA protein-coated microspheres driven by actin polymerization. Proc. Natl Acad. Sci. USA 96 4908-4913 (1999)
- Chakraborty, T. et al. A focal adhesion factor directly linking intracellularly motile Listeria monocytogenes and Listeria *Ivanovii* to the actin-based cytoskeleton of mammalian cells. *EMBO J.* **14**, 1314–1321 (1995).
 - This was the first identification of a host-cell cytoskeletal protein (VASP) able to interact directly with a bacterial virulence factor (ActA).
 Reinhard, M. et al. The proline-rich focal adhesion and
- microfilament protein VASP is a ligand for profilins. EMBO / 14 1583-1589 (1995)
- Marchand, J. B. et al. Actin-based movement of Listeria monocytogenes: actin assembly results from the local maintenance of uncapped filament barbed ends at the bacterium surface. J. Cell Biol. 130, 331–343 (1995).
- Carlsson I Nystrom I E Sundkvist I Markey E & Lindberg, U. Actin polymerizability is influenced by profilin, a low molecular weight protein in non-muscle cells. J. Mol. Biol. 115, 465–483 (1977).
- Goldschmidt-Clermont, P. J. et al. The control of actin nucleotide exchange by thymosin β 4 and profilin. A potential regulatory mechanism for actin polymerization in cells. *Mol. Biol. Cell* **3**, 1015–1024 (1992). Pantaloni, D. & Carlier, M. F. How profilin promotes actin
- filament assembly in the presence of thymosin β 4. Cell 75, 1007-1014 (1993)
- Smith, G. A., Theriot, J. A. & Portnoy, D. A. The tandem repeat domain in the *Listeria monocytogenes* ActA protein controls the rate of actin-based motility, the percentage of moving bacteria, and the localization of vasodilatorstimulated phosphoprotein and profilin. J. Cell Biol. 135 647-660 (1996).
- Lasa, I., David, V., Gouin, E., Marchand, J. B. & Cossart, P. The amino-terminal part of ActA is critical for the actinbased motility of Listeria monocytogenes; the central proline-rich region acts as a stimulator. Mol. Microbiol. 18
- Pistor, S., Chakraborty, T., Walter, U. & Wehland, J. The bacterial actin nucleator protein ActA of *Listeria* monocytogenes contains multiple binding sites for host microfilament proteins. *Curr. Biol.* **5**, 517–525 (1995).
- Niebuhr, K. et al. A novel proline-rich motif present in ActA of *Listeria monocytogene's* and cytoskeletal proteins is the ligand for the EVH1 domain, a protein module present in
- the Ena/VASP family. *EMBO J.* **16**, 5433–5444 (1997). Gertler, F. B., Niebuhr, K., Reinhard, M., Wehland, J. & Soriano, P. Mena, a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics. *Cell* **87**, 227–239 (1996).
- Laurent, V. et al. Role of proteins of the Ena/VASP family in actin-based motility of *Listeria monocytogenes*. *J. Cell* Biol. 144, 1245-1258 (1999).
- Geese, M. et al. Accumulation of profilin II at the surface of Listeria is concomitant with the onset of motility and correlates with bacterial speed. J. Cell Sci. 113, 1415-1426 (2000).
- Bear, J. E. *et al.* Negative regulation of fibroblast motility by Ena/VASP proteins. *Cell* **101**, 717–728 (2000).
- Welch, M. D., Iwamatsu, A. & Mitchison, T. J. Actin polymerization is induced by Arp2/3 protein complex at the surface of *Listeria monocytogenes*. *Nature* **385**, 265-269 (1997)
 - Using a visual assay to detect nucleation of an actin cloud at the surface of the bacterial pathogen, L. monocytogenes, a seven-member protein complex responsible for actin filament nucleation was isolated.
- Machesky, L. M., Atkinson, S. J., Ampe, C. Vandekerckhove, J. & Pollard, T. D. Purification of a cortical complex containing two unconventional actins from Acanthamoeba by affinity chromatography on profilinagarose. *J. Cell Biol.* **127**, 107–115 (1994). Mullins, R. D., Heuser, J. A. & Pollard, T. D. The interaction
- of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. *Proc. Natl Acad. Sci. USA* **95**, 6181-6186 (1998)
 - Shows that Arp2/3 has a high affinity for the pointed end of actin filaments in addition to side binding, and leads to a model for actin filament network branching that is the current model for actin
- assembly at the leading edge.
 Welch, M. D., Rosenblatt, J., Skoble, J., Portnoy, D. A. & Mitchison, T. J. Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament

- nucleation. *Science* **281**, 105–108 (1998). Skoble, J., Portnoy, D. A. & Welch, M. D. Three regions
- within ActA promote Arp2/3 complex-mediated actin nucleation and Listeria monocytogenes motility. J. Cell
- Biol. 150, 527–537 (2000). Svitkina, T. M. & Borisy, G. G. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. *J. Cell Biol.* **145**, 1009–1026 (1999).
 - This is a beautiful study using correlative light and electron microscopy to compare protein localization and structure of the actin network in the lamellipodia of fast moving keratocytes and slower moving fibroblasts.
- Mullins, R. D., Stafford, W. F. & Pollard, T. D. Structure, subunit topology, and actin-binding activity of the Arp2/3 complex from *Acanthamoeba*. *J. Cell Biol.* **136**, 331–343
- Welch, M. D., DePace, A. H., Verma, S., Iwamatsu, A. & Mitchison, T. J. The human Arp2/3 complex is composed of evolutionarily conserved subunits and is localized to cellular regions of dynamic actin filament assembly. J. Cell Biol. 138, 375–384 (1997). Suzuki, T., Miki, H., Takenawa, T. & Sasakawa, C. Neural
- Wiskott-Aldrich syndrome protein is implicated in the actin-based motility of *Shigella flexneri*. *EMBO J.* **17**, 2767–2776 (1998).
 - Shows that N-WASP, a known activator of Arp2/3, mediates actin tail formation at the pole of *S. flexneri* through the bacterial surface protein VirG (lcsA), linking bacteria to the other host cell factors that help assemble the comet tail.
- David, V. et al. Identification of cofilin, coronin, Rac and capZ in actin tails using a *Listeria* affinity approach. *J. Cell*
- Sci. **111**, 2877–2884 (1998). Laine, R. O. *et al.* Gelsolin, a protein that caps the barbed ends and severs actin filaments, enhances the actin-based motility of *Listeria monocytogenes* in host cells. *Infect. Immunol.* **66**, 3775–3782 (1998).
- McGough, A., Pope, B., Chiu, W. & Weeds, A. Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J. Cell Biol. 138, 771–781 (1997)
- Maciver, S. K., Zot, H. G. & Pollard, T. D. Characterization of actin filament severing by actophorin from Acanthamoeba castellanii. J. Cell Biol. 115, 1611–1620
- Carlier, M. F. et al. Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actinbased motility. *J. Cell Biol.* **136**, 1307–1322 (1997). Shows that the actin depolymerization rate *in vitro* is directly affected by ADF/cofilin in a concentrationdependent fashion and that addition of ADF to cell extracts increases turnover rate in L.
- monocytogenes actin tails. Rosenblatt, J., Agnew, B. J., Abe, H., Bamburg, J. R. & Mitchison, T. J. Xenopus actin depolymerizing factor/cofilin (XAC) is responsible for the turnover of actin filaments in Listeria monocytogenes tails. J. Cell Biol. 136, 1323–1332 (1997).
- Lappalainen, P. & Drubin, D. G. Cofilin promotes rapid actin filament turnover in vivo. Nature 388, 78-82 (1997). Using a yeast genetic study, provides in vivo evidence that cofilin, an actin depolymerizing factor, does in fact enhance filament depolymerization in
- Bamburg, J. R. & Bray, D. Distribution and cellular localization of actin depolymerizing factor. J. Cell Biol. 105, 2817-2825 (1987).
- Prevost, M. C. et al. Unipolar reorganization of F-actin layer at bacterial division and bundling of actin filaments by plastin correlate with movement of *Shigella flexneri* within HeLa cells. *Infect. Immunol.* **60**, 4088–4099 (1992).
- Dold, F. G., Sanger, J. M. & Sanger, J. W. Intact α-actinin molecules are needed for both the assembly of actin into the tails and the locomotion of Listeria monocytogenes inside infected cells. Cell Motil. Cytoskeleton 28, 97-107
- Cunningham, C. C. et al. Actin-binding protein requirement for cortical stability and efficient locomotion. Science 255,
- 325–327 (1992). Loisel, T. P., Boujemaa, R., Pantaloni, D. & Carlier, M. F. Reconstitution of actin-based motility of *Listeria* and Shigella using pure proteins. Nature 401, 613-616 (1999) Identifies the minimal set of proteins required for the reconstitution of actin-based motility with purified components for both *L. monocytogenes* and *S. flexneri* motility, and demonstrates that no myosin motor is required.
- Theriot, J. A. The polymerization motor. *Traffic* **1**, 19–28

- (2000)
- Hill, T. L. & Kirschner, M. W. Bioenergetics and kinetics of microtubule and actin filament assembly-disassembly. Int. Rev. Cytol. 78, 1-125 (1982).
- Mogilner, A. & Oster, G. Cell motility driven by actin polymerization. *Biophys. J.* **71**, 3030–3045 (1996). Gerbal, F. *et al.* Measurement of the elasticity of the actin
- tail of Listeria monocytogenes. Eur. Biophys. J. 29, 134–140 (2000).
- van Oudenaarden, A. & Theriot, J. A. Cooperative symmetry-breaking by actin polymerization in a model for cell motility. *Nature Cell Biol.* **1**, 493–499 (1999).
- Kuo, S. C. & McGrath, J. L. Steps and fluctuations of Listeria monocytogenes during actin-based motility.
- Symons, M. et al. Wiskott–Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in
- actin polymerization. *Cell* **84**, 723–734 (1996). Hall, A. Rho GTPases and the actin cytoskeleton. *Science* **279**, 509–514 (1998).
- Miki H Miura K & Takenawa T N-WASP a novel actindepolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. *EMBO J.* **15**, 5326–5335 (1996).
- Miki, H., Sasaki, T., Takai, Y. & Takenawa, T. Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP. *Nature* **391**, 93–96 (1998)
- Bear, J. E., Rawls, J. F. & Saxe, C. L., SCAR, a WASPrelated protein, isolated as a suppressor of receptor defects in late *Dictyostelium* development. *J. Cell Biol.* **142**, 1325–1335 (1998).
- Machesky, L. M. & Insall, R. H. Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr. Biol. **8**, 1347–1356 (1998).
- Machesky, L. M. et al. Scar, a WASp-related protein activates nucleation of actin filaments by the Arp2/3 complex. *Proc. Natl Acad. Sci. USA* **96**, 3739–3744 (1999).
- Yarar, D., To, W., Abo, A. & Welch, M. D. The Wiskott-Aldrich syndrome protein directs actin-based motility by stimulating actin nucleation with the Arp2/3 complex. Curr. Biol. 9, 555–558 (1999).
- 77. Lin, C. H., Espreafico, E. M., Mooseker, M. S. & Forscher,

- P. Myosin drives retrograde F-actin flow in neuronal growth cones. Neuron 16, 769–782 (1996).
- Pollard, T. D., Blanchoin, L. & Mullins, R. D. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29, 545-576 (2000)
- Pantaloni, D., Boujemaa, R., Didry, D., Gounon, P. & Carlier, M. F. The Arp2/3 complex branches filament barbed ends: functional antagonism with capping proteins. Nature Cell Biol. **2**, 385–391 (2000).
- Goldberg, M. B. & Theriot, J. A. Shigella flexneri surface protein lcsA is sufficient to direct actin-based motility.
- Proc. Natl Acad. Sci. USA 92, 6572–6576 (1995). Mimuro, H. et al. Profilin is required for sustaining efficient intra- and intercellular spreading of Shigella flexneri. J. Biol. Chem. 275, 28893-28901 (2000).
- Heinzen, R. A., Hayes, S. F., Peacock, M. G. & Hackstadt, T. Directional actin polymerization associated with spotted fever group *Rickettsia* infection of Vero cells. *Infect*. Immunol. 61, 1926–1935 (1993). Teysseire, N., Chiche-Portiche, C. & Raoult, D. Intracellular
- movements of *Rickettsia conorii* and *R. typhi* based on actin polymerization. *Res. Microbiol.* **143**, 821–829 (1992). Heinzen, R. A., Grieshaber, S. S., Van Kirk, L. S. & Devin,
- C. J. Dynamics of actin-based movement by Rickettsia rickettsii in vero cells. Infect. Immunol. 67, 4201–4207.
- Gouin, E. et al. A comparative study of the actin-based motilities of the pathogenic bacteria *Listeria* monocytogenes, Shigella flexneri and Rickettsia conorii. J. Cell Sci. 112, 1697–1708 (1999).
- Kenny, B. et al. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell **91**, 511–520 (1997).
- Kalman, D. et al. Enteropathogenic E. coli acts through WASP and Arp2/3 complex to form actin pedestals. Nature Cell Biol. 1, 389-391 (1999).
- Cudmore, S., Cossart, P., Griffiths, G. & Way, M. Actinbased motility of vaccinia virus. *Nature* **378**, 636–638

Demonstrates that a virus moves by actin-based motility in host cells, expanding the realm of this type of motility to another system which has a different shape and possibly a new way to form a polarized actin tail.

- Frischknecht, F. et al. Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature 401, 926-929 (1999).
- Moreau, V. et al. A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. *Nature Cell Biol.* **2**, 441–448 (2000). Ma, L., Cantley, L. C., Janmey, P. A. & Kirschner, M. W.
- Corequirement of specific phosphoinositides and small GTP-binding protein Cdc42 in inducing actin assembly in Xenopus egg extracts. J. Cell Biol. 140, 1125–1136
- Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. *Cell* **97**, 221–231 (1999).
- Taunton, J. et al. Actin-dependent propulsion of endosomes and lysosomes by recruitment of N-WASP. *J. Cell Biol.* **148**, 519–530 (2000).
- Merrifield, C. J. et al. Endocytic vesicles move at the tips of actin tails in cultured mast cells. *Nature Cell Biol.* **1**, 72–74
- Rozelle A L et al. Phosphatidylinositol 4.5-hisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3. *Curr. Biol.* **10**, 311–320 (2000). Schafer, D. A., Mooseker, M. S. & Cooper, J. A.
- Localization of capping protein in chicken epithelial cells by immunofluorescence and biochemical fractionation. J. Cell.
- Biol. 118, 335–346 (1992).
 Cooper, J. A., Loftus, D. J., Frieden, C., Bryan, J. & Elson, E. L. Localization and mobility of gelsolin in cells. *J. Cell* Biol. 106, 1229–1240 (1988). Rottner, K., Behrendt, B., Small, J. V. & Wehland, J. VASP
- dynamics during lamellipodia protrusion. Nature Cell Biol. 321–322 (1999).
- Lazarides, E. & Burridge, K. α–actinin: immunofluorescent localization of a muscle structural protein in nonmuscle cells. *Cell* **6**, 289–298 (1975).

Acknowledgements

We thank Rachael Ream for digital time-lapse used to make Figure 1 and Movie 1. We would like to apologize to those researchers whose work could not be cited due to space limitations. J.A.T. is supported by grants from the National Institutes of Health and a Fellowship in Science and Engineering from the David and Lucile Packard Foundation