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Four roads to Dark Matter  
Production: LHC 

Gravitational: Indirect: Fermi  

Direct: 

From Max Tegmark 

Rick Gaitskell (Brown) / Dan McKinsey (Yale)LUX Dark Matter Experiment / Sanford Lab

LUX – the Instrument
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Direct (LUX)

Gravitational observations: 
Bullet cluster
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The possible gamma-ray excess surrounding the Galactic 
center suggested by Fermi-LAT observations has been 
interpreted as a variety of different phenomena such as 

(i) a signal from WIMP dark matter annihilation, 

(ii) gamma-ray emission from a population of millisecond 
pulsars, 

(iii) emission from cosmic rays injected in a sequence of 
burst-like events or continuum at the GC. 
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Gamma-ray Sky

From Satya’s Talk @ LHCDM, 2015

Fermi bubblesIsotropic gamma-ray background
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Inverse Compton Scattering

Sources of Galactic Diffuse Emission (GDE) 
1. Inverse Compton: CR electrons up-scattering low-energy photons 
2. Neutral pion decays: CR protons inelastic collision with nuclei (gas)  
3. Bremsstrahlung : CR electrons interacting with interstellar gas 

Sources of Galactic Diffuse Emission (GDE)
1. Inverse Compton: CR electrons up-scattering low-energy photons 

2. Neutral pion decays: CR protons inelastic collision with nuclei (gas) 

3. Bremsstrahlung : CR electrons interacting with interstellar gas

Sources of Galactic Diffuse Emission (GDE)
1. Inverse Compton: CR electrons up-scattering low-energy photons 

2. Neutral pion decays: CR protons inelastic collision with nuclei (gas) 

3. Bremsstrahlung : CR electrons interacting with interstellar gas

From Satya’s Talk @ LHCDM, 2015
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Galactic Center Region

Complex region: CR intensities, density of radiation fields and gas are highest; large 
uncertainties modeling the gamma-ray interstellar emission,  significant foreground/
background contribution with long integration path over the entire Galactic disc

Large density of gamma-ray sources: many energetic sources near to or in the line of sight 
of the GC, difficult to disentangle from interstellar emission

A signal of new physics (dark matter annihilation/
decay) is also predicted to be largest here
Claims of a potential signal of dark matter 
annihilation from this region have been made by 
several groups in the past few years (see next talk  
and Thursday afternoon session on the Galactic 
center)

GC: Challenges and Potential

1. Complex region: CR intensities, 
density of radiation fields and gas 
are highest; large uncertainties 
modelling the gamma-ray emission 
!
2. A signal of new physics (dark 
matter annihilation/ decay) is also 
predicted to be largest here 
!
3. One of the main goals of Fermi-
LAT : understanding CR, 
interstellar gas and radiation 
properties via various 
observations. Those are the inputs 
to the analysis. !
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Figure 5: The Earth is located at ~x = 0 (such that d is the distance from us); the Galactic
Center at x = r�, y = z = 0; and the Galactic plane corresponds to z ⇡ 0. Consequently
cos ✓ = x/d = cos b · cos `.
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4.2 The Line-of-Sight Integral and Halo Uncertainties

[144]
While DM can annihilate directly to a pair of hard photons, this process is typically

loop suppressed. The production of photons is dominated by production of SM particles
which subsequently produce photons through decays, or to a lesser extent bremsstrahlung.
The di↵erential flux of such photons from a given direction  is given by,

dN

d⌦dE
( ) =

1
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f 2

�J( )

m2
�

X

i

h�vii
dN i

dE�
, (16)

with ⌘ = 2(4) for self-conjugate (non-self-conjugate) DM. The quantity dN i/dE� is the
spectrum of photons obtained per annihilation for the final state i. The line-of-sight integral,
J( ), is given by

J( ) =

Z

l.o.s.

ds ⇢(r)2 , (17)

where r is the distance from the Galactic center. The quantity f� is the fraction of dark
matter that is doing the annihilation. For simplicity we will assume only one species � is
annihilating, but the formalism can be trivially generalized to many by taking a sum.

In this section we will discuss each of the factors in (16) in turn, paying attention to
the uncertainties and their relation to dark matter properties. We will begin with the
line-of-sight integral, J( ), and continue with the annihilation fraction f�.
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depend on the observational region of interest (ROI) in a particular analysis 

latitude

longitude

The differential flux of gamma-ray 
DM prompt !-ray spectrum per annihilation

From Satya
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IV. COSMOLOGICAL AND ASTROPHYSICAL CONSTRAINTS

A. The gamma-ray spectrum originating from the two-step cascade dark matter

annihilations: determining mX ,mS , and mA

The di↵erential gamma-ray flux, arising from the two-step cascade annihilations of the vector

DM, can be expressed by
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where the J-factor is the integral of the DM density squared along the line of sight (l.o.s.) and over

the solid angle �⌦ that covers the region of interest (ROI), and h�vif and (dNf
� /dE)X are the low-

velocity averaged annihilation cross section and the gamma-ray spectrum produced per annihilation

with final state f , respectively. For illustration, the dominant process is depicted in Fig. 1, where

the final states are ⌧ ’s, which mainly arise from the process, h�vi⌧ ' h�viXX!SS ⇥ Br(S !

AA) ⇥ Br(A ! ⌧⌧), with Br(S ! AA) ' 1 and Br(A ! ⌧⌧) ' 1. Following the method given in

Ref. [41], we can perform two-step Lorentz boosts to transform the gamma-ray spectrum given in

the A boson rest frame, (dN ⌧
� /dE)A, to the XX center of mass (CM) frame; we first boost the

spectrum to the S rest frame and then to the CM frame of the XX pair. For (dN ⌧
� /dE)A, we

will use the PPPC4DMID result [59, 60], which was generated by using PYTHIA 8.1 [61]. Thus,

(dN ⌧
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where
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with E, E1, and E0 being the photon energies in the XX CM frame, S rest frame, and A rest

frame, respectively.
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III. INDIRECT AND DIRECT SEARCHES

A. Galactic Center Gamma-Ray Excess

The di↵erential flux of gamma-ray from a given angular region �⌦, originated from the anni-

hilation of scalar DM particles, is
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where ⌘ ⌘ “2” is for the self-conjugated DM (e.g. real scalar DM) and “4” for non-self-conjugated

DM (e.g. complex scalar DM), dNf
� /dE is the energy spectrum of prompt gamma-rays produced

per annihilation into the final state f, and the scalar DM mass is denoted by m�. The factor J is

an integral over DM density distribution along the line-of-sight (l.o.s). The integral of the average

J factor over �⌦ is
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where ⇢(r) is the DM halo profile with r being the distance from the galactic center, and  is the

angle observed away from the galactic center and d⌦ ⌘ cos b d` db satisfying cos = cos b·cos ` with

` and b being the longitude and latitude in the galactic polar coordinate, respectively. J̄canonical

is the central value of J̄ , while J� parametrizes the deviation from the canonical profile due to

variation of the DM distribution slope �. The values of J̄canonical and J , sensitive to astrophysical

uncertainties, depend on the observational the region of interest (ROI) in a particular analysis.

Following [21, 78] where the tail of the spectrum has extended to higher energy, we employ the

ROI of |`| < 20� and 2� < |b| < 20� (i.e. 40� ⇥ 40� square centered on the GC with the latitude

|b| > 2�) to study GC gamma-ray emission.

We will consider the galactic DM density distribution described by a generalized Navarro-Frenk-

White (NFW) halo profile [7, 8]:

⇢(r) = ⇢�

✓
r

r�

◆�� ✓ 1 + r/rs

1 + r�/rs

◆��3

. (6)

As the canonical values we adopt the scale radius rs = 20 kpc, the slope � = 1.2, and the local DM

density ⇢� = 0.4 GeV/cm3 at r = r� = 8.5 kpc which is the distance of the Solar system from GC.

The uncertainty of the dark matter halo profile near the galactic center remains large. Especially,

the statistical error is dominated by the systematic uncertainty on the background and di�cult

to determined. To account for this uncertainty, we will use � = 1.2 ± 0.1, which is consistent

We will consider the galactic DM density distribution described 
by a generalized Navarro-Frenk-White (NFW) halo profile 

where the scale radius !"=20 kpc, r is the distance to the GC, −$ is the 
inner log slope of the halo density near the GC, and %⊙ is the local DM 
density at !⊙ = 8.5 kpc, the radial distance of the Sun from the GC. 
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1409.0042, systematics of 60 GDE models studied by Calore, Cholis and Weniger (CCW) 

1411.2592, Agrawal, Batell, Fox, Harnik (use the CCW or preliminary Fermi GCE spectra) 

1411.4647, Calore, Cholis, McCabe, Weniger (CCMW), follow up CCW’s result

Use 60 GDE models and fit the gamma ray data (300 MeV to 500 GeV)
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Figure 14. Spectrum of the GCE emission for model F (black dots) together with statistical and
systematical (yellow boxes, cf. figure 12) errors. We also show the envelope of the GCE spectrum for
all 60 GDE models (blue dashed line, cf. figure 7).
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Figure 15. Geometry of the ten GCE
segments used in our morphology anal-
ysis, see table 3.

#ROI Definition ⌦ROI [sr]

I, II
p
`2 + b2 < 5�, ±b > |`| 6.0⇥ 10�3

III, IV 5� <
p
`2 + b2 < 10�, ±b > |`| 1.78⇥ 10�2

V, VI 10� <
p
`2 + b2 < 15�, ±b > |`| 2.93⇥ 10�2

VII, VIII 5� <
p
`2 + b2 < 15�, ±` > |b| 3.54⇥ 10�2

IX 15� <
p
`2 + b2 < 20� 1.51⇥ 10�1

X 20� <
p
`2 + b2 1.01⇥ 10�1

Table 3. Definition of the ten GCE segments that are
shown in figure 15, as function of Galactic latitude b and
longitude `, together with their angular size ⌦ROI.

the fit. The definition of the segments aims at studying the symmetries of the GCE around
the GC: Allowing regions in the North (I, III, and V) and South (II, IV, and VI) hemisphere,
as well as in the West (VII) and East (VIII) ones, to vary independently, we can test the
spectrum absorbed by the GCE template in the di↵erent regions of the sky. Moreover, with
the same segments, we can investigate its the extension in latitude.

To facilitate the study of morphological properties of the excess, we furthermore allow
additional latitudinal variations in the ICS components of the individual GDE models. We
split our ICS component into nine ICS segments, corresponding to 9 latitude strips with
boundaries at |b| = 2.0�, 2.6�, 3.3�, 4.3�, 5.6�, 7.2�, 9.3�, 12.0�, 15.5� and 20�. We then allow
the normalization of the ICS strips to vary independently, though we keep the normalization

– 30 –

1409.0042

A Tale of Tails : the difference from earlier 
studies. The peak remains the same 

GCE results are sensitive to  Galactic Diffuse Emission Models
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FIG. 3. Preferred DM mass and annihilation cross-section (1,
2 and 3 � contours) for all single channel final states where
ICS emission can be safely ignored. Vertical gray lines refer
to the W , Z, h and t mass thresholds. The p-values for an-
nihilation to pure W+W �, ZZ and t̄t final states are below
0.05, indicating that the fit is poor for these channels; see
Tab. I. Uncertainties in the DM halo of the Milky Way are
parametrized and bracketed by A = [0.17, 5.3], see Sec. V.
The results shown here refer to A = 1.

that the interpolation at mass threshold agrees with our
own results from PYTHIA 8.186.

In addition to gamma rays, CR electrons and positrons
are produced as final (stable) products of DM annihila-
tions. These CR electrons/positrons, like all other elec-
trons/positrons propagate in the Galaxy and produce
ICS and bremsstrahlung emission.5 Generally, the ICS
emission is expected to be more important for DM mod-
els with significant branching ratios to (light) leptons.
Therefore we separate our discussion to first address the
cases when ICS emission can be safely ignored, before
discussing in detail ICS emission for annihilation to lep-
tons.

A. Single annihilation channels without ICS

We first discuss annihilation to pure two-body annihi-
lation states for the cases when ICS emission can be safely
ignored. This turns out to be all cases except annihila-
tion to electrons and muons. In Fig. 3 we show the best-

5 CR p and p̄ from DM annihilations can also give their own ⇡0

emission of DM origin, but are suppressed from the p̄/p measure-
ments already by at least five orders of magnitude compared to
the conventional Galactic di↵use ⇡0 emission.

Channel
h�vi

(10�26 cm3 s�1)
m�

(GeV) �2
min p-value

q̄q 0.83+0.15
�0.13 23.8+3.2

�2.6 26.7 0.22

c̄c 1.24+0.15
�0.15 38.2+4.7

�3.9 23.6 0.37

b̄b 1.75+0.28
�0.26 48.7+6.4

�5.2 23.9 0.35

t̄t 5.8+0.8
�0.8 173.3+2.8

�0 43.9 0.003

gg 2.16+0.35
�0.32 57.5+7.5

�6.3 24.5 0.32

W+W � 3.52+0.48
�0.48 80.4+1.3

�0 36.7 0.026

ZZ 4.12+0.55
�0.55 91.2+1.53

�0 35.3 0.036

hh 5.33+0.68
�0.68 125.7+3.1

�0 29.5 0.13

⌧+⌧� 0.337+0.047
�0.048 9.96+1.05

�0.91 33.5 0.055
⇥
µ+µ� 1.57+0.23

�0.23 5.23+0.22
�0.27 43.9 0.0036

⇤
��ICS

TABLE I. Results of spectral fits to the Fermi GeV excess
emission as shown in Fig. 2, together with ±1� errors (which
include statistical as well as model uncertainties, see text).
We also show the corresponding p-value. Annihilation into
q̄q, c̄c, b̄b, gg and hh all give fits that are compatible with
the observed spectrum. There is also a narrow mass where
annihilation into ⌧+⌧� is not excluded with 95% CL signifi-
cance. Annihilation to pure W+W �, ZZ and t̄t is excluded
at 95% CL, as is the µ+µ� spectrum without ICS emission
(��ICS). Bosons masses are from the PDG live [101].

fit annihilation cross-section and DM mass for all other
two-body annihilation states involving SM fermions and
bosons. The results are also summarized in Tab. I, where
we furthermore give the p-value of the fit as a proxy for
the goodness-of-fit. As with previous analyses, we find
that annihilation to gluons and quark final states q̄q, c̄c
and b̄b, provides a good fit. In the case of the canonical b̄b
final states, we find slightly higher masses are preferred
compared to previous analyses, see e.g. Refs. [12, 14, 15].
This is because of the additional uncertainty in the high-
energy tail of the energy spectrum that is allowed for in
this analysis. The highest mass to b̄b final states that
still gives a good fit (with a p-value > 0.05) is 73.9 GeV.

As the tail of the spectrum extends to higher energy, we
also consider annihilation to on-shell t̄t and SM bosons.
For t̄t, we find that the fit is poor because the DM spec-
trum peaks at too high an energy (⇠ 4.5 GeV rather than
the observed peak at 1–3 GeV). As the p-value is very low
for this channel, we do not consider it further. Pure an-
nihilation to pairs of W and Z gauge bosons are also ex-
cluded at a little over 95% CL significance. However, per-
haps surprisingly, annihilation to pairs of on-shell Higgs
bosons (colloquially referred to as “Higgs in Space” [102])
produce a rather good fit, so long as h is produced close
to rest. This is analogous to the scenario studied in
Ref. [103] in a di↵erent context. One interesting feature
of this channel is the gamma-ray line at m�/2 ' 63 GeV
from h decay to two photons. This is clearly visible in the
central panel of Fig. 2. The branching ratio for h ! ��
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annihilation into ⌧+⌧� is not excluded with 95% CL signifi-
cance. Annihilation to pure W+W �, ZZ and t̄t is excluded
at 95% CL, as is the µ+µ� spectrum without ICS emission
(��ICS). Bosons masses are from the PDG live [101].

fit annihilation cross-section and DM mass for all other
two-body annihilation states involving SM fermions and
bosons. The results are also summarized in Tab. I, where
we furthermore give the p-value of the fit as a proxy for
the goodness-of-fit. As with previous analyses, we find
that annihilation to gluons and quark final states q̄q, c̄c
and b̄b, provides a good fit. In the case of the canonical b̄b
final states, we find slightly higher masses are preferred
compared to previous analyses, see e.g. Refs. [12, 14, 15].
This is because of the additional uncertainty in the high-
energy tail of the energy spectrum that is allowed for in
this analysis. The highest mass to b̄b final states that
still gives a good fit (with a p-value > 0.05) is 73.9 GeV.

As the tail of the spectrum extends to higher energy, we
also consider annihilation to on-shell t̄t and SM bosons.
For t̄t, we find that the fit is poor because the DM spec-
trum peaks at too high an energy (⇠ 4.5 GeV rather than
the observed peak at 1–3 GeV). As the p-value is very low
for this channel, we do not consider it further. Pure an-
nihilation to pairs of W and Z gauge bosons are also ex-
cluded at a little over 95% CL significance. However, per-
haps surprisingly, annihilation to pairs of on-shell Higgs
bosons (colloquially referred to as “Higgs in Space” [102])
produce a rather good fit, so long as h is produced close
to rest. This is analogous to the scenario studied in
Ref. [103] in a di↵erent context. One interesting feature
of this channel is the gamma-ray line at m�/2 ' 63 GeV
from h decay to two photons. This is clearly visible in the
central panel of Fig. 2. The branching ratio for h ! ��

CCMW: Annihilation into gluons, 
!"", ̅%%, !&&, ℎℎ provides a good fit

Low p-value; is not excluded with 
95% CL significance

This is for self-conjugate DM
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In order to determine the favored parameter space, for
a given choice of f , ✏f , and number of steps in the cascade
n, we vary m� and an overall normalization parameter
⌘ (proportional to h�vi/m

2
�
, as we will see below) and

compare the model to the data using the spectrum and
covariance matrix of [11]. In detail we calculate �

2 ac-
cording to:

�
2 =

X

ij

(Ni,model �Ni,data)C
�1

ij
(Nj,model �Nj,data) ,

(6)
where

Ni,model=

✓
⌘

m�

E
2

n

dN

dxn

◆

i,model

(7)

Ni,data =

✓
E

2
dN

dE

◆

i,data

(8)

and both model and data are expressed in units of
GeV/cm2/s/sr averaged over the region of interest. Here
the C

�1

ij
are elements of the inverse covariance matrix,

which together with the data points are taken from [11].
By Eq. 2, the fitted normalization ⌘ is related to the DM
mass and the J-factor by:

h�vi =
8⇡m2

�
⌘

Jnorm
. (9)

For consistency with the spectrum normalization of [11]
the J-factor is averaged over the ROI |l|  20� and 2� 

|b|  20�, so that:

Jnorm =

Z

ROI

d⌦J (l, b) /

Z

ROI

d⌦

⇠ 2.0618⇥ 1023 GeV2cm�5
.

(10)

(Note that d⌦ = dld sin b, not dld cos b, since b measures
the angle from the Galactic equator, not the north pole.)

Self-Consistency Requirements: The procedure out-
lined above treats m� as a free parameter that can be
adjusted to modify the 0-step spectrum; the fit only uses
the shape of the spectrum provided by the 0-step result
and the boost of Eq. 5. However, there is an additional
condition required for a cascade scenario to be physically
self-consistent: the mass hierarchy between the DM mass
and the particles produced in the final state must be suf-
ficiently large to accommodate the specified number of
steps. Equivalently, there is a hard upper limit on the
number of steps allowed, for a given DM mass and final
state.

Recall that for an n-step cascade ending in a final state
f , we defined ✏f = 2mf/m1, ✏1 = 2m1/m2, ✏2 = 2m2/m3

all the way up to ✏n = mn/m�. Combining these, the
DM mass is given in terms of mf and the ✏ factors by:

m� = 2n
mf

✏f ✏1✏2...✏n
, (11)

If the ✏i factors are allowed to float, we can still say that
0 < ✏i  1 in all cases (since each decaying particle must

10010-110-210-3

x

x2
dN

γ/
dx

������� �������
�=τ� ϵτ=���

�����
�
�
�
�
�
�
�

FIG. 2. An example photon spectrum from direct annihilation to
taus (grey) and hierarchical cascades with n = (1,2,3,4,5,6) steps,
corresponding to (purple, blue, green, pink, orange, red) curves.
The presence of each additional step in the cascade acts to broaden
and soften the spectrum, and shift the peak to lower masses. All
spectra are per annihilation.

have enough mass to provide the rest masses of the decay
products), setting a strict lower bound on the DM mass
of:

m� � 2nmf/✏f . (12)

In the remainder of this article we refer to this bound as
a “self-consistency” condition or defining “kinematically
allowed” masses. For consistency with the assumption of
hierarchical decays (i.e. ✏i ⌧ 1), the true bound on m�

will in general be somewhat stronger than this conserva-
tive estimate (although as we will discuss in Sec. IV, ✏i
can become quite close to 1 before significantly modifying
the fit relative to the ✏i ! 0 case).

III. RESULTS WITH THE ASSUMPTION OF
LARGE HIERARCHIES

Here we present the results from the fits performed
using the procedure outlined in the previous section. As-
suming hierarchical cascades, we perform fits for four dif-
ferent final states – electrons, muons, taus, and b-quarks
– and fit over the photon energy range 0.5 GeV  E� 

300 GeV.6 Later in this section we discuss the e↵ects
of cutting out high energy data points, and how the fits

6 By default, we omit the low energy data points with 0.3 GeV 

E�  0.5 GeV, as in this region the spectrum su↵ers larger
uncertainties under variations of the background modeling, and
the preferred value of the NFW � parameter is not robust [10].
We have confirmed that including these low-energy data points
has little impact on our results.

If the step is increased, the spectrum is 
broadened with a lower energy peak

! = #
$%&

the 0-step ' spectrum  has a much larger 
contribution from leptonic and semi-leptonic
'( → *+ ℓ *̅ℓ, *+. /0

1-6 steps for cascade annihilations
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In general, there may be more than one decay step
within the dark sector; the dominant annihilation of the
DM need not be to the lightest dark sector particle (e.g.
[32, 33]). If couplings within the dark sector are stronger
than couplings between the sectors, dark sector parti-
cles will preferentially decay within the dark sector, with
decays to the SM only occurring when no other states
are available. Regardless of the model under consider-
ation, in the absence of a mass degeneracy, each decay
will increase the final gamma-ray multiplicity, decrease
the typical gamma-ray energy, and broaden the spectrum
(in the presence of a mass degeneracy only the first two
e↵ects will occur). Accordingly, long decay chains could
potentially permit much heavier DM to explain the GCE,
or favor decays to di↵erent SM states. In a sense, this
description also characterizes the known decays of SM
particles; final states whose decays produce gamma-rays
through a lengthy cascade will generate a broader spec-
trum with a lower-energy peak, compared to final states
that generate gamma-rays via a short cascade (we discuss
this further in Sec. III).

It is this possibility of multi-step dark sector cascades
that we explore in this work. For simplicity, we con-
sider the case where all dark-sector particles involved in
the cascade (except possibly the DM itself) are scalars
- we briefly discuss the case of non-scalar mediators in
Sec. IV. In this case, the results are largely independent
of the details of the dark sector. The DM pair-annihilates
into two scalar mediators which subsequently undergo a
multi-step cascade in the dark sector, eventually produc-
ing a dark-sector state (with high multiplicity) that de-
cays to the SM:

�� ! �n�n ! 2⇥ �n�1�n�1 ! ...

! 2n�1
⇥ �1�1 ! 2n ⇥ ff̄ .

(1)

Here ff̄ are SM lepton or quark pairs, which can subse-
quently decay; the decays shown above may also produce
photons in the final step via final state radiation (FSR).
By fitting the resulting photon spectrum to the GCE,
we determine the allowed values of cross-section and DM
mass for cascades with one to six steps, for a variety of
SM final states. Provided that the masses of the particles
at each step in the cascade are not near-degenerate, the
final spectrum of gamma-rays becomes nearly indepen-
dent of the exact masses at each step. This assumption is
not limiting, as results for the quality of fit for the more
general case of non-hierarchical cascades (with nearly-
degenerate steps) can be simply extracted from results
derived assuming a large hierarchy.

In Sec. II we outline the determination of the photon
spectrum for an n-step cascade with specified SM final
state, and discuss the procedure used to compare such a
spectrum to the GCE. We present sample results of these
fits in Sec. III under certain assumptions. Section IV
extends our results for general cascades, and contains
our complete fit results. In Sec. V we outline the existing
experimental constraints a complete model for the GCE

via cascade decays would need to satisfy. We present
our conclusions in Sec. VI. In the appendices we provide
additional details of our methodology and discuss some
further model-dependent considerations.

II. METHODOLOGY

The photon flux generated by the annihilations of self-
conjugate DM3 as a function of the direction observed in
the sky, is given by:

� (E� , l, b) =
h�vi

8⇡m2
�

dN�

dE�

J (l, b) , (2)

where h�vi is the thermally averaged annihilation cross-
section, m� is the DM mass, and dN�/dE� is the photon
spectrum per DM annihilation, which has contributions
from FSR and from the decay of the leptons or quarks
and their subsequent hadronization products. The J-
factor, the integral of DM density squared along the line-
of-sight, is a function of the observed direction in the sky
expressed in terms of Galactic coordinates l and b:

J (l, b) =

Z 1

0

⇢
2

✓q
s2 � 2r�s cos l cos b+ r

2
�

◆
ds , (3)

where r� ⇡ 8.5 kpc is the distance from the Sun to the
Galactic Center, and s parametrizes the integral along
the line-of-sight. We parameterize the DM density by a
generalized NFW halo profile [34, 35]:

⇢ (r, �) = ⇢0
(r/rs)��

(1 + r/rs)
3��

. (4)

Here we use rs = 20 kpc, ⇢0 = 0.4 GeV/cm3 and � = 1.2,
following [11], as we will compare our models to the data
using the spectrum and covariance matrix determined by
that work.
We focus on n-step cascades ending in �1 ! ff̄ , where

ff̄ is a pair of electrons, muons, taus or b-quarks. Other
SM final states are possible, of course, but these cases
span the range from steeply peaked photon spectra close
to the DM mass through to the lower-energy and broader
spectra characteristic of annihilation to hadrons. In order
to generate the cascade spectrum, we first start with the
result from direct DM annihilation, which is equivalent to
the spectrum from �1 decay (in the �1 rest frame) if the
DM mass is half the �1 mass. For the case of electrons or
muons we determine this spectrum analytically using the
results of [36], whilst for taus and b-quarks the results are
simulated in Pythia8 [37]. We have relegated the details
of calculating these spectra to Appendix A.

3 As discussed in Appendix A, our results can be readily translated
to the case of decays, although the steeply peaked morphology
of the GCE disfavors this interpretation.
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Leptophilic Next-to-Minimal 2HDM

2HDM: Two Higgs doublet model

Vector dark matter

3

II. LEPTOPHILIC NEXT-TO-MINIMAL 2HDM PORTAL VECTOR DARK MATTER

A. The Model

We consider a model with two Higgs doublets, �1,�2, and a complex scalar dark Higgs field

�S . The CP-conserving potential for the Higgs sector is described by

V = m
2
11|�1|

2 +m
2
22|�2|

2
�m

2
12(�

†
1�2 + h.c.) +

�1

2
(�†

1�1)
2 +

�2

2
(�†

2�2)
2

+�3(�
†
1�1)(�

†
2�2) + �4(�

†
1�2)(�

†
2�1) +

�5

2
[(�†

1�2)
2 + h.c.]

+m
2
33�

†
S
�S +

�6

2
(�†

S
�S)

2 + �7(�
†
1�1)(�

†
S
�S) + �8(�

†
2�2)(�

†
S
�S) , (1)

where �S is a singlet under the SM gauge fields. As usual, we have imposed a discrete Z2 symmetry

to the Higgs potential, such that �1 ! �1, �2 ! ��2, and �S ! �S , under which the tree-level

flavor changing neutral currents (FCNCs) are absent. The Z2 symmetry is softly broken by the

term containing m
2
12. On the other hand, we have considered that �S is changed in the dark

Udm(1) gauge group, while other Higgs fields and SM particles have no such quantum number.

The Udm(1) group contains an abelian gauge boson, Xµ. After spontaneous symmetry breaking,

the vacuum expectation value (VEV) of �S generates a mass for Xµ, and a discrete Z0
2 symmetry:

Xµ ! �Xµ,�S ! �⇤
S
, is still maintained, such that Xµ is stable and can serve as a (vector) dark

matter candidate.

The relevant kinetic terms in the dark sector are given by

LDM = �
1

4
Xµ⌫X

µ⌫ + (Dµ�S)
†(Dµ�S) , (2)

where Xµ⌫ = @µX⌫ � @⌫Xµ, and the covariant derivative is defined as

Dµ�S = (@µ + igXQ�S
Xµ)�S , (3)

with Q�S
the Udm(1) change of �S . After spontaneous symmetry breaking, we have

�S =
1
p
2
(vS + h3), (4)

where the imaginary part of �S is absorbed by the vector gauge boson (dark matter) due to the

Z0
2 symmetry: Xµ ! �Xµ, and the vector gauge boson obtains a mass, mX = gXQ�S

vS . In

this paper, we will simply take Q�S
= 1; in other words, Q�S

and gX are lumped together. The

interacting terms of the dark sector is given by

L
int
DM �

1

2
g
2
XXµX

µ
h
2
3 + gXmXXµX

µ
h3 , (5)

The relevant kinetic terms in the dark sector are
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L
int
DM �

1

2
g
2
XXµX

µ
h
2
3 + gXmXXµX

µ
h3 , (5)

!"# 1 charge of Φ.
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(a) (b) (c) (d)

FIG. 2. Feynman diagrams that dominantly contribute to the DM annihilation cross section relevant to relic

abundance and GC gamma-ray excess, where (a), (b), (c), and (d) are for the 4-vertex, s-, t-, u-channels,

respectively.

B. The Gamma-Ray Spectrum Originating from the Two-Step Cascade Dark Matter

annihilations: Determining mX ,mS , and mA

The di↵erential gamma-ray flux, arising from the two-step cascade vector DM annihilations,

can be expressed by

d��

dE
=

1

8⇡m2
X

X

f

h�vif

 
dN

f
�

dE

!

X

Z

�⌦

Z

l.o.s.
ds⇢

2(r(s, ))d⌦
| {z }

J-factor

, (30)

where the J-factor is the integral of the DM density squared along the line of sight (l.o.s.) and

over the solid angle �⌦ that covers the region of interest (ROI), and h�vif and (dNf
� /dE)X

are the velocity-averaged annihilation cross section and the gamma-ray spectrum produced per

annihilation with final state f , respectively. Here, for illustration, we take the dominant process

depicted in Fig. 1 as an example. The final states are dominated by the ⌧ production, which mainly

arises from the process, h�vi⌧ ' h�viS ⇥ Br(S ! AA) ⇥ Br(A ! ⌧⌧), with h�viS ⌘ XX ! SS,

Br(S ! AA) ' 1 and Br(A ! ⌧⌧) ' 1. We can perform two-step Lorentz boosts to transform

the gamma-ray spectrum given in the A boson rest frame, (dN ⌧
� /dE)A, to the XX center of mass

(CM) frame1. For (dN ⌧
� /dE)A, we will use the PPPC4DMID result [13, 14], which is generated

using PYTHIA 8.1 [15]. Thus, (dN ⌧
� /dx2)X = mX(dN ⌧

� /dE)X can be written as

✓
dN

⌧
�

dx2

◆

X

= 4

Z
t2,max

t2,min

dx1

x1

p
1� ✏

2
2

Z
t1,max

t1,min

dx0

x0

p
1� ✏

2
1

✓
dN

⌧
�

dx0

◆

A

, (31)

1 We first boost the spectrum to the S rest frame and then to the CM frame of the XX pair.
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Red line: 95% CL upper bound from combined gamma-ray data of 28 confirmed and 27 
candidate dSphs, recently reported by the Fermi-LAT and DES Collaborations (2017)

grey region: conventional WIMP thermal relic density can be accounted for
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II. LEPTOPHILIC NEXT-TO-MINIMAL 2HDM PORTAL VECTOR DARK MATTER

A. The Model

We consider a model with two Higgs doublets, �1,�2, and a complex scalar dark Higgs field

�S . The CP-conserving potential for the Higgs sector is described by

V = m
2
11|�1|

2 +m
2
22|�2|

2
�m

2
12(�

†
1�2 + h.c.) +

�1

2
(�†

1�1)
2 +

�2

2
(�†

2�2)
2

+�3(�
†
1�1)(�

†
2�2) + �4(�

†
1�2)(�

†
2�1) +

�5

2
[(�†

1�2)
2 + h.c.]

+m
2
33�

†
S
�S +

�6

2
(�†

S
�S)

2 + �7(�
†
1�1)(�

†
S
�S) + �8(�

†
2�2)(�

†
S
�S) , (1)

where �S is a singlet under the SM gauge fields. As usual, we have imposed a discrete Z2 symmetry

to the Higgs potential, such that �1 ! �1, �2 ! ��2, and �S ! �S , under which the tree-level

flavor changing neutral currents (FCNCs) are absent. The Z2 symmetry is softly broken by the

term containing m
2
12. On the other hand, we have considered that �S is changed in the dark

Udm(1) gauge group, while other Higgs fields and SM particles have no such quantum number.

The Udm(1) group contains an abelian gauge boson, Xµ. After spontaneous symmetry breaking,

the vacuum expectation value (VEV) of �S generates a mass for Xµ, and a discrete Z0
2 symmetry:

Xµ ! �Xµ,�S ! �S , is still maintained, such that Xµ is stable and can serve as a (vector) dark

matter candidate.

The relevant kinetic terms in the dark sector are given by

LDM = �
1

4
Xµ⌫X

µ⌫ + (Dµ�S)
†(Dµ�S) , (2)

where Xµ⌫ = @µX⌫ � @⌫Xµ, and the covariant derivative is defined as

Dµ�S = (@µ + igXQ�S
Xµ)�S , (3)

with Q�S
the Udm(1) change of �S . After spontaneous symmetry breaking, we have

�S =
1
p
2
(vS + h3), (4)

where the imaginary part of �S is absorbed by the vector gauge boson (dark matter) due to the

Z0
2 symmetry: Xµ ! �Xµ, and the vector gauge boson obtains a mass, mX = gXQ�S

vS . In

this paper, we will simply take Q�S
= 1; in other words, Q�S

and gX are lumped together. The

interacting terms of the dark sector is given by

L
int
DM �

1

2
g
2
XXµX

µ
h
2
3 + gXmXXµX

µ
h3 , (5)

!" symmetry: Φ$ → Φ$,Φ" → −Φ", and Φ+ → Φ+, under which the tree-level 
flavor changing neutral currents (FCNCs) are absent. 

Φ+ is charged in the dark ,-. (1) gauge group

After spontaneous symmetry breaking, a discrete !"′ symmetry: 34 → −34,
Φ+ → Φ+∗, is still maintained
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where the hidden scalar field h3 will mix with the neutral scalars in the two Higgs doublets through

the interaction given by Eq. (1).

We decompose the Higgs doublet fields as

�i =

0

@ h
+
i

1p
2
(vi + hi + iai)

1

A , with i = 1, 2, (6)

where the vacuum expectation values (VEVs) of the doublets satisfy v
2
⌘ v

2
1 + v

2
2 = (246 GeV)2.

The scalar fields in �i and �S can be expressed in terms of mass eigenstates of physical Higgs

states and Goldstone bosons as
0

@ h
±
1

h
±
2

1

A =

0

@ cos� � sin�

sin� cos�

1

A

0

@ G
±

H
±

1

A , (7)

0

@ a1

a2

1

A =

0

@ cos� � sin�

sin� cos�

1

A

0

@ G
0

A

1

A , (8)

0

BBB@

h1

h2

h3

1

CCCA
=

0

BBB@

cos↵ � sin↵ 0

sin↵ cos↵ 0

0 0 1

1

CCCA

0

BBB@

0 0 0

0 cos � � sin �

0 sin � cos �

1

CCCA

0

BBB@

cos ✓ 0 � sin ✓

0 1 0

sin ✓ 0 cos ✓

1

CCCA

0

BBB@

H

h
0

S

1

CCCA
, (9)

where (H,h) are the (heavy, light) Higgs CP-even scalars, A the CP-odd scalar, H± the two charged

Higgs bosons, and (G±
, G) the Goldstone bosons corresponding to the longitudinal components of

W
± and Z, respectively. Here ↵ and � are the mixing angles of the neutral CP-even bosons and

of the charge bosons, respectively, where the latter is related to the ratio of the two VEVs, and is

defined as tan� = v2/v1.

B. The Yukawa Sectors

The Yukawa interaction of the Higgs doublets to the SM fermions can be expressed by

L
SM
Yukawa =�QLyu�̃2uR �QLyd�2dR � LLy`�1eR + h.c., (10)

where �̃2 = i�2�⇤
2. In terms of the mass eigenstates of the scalar bosons, the Yukawa interaction

terms can be rewritten by

L
SM
Yukawa ��

X

f=u,d,`

mf

v

✓
1

s�
hf f̄f � i sgn(f) ⇠f Af̄�5f

◆

+

"
p
2VudH

+
ū

✓
mu⇠u

v
PL �

md⇠d

v
PR

◆
d�

p
2m`⇠`

v
H

+
⌫̄PR`+ h.c.

#
, (11)

! is the mixing angles of the neutral CP-even bosons (ℎ$, ℎ&) in the limit of (, ) → 0

, is the mixing angles of the charge bosons, and is related to the ratio of the 
two VEVs, tan , = 1&/1$.

6

f = u, d l

ghff c↵/s� �s↵/c�

gHff s↵/s� c↵/c�

gSff �(s↵s✓ + c↵s�)/s� (�c↵s✓ + s↵s�)/c�

gAff ±1/t� t�

TABLE I. The tree level Yukawa couplings of the neutral type-X N2HDM Higgs bosons, keeping terms

linear in sin ✓ and sin �, with respect to that of the SM Higgs.

III. USE OF THE PARAMETERS UNDER THE THEORETICAL AND

EXPERIMENTAL CONSTRAINTS ON THE LN2HDM PARAMETER SPACE

For CP-conserving LN2HDM with softly broken Z2 symmetry, we adopt the observed Higgs

resonance as one of the CP-even scalars: h with mass mh = 125.09 GeV [1], v2 ⌘ (
p
2GF )�1

'

(246 GeV)2. Compared with the SM, the interactions contain 11 more independent parameters.

We take the following remaining parameters as inputs:

gX , tan�, � � ↵ , ✓, � ,

mX , mS , mH , mA, mH± , M
2
⌘ m

2
12/(sin� cos�) . (21)

In this parametrization, the tree-level couplings of the Higgs bosons to SM particles are functions

of tan�, � � ↵, ✓, and �.

In the present paper, we consider that the GC gamma excess is due to the two-step cascade

annihilation of the dark matter into the final state ⌧ ’s, for which the main process is schematically

shown in Fig. 1, where the shaded region denotes the interactions, depicted in Fig. 2, and is relevant

to the DM annihilation cross section. As shown in the following GC gamma-ray excess study that

mA ⇠ 15 GeV< mh/2, we therefore need to consider the constraint on Br(h ! AA), which is

proportional to the square of �hAA. Following Ref. [24], we will take �hAA = 0, i.e.,

�
2M2

� 2m2
A �m

2
h

�
s��↵ = (M2

�m
2
h
)

✓
t� �

1

t�

◆
c��↵ , (22)

for which, under the conditions of t� � 1,m2
A
/M

2
⌧ 1 and m

2
h
/M

2
⌧ 1, one can obtain the

following approximations,

sin(� � ↵) ' 1�
2

tan2 �

✓
1 +

m
2
h

M2
�

2m2
A

M2

◆
, (23)

cos(� � ↵) '
2

tan�

✓
1 +

m
2
h

2M2
�

m
2
A

M2

◆
. (24)

Yukawa couplings of neutral type-X N2HDM Higgs

Dominant in large tan,
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Feature of L(N)2HDM with a the light CP-odd Higgs

In case of !"## = 0,  we have  (                                )

The normalized Yukawa coupling of the SM Higgs to the lepton pair can thus be

7

The magnitude of �hAA can be constrained from the measurement of Br(h ! AA ! 4⌧) ' Br(h !

AA), of which the current upper bound [21, 22] is about 0.2-0.4 for 8  mA  30GeV, resulting

in |�hAA| < 9.5 ⇥ 10�3. Using the results in Eqs. (23) and (24), the normalized Yukawa coupling

of the SM Higgs to the lepton pair can be expressed as

gh`` = �
s↵

c�
= s��↵ � t�c��↵ = �1�

m
2
h

M2
+ 2

m
2
A

M2
. (25)

In this case, the alignment limit, s��↵ ! 1, reproduces the wrong-sign SM coupling gh`` ! �1.

Taking the combination of the ATLAS and CMS h ! ⌧⌧ measurements, the signal strength reads

µ⌧⌧ ⌘ (�h · BR)obs⌧⌧ /(� · BR)SM⌧⌧ = 1.11+0.24
�0.22 [23], which is defined as the observed product of the

SM-like Higgs production cross section and the decay branching ratio h ! ⌧⌧ , normalized to the

corresponding SM value. The corresponding requirement for mA  20 GeV is |gh⌧⌧ | < 1.26 at 2�

C.L., such that we have M & 270 GeV.

On the other hand, in the limit s��↵ ! 1 and t� � 1, we have, from Eq. (B1), that

mH �M '
�1v

2

2mHt
2
�

�
mH

t
2
�

, (26)

which, considering the perturbativity and vacuum stability requirements: 0 < �1 < 4⇡, leads to

mH �M . 1⇥ 300 GeV
mH

GeV for a large tan� & 35 and mH . 1400 GeV.

The oblique parameters, S,U and T , which are defined to vanish in the Standard Model, can

constrain the masses of the Higgs bosons. We adopt the definition of these parameters, originally

introduced by Peskin and Takeuchi [28, 29]. In the 2HDM, the S and U parameters only weakly

depends on the masses [? ]. T , proportional to the di↵erence between W and Z self-energies at

Q
2 = 0, is related to the electroweak ⇢ paramter, ⇢� 1 = ↵T [? ].

Taking the limit s��↵ ! 1, |mH± �mH | ⌧ mH , and mA ⌧ mH , and keeping terms linear in

sin ✓ and sin �, we obtain

S ⇡ �
1

24⇡

✓
5

3
+

4(mH± �mH)

mH

◆
' �0.022� 0.002⇥

300 GeV

mH

mH± �mH

10 GeV
,

T ⇡
1

32⇡2↵emv
2
mH(mH± �mH) ' 0.04⇥

mH

300 GeV

mH± �mH

10 GeV
,

U ⇡
1

12⇡

✓
mH± �mH

mH

◆
+O(10�4) ' 0.001⇥

300 GeV

mH

mH± �mH

10 GeV
+O(10�4), (27)

where the T parameter is especially sensitive to the mass splitting, mH± � mH . For a value

|mH± � mH | ⇠ O(10) GeV, the theoretical results can be consistent with that from the data fit

which gives

S = 0.05± 0.10, T = 0.08± 0.12, U = 0.02± 0.10. (28)

7

The magnitude of �hAA can be constrained from the measurement of Br(h ! AA ! 4⌧) ' Br(h !

AA), of which the current upper bound [21, 22] is about 0.2-0.4 for 8  mA  30GeV, resulting

in |�hAA| < 9.5 ⇥ 10�3. Using the results in Eqs. (23) and (24), the normalized Yukawa coupling

of the SM Higgs to the lepton pair can be expressed as
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�0.22 [23], which is defined as the observed product of the

SM-like Higgs production cross section and the decay branching ratio h ! ⌧⌧ , normalized to the

corresponding SM value. The corresponding requirement for mA  20 GeV is |gh⌧⌧ | < 1.26 at 2�

C.L., such that we have M & 270 GeV.

On the other hand, in the limit s��↵ ! 1 and t� � 1, we have, from Eq. (B1), that
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which, considering the perturbativity and vacuum stability requirements: 0 < �1 < 4⇡, leads to
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GeV for a large tan� & 35 and mH . 1400 GeV.

The oblique parameters, S,U and T , which are defined to vanish in the Standard Model, can

constrain the masses of the Higgs bosons. We adopt the definition of these parameters, originally

introduced by Peskin and Takeuchi [28, 29]. In the 2HDM, the S and U parameters only weakly

depends on the masses [? ]. T , proportional to the di↵erence between W and Z self-energies at

Q
2 = 0, is related to the electroweak ⇢ paramter, ⇢� 1 = ↵T [? ].

Taking the limit s��↵ ! 1, |mH± �mH | ⌧ mH , and mA ⌧ mH , and keeping terms linear in

sin ✓ and sin �, we obtain
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1

24⇡
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where the T parameter is especially sensitive to the mass splitting, mH± � mH . For a value

|mH± � mH | ⇠ O(10) GeV, the theoretical results can be consistent with that from the data fit

which gives

S = 0.05± 0.10, T = 0.08± 0.12, U = 0.02± 0.10. (28)

! ℎ → ( ( measurements, |!"** | < 1.26 at 20 C.L., give 12 ≥ 245 GeV
for 4# ≤ 20GeV
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f = u, d l

ghff c↵/s� �s↵/c�

gHff s↵/s� c↵/c�

gSff �(s↵s✓ + c↵s�)/s� (�c↵s✓ + s↵s�)/c�

gAff ±1/t� t�

TABLE I. The tree level Yukawa couplings of the neutral type-X N2HDM Higgs bosons, keeping terms

linear in sin ✓ and sin �, with respect to that of the SM Higgs.

III. USE OF THE PARAMETERS UNDER THE THEORETICAL AND

EXPERIMENTAL CONSTRAINTS ON THE LN2HDM PARAMETER SPACE

For CP-conserving LN2HDM with softly broken Z2 symmetry, we adopt the observed Higgs

resonance as one of the CP-even scalars: h with mass mh = 125.09 GeV [1], v2 ⌘ (
p
2GF )�1

'

(246 GeV)2. Compared with the SM, the interactions contain 11 more independent parameters.

We take the following remaining parameters as inputs:

gX , tan�, � � ↵ , ✓, � ,

mX , mS , mH , mA, mH± , M
2
⌘ m

2
12/(sin� cos�) . (21)

In this parametrization, the tree-level couplings of the Higgs bosons to SM particles are functions

of tan�, � � ↵, ✓, and �.

In the present paper, we consider that the GC gamma excess is due to the two-step cascade

annihilation of the dark matter into the final state ⌧ ’s, for which the main process is schematically

shown in Fig. 1, where the shaded region denotes the interactions, depicted in Fig. 2, and is relevant

to the DM annihilation cross section. As shown in the following GC gamma-ray excess study that

mA ⇠ 15 GeV< mh/2, we therefore need to consider the constraint on Br(h ! AA), which is

proportional to the square of �hAA. Following Ref. [24], we will take �hAA = 0, i.e.,
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for which, under the conditions of t� � 1,m2
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⌧ 1 and m

2
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/M
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⌧ 1, one can obtain the

following approximations,
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'
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In this parametrization, the tree-level couplings of the Higgs bosons to SM particles are functions

of tan�, � � ↵, ✓, and �.

In the present paper, we consider that the GC gamma excess is due to the two-step cascade

annihilation of the dark matter into the final state ⌧ ’s, for which the main process is schematically

shown in Fig. 1, where the shaded region denotes the interactions, depicted in Fig. 2, and is relevant

to the DM annihilation cross section. As shown in the following GC gamma-ray excess study that

mA ⇠ 15 GeV< mh/2, we therefore need to consider the constraint on Br(h ! AA), which is

proportional to the square of �hAA. Following Ref. [24], we will take �hAA = 0, i.e.,
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for which, under the conditions of t� � 1,m2
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⌧ 1, one can obtain the

following approximations,
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◆
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! Consider the constraint on Br(ℎ → 77) Current bound 0.2-0.4 dependent on 4#

≃

11

schematically shown in Fig. 1, where the shaded region denotes the interactions, depicted in Fig. 2,

and is relevant to the DM annihilation cross section. As shown in the following GC gamma-

ray excess study that mA ⇠ 10 � 20 GeV < mh/2, we therefore need to consider the constraint

on Br(h ! AA), which is proportional to the square of �hAA. The magnitude of �hAA can be
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Using the results in Eqs. (31) and (32), the normalized Yukawa coupling of the SM Higgs to the

lepton pair can be expressed as
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In this case, the alignment limit, s��↵ ! 1, reproduces the wrong-sign SM coupling gh`` ! �1.

Taking the combination of the ATLAS and CMS h ! ⌧⌧ measurements, the signal strength reads

µ⌧⌧ ⌘ (�h · BR)obs⌧⌧ /(� · BR)SM⌧⌧ = 1.11+0.24
�0.22 [55], which is defined as the observed product of the

SM-like Higgs production cross section and the decay branching ratio h ! ⌧⌧ , normalized to the

corresponding SM value. The corresponding requirement for mA  20 GeV is |gh⌧⌧ | < 1.26 at 2�

confidence level (C.L.), such that we have M & 245 GeV.

The masses of Higgs bosons can be constrained by the electroweak precision measurements.

Such new physics e↵ects, which contribute the gauge vacuum polarization at the one-loop level,

can be described by three oblique parameters, S,U and T . We adopt the definition of these

parameters, originally introduced by Peskin and Takeuchi [56, 57]. Taking the limit s��↵ ! 1,

|mH± �mH | ⌧ mH and mA ⌧ mH , and keeping terms linear in sin ✓ and sin �, we obtain three

oblique parameters from that given in Ref. [58], where a general multi-Higgs-doublet model was

studied. The results are collected in Appendix C. In the limit that we take, the formulas are

consistent with those in the two-Higgs doublet model, i.e. the correction due to the hidden Higgs
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boson S is negligible, and the results approximately read
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where the T parameter is especially sensitive to the mass splitting, mH± � mH . For the values

mH ⇡ 300 GeV and |mH± �mH | ⇠ O(10) GeV, the theoretical prediction is consistent with that

from the data fit which gives [73]

S = 0.05± 0.10, T = 0.08± 0.12, U = 0.02± 0.10. (35)

B. Theoretical considerations

For this model, we need to have mH ⇠ mH± ⇠ M � mA. To satisfy the perturbative bound,

we impose the absolute values of all the quartic couplings to be less than 4⇡. We can easily

make the estimate on the mass bound for the heavy Higgs as follows. From Eq. (B5), we have
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small mixing angles, ✓ and �, which are relevant to the present work, the tree-level perturbative

unitarity, as the case of the type-X 2HDM, gives mH± . 700 GeV [44]. On the other hand, the

vacuum stability and perturbativity could be broken when we consider this model at higher scale,

for which, again, in the limit of small ✓ and �, the related bound is the same as the type-X 2HDM,

and given by mH± . (400) 310 GeV for the cuto↵ scale ⇤ ' (10) 100 TeV [22, 44].

Neglecting the terms with power higher than that linear in s✓ and s�, and taking the limit
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where the second line is obtained by using the relations given in Eqs. (31) and (32). Considering

the perturbativity and vacuum stability requirements: 0 < �1 < 4⇡, we can get mH � M '

�1v
2
/(2mHt

2
�
) . 1⇥ 300 GeV

mH

GeV for a large tan� & 35 and mH & 250 GeV.
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and given by mH± . (400) 310 GeV for the cuto↵ scale ⇤ ' (10) 100 TeV [22, 44].

Neglecting the terms with power higher than that linear in s✓ and s�, and taking the limit

s��↵ ! 1 and t� � 1, we have, from Eq. (B1), that

m
2
H �M

2 ⇠=
�1v

2

t
2
�

+ (m2
H �m

2
h
)c2

��↵
� 2(m2

H �m
2
h
)
s��↵c��↵

t�
�

1

t
2
�

(m2
Hc

2
��↵

+m
2
h
s
2
��↵

)

'
�1v

2

t
2
�

�
2m2

H

t
2
�

✓
m

2
h

M2
�

2m2
A

M2

◆
+

m
2
h

t
2
�

✓
1 +

2m2
h

M2
�

4m2
A

M2

◆
, (36)

where the second line is obtained by using the relations given in Eqs. (31) and (32). Considering

the perturbativity and vacuum stability requirements: 0 < �1 < 4⇡, we can get mH � M '

�1v
2
/(2mHt

2
�
) . 1⇥ 300 GeV

mH

GeV for a large tan� & 35 and mH & 250 GeV.

For !" ≈ 300GeV, !"± −!" ~-(10GeV), the theoretical 
prediction is consistent with that from the data fit:

Oblique parameters in EW precision measurements

Taking the limit sβ−α → 1, and keeping terms linear in sinθ and sinδ, we obtain 
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FIG. 1: Representative Feynman diagrams in 2HDM contributing to (g � 2)µ.

SM prediction for aSM
µ

⌘ (g � 2)µ/2 results in a (3 � 4)� deviation from the experimental

result from Brookhaven E821 [9, 13]

�aµ ⌘ (aEXP
µ

� a
SM
µ

) = (261± 78)⇥ 10�11
. (25)

In the SM, the Higgs contribution to aµ is suppressed by a factor of m
2
µ
/m

2
h
compared

to the electroweak contributions [7, 8]. However, the Higgs sector contributions to aµ can

be considerably enhanced in a 2HDM. The significance of the aµ constraint for 2HDMs

was emphasized in Refs. [15, 73, 74]. Representative Feynman diagrams in the A2HDM

contributing to (g � 2)µ are depicted in Fig. 1. New Higgs bosons may contribute to (g � 2)µ

at leading order at the one-loop level. However, for a Higgs boson mass larger than ⇠ 10

GeV, dominant Higgs contributions to (g � 2)µ come from the two-loop Barr-Zee diagram

with a fermion in the loop [75]. It is also known that in the CP-conserving 2HDM of Type

X, a light pseudo-scalar, together with a large tan � value can explain the measured �aµ via

such diagrams [15–19]. Recently, the importance of additional contributions arising from

charged Higgs bosons in the A2HDM has been emphasized in Ref. [76]. We include these in

our predictions.

IV. RESULTS OF THE NUMERICAL SCAN

We perform a scan over the free parameters of the Higgs potential and Yukawa couplings.

As mentioned above, without constraining our results Z2 is fixed at 4⇡. We randomly
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1 Introduction

The anomalous magnetic moment of the muon aµ ⌘ (g � 2)/2, so-called muon g � 2,

is a very precisely measured observable. The latest measurement of aµ by the E821

collaboration [1] gives

a
exp

µ
= 11 659 208.0 (5.4)(3.3)⇥ 10�10

. (1)

As it has been well known that there is a discrepancy between the experimental value

and the prediction of the standard model (SM). According to the calculation evaluated

in Refs. [2, 3]

a
exp

µ
� a

SM

µ
= (28.7± 8.0)⇥ 10�10

, (Davier et. al.)

a
exp

µ
� a

SM

µ
= (26.1± 8.0)⇥ 10�10

, (Hagiwara et. al.)

the discrepancy is more than the 3� level, which can be considered as an indirect evidence

of the existence of a new physics model. This discrepancy will be further probed at

Fermilab [4] and J-PARC [5] in the near future. Since the size of the deviation is the

same order as the electroweak contribution a
EW

µ
= 15.4 ⇥ 10�10 [6], we expect that new

physics exists at the electroweak scale if the strength of new interactions is as large as

that of the weak interaction. In such a new physics scenario, new particles are expected

to be light enough to be directly discovered at the LHC. Therefore, it is quite interesting

to consider models beyond the SM as a solution of the muon g � 2 anomaly.

Among various models which can explain the anomaly (for a review, e.g., see Ref. [7]),

two Higgs doublet models (2HDMs) give simple solutions. In 2HDMs, there are extra

Higgs bosons (H, A, and H
±) in addition to the SM-like Higgs boson (h), and they can

give new contributions to aµ. Usually, a softly-broken discrete Z2 symmetry is imposed [8]

to avoid flavor changing neutral current (FCNC) processes at the tree level. Under the Z2

symmetry, four independent types of Yukawa interactions are allowed depending on the

assignment of the Z2 charge to the SM fermion [9, 10], which are called as Type-I, Type-

II, Type-X (or lepton specific) and Type-Y (or flipped) [11]. In all the types of Yukawa

interactions, the lepton couplings to the extra Higgs bosons can be sizable enough to

explain aµ. In the Type-I and Type-Y 2HDMs, however, the top Yukawa coupling also
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!"~ 10 − 20 GeV can explain muon g-2 anomaly at the 2+ level

1 Introduction
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to consider models beyond the SM as a solution of the muon g � 2 anomaly.
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Br(h ! beyond SM) < 34% and |�SAA| . 0.022, we then obtain

|✓| . 0.001, |�| . 0.088. (49)

There may exist points with �SAA ' 0 on the (✓, �) plane for � 6= 0. If we avoid this tiny region

around that points, where the other decay modes are also highly suppressed due to the very small

values of ✓ and �, we always have Br(S ! AA) ' 1. In Fig. 6, the contour plot for the S ! AA

decay width is shown on the (✓, �) plane. In this (two-step cascade annihilation dominant) case,

we have �S/mS . 6.7 ⇥ 10�4 for |✓| . 0.001, where �S is the total width of the S boson; the

value of the width can thus be negligible in the calculation. On the other hand, compared with

XX ! SS via an s-channel S exchange, as shown in Fig 2(b), if the mediator is replaced by h (or

H), the resulting cross section is suppressed not only by the propagator of the heavier boson but

also by the couplings squared: (s��hSS/�SSS)2 (or (s✓�HSS/�SSS)2), where s� (or s✓) comes from

the X-X-h (or X-X-H) vertex, and the coupling ratios �hSS/�SSS and �HSS/�SSS are shown in

Fig. 6. Therefore, the annihilation XX ! SS via a heavier mediator, h or H, is negligible in the

calculation; the conclusion is also valid for the 0-step cascade annihilation via an s-channel h (or

H) exchange since these cross sections are also suppressed by a factor of s2
�
(or s2

✓
) resulted from

the X-X-h (or X-X-H) vertex.

In Fig. 6, we show the contour results of �SAA and �SAA/�SSS on the (✓, �) plane. As indicated

in the relevant (✓, �) region, the �SAA is much more sensitive to the variation of ✓, compared with

its dependence on �. In the following analysis, the � is simply set to be zero, and the dependence

of the DM relic density on the e↵ective coupling can be related to the variation of ✓. If taking

� = 0, the constraint from the two-step cascade annihilation gives |✓| . 0.00043. Our conclusion

can be easily extended to the case with � 6= 0.

B. Constraints from dark matter freeze-out and relic abundance

1. Coupled Boltzmann equations with interactions: XX $ SS, SS $ AA, and S $ AA

The interplay of the DM particles and SM particles mostly results from the interaction XX $

SS followed by S $ AA and SS $ AA together with A $ ⌧
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⌧
� and AA $ ⌧
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⌧
�. For SS ! AA

and AA ! ⌧
+
⌧
�, their annihilation cross sections are summarized in Appendix D2, while for

S ! AA and A ! ⌧
+
⌧
�, their partial decay widths are given in Eqs. (23)-(28). Note that

when the hidden sector particles become nonrelativistic at temperatures T . mX,S , the cannibal

annihilations could play important roles; such e↵ects will be separately discussed in Sec. VB2.
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FIG. 7. Evolutions of the dark matter yield yX and mediator yield yS , for a benchmark parameter set

mX = 40 GeV, mS = 35 GeV, gX = 0.12, tan� = 35, mH = m
±
H

= M = 300 GeV, and � � ↵ = 0.062909.

The purple solid and brown solid curves stand for yX and yS , respectively, while the magenta dashed-dotted

and blue dashed curves show their corresponding yields under thermal equilibrium. The horizontal line

denotes the asymptotic yield of the dark matter, y1
X

= xf . In (a), (b), (c), and (d), we separately use

(✓, �) = (0.00014, 0), (4⇥ 10�10
, 0), (1⇥ 10�10

, 0), and (2⇥ 10�11
, 0) as inputs, for which the resulting gSAA

are �1.8,�5.05 ⇥ 10�6
,�1.26 ⇥ 10�6 and �2.53 ⇥ 10�7, and the corresponding xf are 22, 22, 22, and 68,

respectively. The vertical dashed lines in (c) and (d) indicate the values of x� using the formula given in

Eq. (55).

Appendix A: Theoretical constraints

The parameters in the LN2HDM scalar potential are subjected to the following theoretical

constraints.

Perturbativity

We require perturbativity of the quartic couplings, assuming that

|�i| < 4⇡, for i = 1, . . . , 8 . (A1)

Vacuum stability

Relic density: dependence on ! and "
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✓ and � (see also Fig. 6).

To solve Eqs. (41) and (42), we define the normalized yields

yX(x) =

r
⇡

45G
mXg

1/2
⇤ h�viXX!SSYX(x) , (43)

yS(x) =

r
⇡

45G
mXg

1/2
⇤ h�viXX!SSYS(x) , (44)

where YX ⌘ nX/s and YS ⌘ nS/s are respectively the dark matter and mediator number densities

normalized by the total entropy density, g⇤ is the e↵ectively total number of relativistic degrees of

freedom, and x ⌘ mX/T is the variable that will be used instead of time t. Using the new defined

quantities, we can rewrite these two Boltzmann equations into the following forms
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◆
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where Mpl = (8⇡G)�1/2 = 2.44⇥ 1018 GeV is the reduced Planck mass, and the values of thermal

equilibrium yi are given by

y
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i
(x) = gi

p
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2⇡3
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g
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✓
x
mi
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◆2
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✓
x
mi
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◆
, (47)

with the subscript index “i” ⌘ X or S, and gX = 3 and gS = 1 being the internal degrees of

freedom of the X (dark matter) and S (mediator) particles, respectively. Using the relations

(yeq
X
)2h�viXX!SS = (yeq

S
)2h�viSS!XX , (48)

h�iS!AA = �S!AA

K1(x ·mS/mX)

K2(x ·mS/mX)
, (49)

where �S!AA is the S ! AA decays width given in the rest frame of S, and Ki is the modified

Bessel function of second kind, we can further recast Eq. (46) into the form
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Because both the annihilation processes, SS ! AA and XX ! SS, occur though the s-wave,

for simplicity, we approximate h�viSS!AA, and h�viXX!SS using their low-velocity values. Note

that in the Boltzmann equation, the e↵ect due to the SS $ AA interaction is much smaller than

Normalized yields are

the same as the conventional
WIMP scenario

#$% = '( ≃ 22
+, =

-,
.
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FIG. 7. Evolutions of the dark matter yield yX and mediator yield yS , where the parameters given in

Eq. (48) are used. The purple solid and brown solid curves stand for yX and yS , respectively, while the

magenta dashed-dotted and blue dashed curves show their corresponding yields under thermal equilibrium.

The horizontal line denotes the asymptotic yield of the dark matter, y1
X

= xf . In (a), (b), (c), and (d), we

separately use (✓, �) = (0.00043, 0), (2⇥ 10�10
, 0), (1.2⇥ 10�11

, 0), and (5.1⇥ 10�12
, 0) as inputs, for which

the resulting �SAA are �0.022,�1.03⇥ 10�8
,�6.16⇥ 10�10 and �2.62⇥ 10�10, and the corresponding xf

are 22, 22, 88, and 117, respectively. The vertical dashed (red) lines in (c) and (d) indicate the values of x�

obtained by Eq. (67).

In general, for a co-decay process with x� & 20, we get
p

1 + 4.8/C . x� .
p

1 + 8/C. Taking

the same parameters which have been used, but adopting mS as a free parameter, we find that

x� =
p

1 + 4.8/C is a good approximation provided that 2mA < mS . 35 GeV. Figs. 7(c) and

(d) show the values of x� to be about 51 and 117, respectively, where the latter satisfies x� ⇡ xf .

For a process with a much larger x� as shown in Figs. 7(c) and (d), the inequality yS > yX ,

i.e. nS > nX , becomes much more noticeable and, due to a suppressed up-scattering rate, the

exponential suppression for nX occurs much earlier than nS .
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What happens for an even smaller mixing angle ?

Ignoring the cannibal effects, the hidden sector may be out of 
equilibrium when ! ≲ #$ (co-decay dark matter)

Dark matter is well secluded in the hidden sector
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3 → 2 annihilation  (cannibalism)
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the latter,

d(yX + yS)

dx
' �Cx(yS � y

eq
S
) for x & 10 , (53)

with

C ⌘

p
90

⇡
Mpl

g
1/2
⇤
he↵

�S!AA

m
2
X

. (54)

There are two reasons that yX + yS ' 4yS can be a good approximation in Eq. (53). One is

that initially we have yX(1) ' y
eq
X
(1), yS(1) ' y

eq
S
(1), and y

eq
X

' 3yeq
S
(1). Two is that because of

y
eq
X
/(3yeq

S
) . 1 for x > 1, and moreover yeq

X
. y

eq
S

for x & 10, we have yS(x�) � yX(x�) for a small

width of S as shown in Fig. 7(d).

The solution to Eq. (53) at x = x� reads

yS(x�)

yS(1)
' e

�C

8 x
2
�

def
= e

�1
, (55)

and therefore x� '
p
8/C. Because t� ' (1/2)x2�C/�S!AA, Eq. (53) can thus be rewritten as

yS(x�)

yS(1)
' e

��S!AAt�/4 . (56)

We have indicated x� in Fig. 7(c) and (d), which are about 9.1 and 42, respectively, where the

former is still a good approximation in magnitude for yX(x�) ' yS(x�).

Well after the freeze-out temperature, the DM abundance is approximately constant within a

comoving volume. By solving the Boltzmann equation, the present-day DM relic abundance and

freeze-out temperature are given by [34? ]

⌦DMh
2
'

1.04⇥ 109 GeV�1

J
p
8⇡g⇤Mpl

, (57)

where

J =

Z 1

xf

h�viXX!SS

x2
dx ⇡

h�vi
(0)
XX!SS

xf
, (58)

h ' 0.673 is the scale factor for the present-day Hubble constant. Here g⇤ & 87.25, and we will

adopt g⇤ ⇡ 87.25.
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It hints that ⟨23⟩""→667 will be 3 times larger than the conventional 
WIMP case
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FIG. 8. Same as Fig. 7 but the 3 $ 2 interactions are included in the Boltzmann equations. In (a) and

(b), the resulting xf is still to be 22, whereas in (c) and (d), the values of xf are 70 and 95, respectively.

We show the same corresponding x� as Fig. 7, for which the value is 51 in (c) and 117 in (d).

Fig. 7(c) and (d), at x�, which has been obtained in Eq. (67), the corresponding value of yS (and

also the number density of S) reduces 2 orders of magnitude due to the cannibal e↵ect. Fig. 8(c)

and (d) are typical examples about the cannibally co-decaying DM, where, at x = xcan ⇡ 7,

the cannibal annihilation rate becomes less than the expansion rate of the Universe, so that the

number densities of X and S no longer track up the behavior of the Boltzmann suppression. The

resulting xf = 70 for Fig. 8(c) and 95 for (d) are significantly smaller than that with the cannibal

interactions neglected.

In concluding this section, we would like to discuss the relations and constraints between the

parameters and observables. The XX ! SS annihilation cross section and xf can be related to

each other via the DM relic abundance. The dimensionless density parameter of the present-day

DM relic abundance, determined to be ⌦DM = (0.1198±0.0026)/h2 from the observations [73, 76],

3 → 2 annihilation
(cannibalism)

BC
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Summary
1. 2-step cascade DM annihilation can well account for GC gamma-

ray emission.

2. We have modeled a LN2HDM portal vector model

3. This model exhibits !"~ 10 − 20 GeV that can explain muon g-2 
anomaly at the 2+ level.

4. The mechanism resulting in the cannibally co-decaying vector 
dark matter can explain the GC gamma-ray emission, the relic 
density simultaneously, and other constraints.

visible sector DM
mediator

Hidden sector in which dark matter is secluded

A very small coupling is allowed

!,-. < !01
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The Yukawa Sectors 

6

where (H,h) are the (heavy, light) Higgs CP-even scalars in the two Higgs doublets in the limit

of �, ✓ ! 0, A the CP-odd scalar, H± the two charged Higgs bosons, and (G±
, G

0) the Goldstone

bosons corresponding to the longitudinal components of W± and Z, respectively. Here � is the

mixing angle of the charged bosons, and ↵ is the mixing angle of neutral CP-even bosons (h1, h2)

in the limit of �, ✓ ! 0, where the former is defined as tan� = v2/v1.

The theoretical requirements for the perturbativity, vacuum stability, and tree-level perturbative

unitarity are given in Appendix A. From the results for the square of masses of H± and A, square

of mass matrix of H,h and S, and the minimum conditions of the Higgs potential at the VEV,

the quartic couplings �i, with i ⌘ 1, . . . , 8, can be rewritten in terms of the m2
h
,m

2
H
,m

2
A
,m

2
H± and

M
2[⌘ m

2
12/(s�c�)]. We show the relations in Appendix B.

B. The Yukawa Sectors

The type-X Yukawa interactions are imposed a Z2 symmetry only to the right-handed quarks,

uR ! �uR and dR ! �dR. Thus, the Yukawa Lagrangian, describing the interactions of the Higgs

doublets to the SM fermions, is given by

LYukawa =�QLyu�̃2uR �QLyd�2dR � LLy`�1`R + h.c., (10)

where �̃2 = i�2�⇤
2, and yi is the 3 ⇥ 3 Yukawa matrix. In terms of the mass eigenstates of the

scalar bosons, the Yukawa interaction terms can be rewritten by

LYukawa ��

X

f=u,d,`

mf

v

✓
⇠̄f

c�
hf f̄f � i sgn(f) ⇠f Af̄�5f

◆

+

"
p
2VudH

+
ū

✓
mu⇠u

v
PL �

md⇠d

v
PR

◆
d�

p
2m`⇠`

v
H

+
⌫̄PR`+ h.c.

#
, (11)

where hu,d ⌘ h2, h` ⌘ h1, ⇠̄u,d = ⇠u,d = cot�, ⇠̄` = 1, ⇠` ⌘ � tan�, PR = (1+�5)/2, PL = (1��5)/2

and Vud is the Cabibbo-Kobayashi-Maskawa matrix element. Keeping small terms linear in sin ✓

and sin �, the Yukawa couplings of the neutral Higgs bosons in the type-X N2HDM, normalized

with respect to the SM Higgs, are given in Table I, where gAff ⌘ sgn(f) ⇠f .

For the type-X Yukawa interactions, the normalized lepton Yukawa coupling to the SM Higgs

is given by

gh`` = �
s↵

c�
= s��↵ � t�c��↵ . (12)

Considering the LHC data but without muon g � 2 constraint, the allowed parameters, consistent

with the alignment limit of s��↵ ! 1, lie in two di↵erent regions [43]; in one region, the gh``

7

f = u, d f = `

ghff c↵/s� �s↵/c�

gHff s↵/s� c↵/c�

gSff �(s↵s✓ + c↵s�)/s� (�c↵s✓ + s↵s�)/c�

gAff ±1/t� t�

TABLE I. The tree level Yukawa couplings of the neutral type-X N2HDM Higgs bosons, keeping terms

linear in sin ✓ and sin �, with respect to that of the SM Higgs.

couplings (! 1) have values near the SM ones, while in the other region which is called the wrong-

sign region, the gh`` ! �1 has opposite sign to the SM Higgs couplings to V V , (normalized)

ghV V,hZZ = s��↵ ! 1, and to the quark pair, ghff = c↵/s� = s��↵+ c��↵/t� ! 1 for a large tan�

satisfying 2t�c��↵ ⇠ 2. Only the wrong-sign region is favored by the muon g� 2 measurement [43]

(see also the following discussion in this work).

On the other hand, for the type-X Yukawa interactions, the couplings, gA`` and gH`` / tan�,

are enhanced by a large tan�, while gAqq and gHqq / 1/ tan� are suppressed, where q ⌘ quark.

Therefore, as shown in Fig. 1, the two-step cascade DM annihilation process via the on-shell

pseudoscalar boson into the SM particles are dominated by ⌧ ’s in the final states for a large tan�.

Note that the DM annihilation into tau’s cannot be through the heavier on-shell neutral Higgs,

which is kinematically forbidden, because, as shown in this work, its mass mH ⇠ 300 GeV is much

larger than the DM mass. Note also that, in contrast with the type-X case, for the type-II Yukawa

interactions, because both the down-type quark and lepton couplings of the heavier neutral Higgs

boson are enhanced by tan�, that model will be severely constrained by the extra Higgs search at

the LHC and by the flavor physics [51].

In the present work, we study that the vector DM (X) first annihilates into the unstable hidden

Higgs bosons (S), as shown in Fig. 2, and then the S dominantly decays into the pseudoscalar pair.

In the following section, we will give the triple and quartic Higgs couplings, which are relevant

to the XX ! SS and S ! AA processes. Moreover, these couplings are also relevant to the

Boltzmann equations, which will be discussed in Sec. VB.

C. The triple and quartic Higgs couplings

We consider that the GC gamma-ray excess originates from the two-step cascade DM annihila-

tion, so that the mixing angles, � and ✓, are small, and only terms linear in sin � and sin ✓ are kept

6

f = u, d l

ghff c↵/s� �s↵/c�

gHff s↵/s� c↵/c�

gSff �(s↵s✓ + c↵s�)/s� (�c↵s✓ + s↵s�)/c�

gAff ±1/t� t�

TABLE I. The tree level Yukawa couplings of the neutral type-X N2HDM Higgs bosons, keeping terms

linear in sin ✓ and sin �, with respect to that of the SM Higgs.

III. USE OF THE PARAMETERS UNDER THE THEORETICAL AND

EXPERIMENTAL CONSTRAINTS ON THE LN2HDM PARAMETER SPACE

For CP-conserving LN2HDM with softly broken Z2 symmetry, we adopt the observed Higgs

resonance as one of the CP-even scalars: h with mass mh = 125.09 GeV [1], v2 ⌘ (
p
2GF )�1

'

(246 GeV)2. Compared with the SM, the interactions contain 11 more independent parameters.

We take the following remaining parameters as inputs:

gX , tan�, � � ↵ , ✓, � ,

mX , mS , mH , mA, mH± , M
2
⌘ m

2
12/(sin� cos�) . (21)

In this parametrization, the tree-level couplings of the Higgs bosons to SM particles are functions

of tan�, � � ↵, ✓, and �.

In the present paper, we consider that the GC gamma excess is due to the two-step cascade

annihilation of the dark matter into the final state ⌧ ’s, for which the main process is schematically

shown in Fig. 1, where the shaded region denotes the interactions, depicted in Fig. 2, and is relevant

to the DM annihilation cross section. As shown in the following GC gamma-ray excess study that

mA ⇠ 15 GeV< mh/2, we therefore need to consider the constraint on Br(h ! AA), which is

proportional to the square of �hAA. Following Ref. [24], we will take �hAA = 0, i.e.,

�
2M2

� 2m2
A �m

2
h

�
s��↵ = (M2

�m
2
h
)

✓
t� �

1

t�

◆
c��↵ , (22)

for which, under the conditions of t� � 1,m2
A
/M

2
⌧ 1 and m

2
h
/M

2
⌧ 1, one can obtain the

following approximations,

sin(� � ↵) ' 1�
2

tan2 �

✓
1 +

m
2
h

M2
�

2m2
A

M2

◆
, (23)

cos(� � ↵) '
2

tan�

✓
1 +

m
2
h

2M2
�

m
2
A

M2

◆
. (24)

Yukawa couplings of neutral type-X N2HDM Higgs

Dominant in large tan!

The type-X Yukawa interactions are imposed a Z2 symmetry only to the 
right-handed quarks 
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the latter,

d(yX + yS)

dx
' �Cx(yS � y

eq
S
) for x & 10 , (53)

with

C ⌘

p
90

⇡
Mpl

g
1/2
⇤
he↵

�S!AA

m
2
X

. (54)

There are two reasons that yX + yS ' 4yS can be a good approximation in Eq. (53). One is

that initially we have yX(1) ' y
eq
X
(1), yS(1) ' y

eq
S
(1), and y

eq
X

' 3yeq
S
(1). Two is that because of

y
eq
X
/(3yeq

S
) . 1 for x > 1, and moreover yeq

X
. y

eq
S

for x & 10, we have yS(x�) � yX(x�) for a small

width of S as shown in Fig. 7(d).

The solution to Eq. (53) at x = x� reads

yS(x�)

yS(1)
' e

�C

8 x
2
�

def
= e

�1
, (55)

and therefore x� '
p
8/C. Because t� ' (1/2)x2�C/�S!AA, Eq. (53) can thus be rewritten as

yS(x�)

yS(1)
' e

��S!AAt�/4 . (56)

We have indicated x� in Fig. 7(c) and (d), which are about 9.1 and 42, respectively, where the

former is still a good approximation in magnitude for yX(x�) ' yS(x�).

Well after the freeze-out temperature, the DM abundance is approximately constant within a

comoving volume. By solving the Boltzmann equation, the present-day DM relic abundance and

freeze-out temperature are given by [34? ]

⌦DMh
2
'

1.04⇥ 109 GeV�1

J
p
8⇡g⇤Mpl

, (57)

where

J =

Z 1

xf

h�viXX!SS

x2
dx ⇡

h�vi
(0)
XX!SS

xf
, (58)

h ' 0.673 is the scale factor for the present-day Hubble constant. Here g⇤ & 87.25, and we will

adopt g⇤ ⇡ 87.25.
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Figure 6: Results in the Type-X 2HDM in the case of �hAA = 0 and �1 = 0.1. Dark
and light blue shaded regions can explain the muon g � 2 anomaly [3] at the 1� and 2�
levels, respectively. We take mH±(= m

H
) =200, 250, 300 and 350 GeV in the upper-left,

upper-right, lower-left and lower-right panels, respectively. The left region from the red
line is excluded by the measurement of Bs ! µµ. The above regions of green, black,
purple line are excluded by the ⌧ decay, the direct search at the LEP and the Z ! ⌧⌧

decay, respectively. All of the exclusions are given at the 95% C.L.
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!"~ 10 − 20 GeV can explain muon g-2 anomaly at the 2+ level

Fig. from 1504.07059, by 
Abe, Sato, Yagyu

1 Introduction

The anomalous magnetic moment of the muon aµ ⌘ (g � 2)/2, so-called muon g � 2,

is a very precisely measured observable. The latest measurement of aµ by the E821

collaboration [1] gives

a
exp

µ
= 11 659 208.0 (5.4)(3.3)⇥ 10�10

. (1)

As it has been well known that there is a discrepancy between the experimental value

and the prediction of the standard model (SM). According to the calculation evaluated

in Refs. [2, 3]

a
exp

µ
� a

SM

µ
= (28.7± 8.0)⇥ 10�10

, (Davier et. al.)

a
exp

µ
� a

SM

µ
= (26.1± 8.0)⇥ 10�10

, (Hagiwara et. al.)

the discrepancy is more than the 3� level, which can be considered as an indirect evidence

of the existence of a new physics model. This discrepancy will be further probed at

Fermilab [4] and J-PARC [5] in the near future. Since the size of the deviation is the

same order as the electroweak contribution a
EW

µ
= 15.4 ⇥ 10�10 [6], we expect that new

physics exists at the electroweak scale if the strength of new interactions is as large as

that of the weak interaction. In such a new physics scenario, new particles are expected

to be light enough to be directly discovered at the LHC. Therefore, it is quite interesting

to consider models beyond the SM as a solution of the muon g � 2 anomaly.

Among various models which can explain the anomaly (for a review, e.g., see Ref. [7]),

two Higgs doublet models (2HDMs) give simple solutions. In 2HDMs, there are extra

Higgs bosons (H, A, and H
±) in addition to the SM-like Higgs boson (h), and they can

give new contributions to aµ. Usually, a softly-broken discrete Z2 symmetry is imposed [8]

to avoid flavor changing neutral current (FCNC) processes at the tree level. Under the Z2

symmetry, four independent types of Yukawa interactions are allowed depending on the

assignment of the Z2 charge to the SM fermion [9, 10], which are called as Type-I, Type-

II, Type-X (or lepton specific) and Type-Y (or flipped) [11]. In all the types of Yukawa

interactions, the lepton couplings to the extra Higgs bosons can be sizable enough to

explain aµ. In the Type-I and Type-Y 2HDMs, however, the top Yukawa coupling also
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Br(h ! beyond SM) < 34% and |�SAA| . 0.022, we then obtain

|✓| . 0.001, |�| . 0.088. (49)

There may exist points with �SAA ' 0 on the (✓, �) plane for � 6= 0. If we avoid this tiny region

around that points, where the other decay modes are also highly suppressed due to the very small

values of ✓ and �, we always have Br(S ! AA) ' 1. In Fig. 6, the contour plot for the S ! AA

decay width is shown on the (✓, �) plane. In this (two-step cascade annihilation dominant) case,

we have �S/mS . 6.7 ⇥ 10�4 for |✓| . 0.001, where �S is the total width of the S boson; the

value of the width can thus be negligible in the calculation. On the other hand, compared with

XX ! SS via an s-channel S exchange, as shown in Fig 2(b), if the mediator is replaced by h (or

H), the resulting cross section is suppressed not only by the propagator of the heavier boson but

also by the couplings squared: (s��hSS/�SSS)2 (or (s✓�HSS/�SSS)2), where s� (or s✓) comes from

the X-X-h (or X-X-H) vertex, and the coupling ratios �hSS/�SSS and �HSS/�SSS are shown in

Fig. 6. Therefore, the annihilation XX ! SS via a heavier mediator, h or H, is negligible in the

calculation; the conclusion is also valid for the 0-step cascade annihilation via an s-channel h (or

H) exchange since these cross sections are also suppressed by a factor of s2
�
(or s2

✓
) resulted from

the X-X-h (or X-X-H) vertex.

In Fig. 6, we show the contour results of �SAA and �SAA/�SSS on the (✓, �) plane. As indicated

in the relevant (✓, �) region, the �SAA is much more sensitive to the variation of ✓, compared with

its dependence on �. In the following analysis, the � is simply set to be zero, and the dependence

of the DM relic density on the e↵ective coupling can be related to the variation of ✓. If taking

� = 0, the constraint from the two-step cascade annihilation gives |✓| . 0.00043. Our conclusion

can be easily extended to the case with � 6= 0.

B. Constraints from dark matter freeze-out and relic abundance

1. Coupled Boltzmann equations with interactions: XX $ SS, SS $ AA, and S $ AA

The interplay of the DM particles and SM particles mostly results from the interaction XX $

SS followed by S $ AA and SS $ AA together with A $ ⌧
+
⌧
� and AA $ ⌧

+
⌧
�. For SS ! AA

and AA ! ⌧
+
⌧
�, their annihilation cross sections are summarized in Appendix D2, while for

S ! AA and A ! ⌧
+
⌧
�, their partial decay widths are given in Eqs. (23)-(28). Note that

when the hidden sector particles become nonrelativistic at temperatures T . mX,S , the cannibal

annihilations could play important roles; such e↵ects will be separately discussed in Sec. VB2.

The width of S is narrow
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S ! AA and A ! ⌧
+
⌧
�, their partial decay widths are given in Eqs. (23)-(28). Note that

when the hidden sector particles become nonrelativistic at temperatures T . mX,S , the cannibal

annihilations could play important roles; such e↵ects will be separately discussed in Sec. VB2.
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Two-Higgs Doublet Model

1 Scalar sector

We introduce two SU(2) doublet scalar fields Φ1 = (Φ+
1 ,Φ

0
1)

T and Φ2 = (Φ+
2 ,Φ

0
2)

T with hypercharge
Y = 1/2. The Lagrangian including the scalar fields consists of

LΦ = LK − V (Φ1,Φ2) + LY (1.1)

where LK is the kinetic term for the scalar fields, V is the scalar potential, and LY is the Yukawa
interaction term. We address each terms below.

1.1 Scalar potential

The most general gauge invariant and renormalizable scalar potential is given by [1].

V (Φ1,Φ2) = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 − (m2

12Φ
†
1Φ2 +H.c.)

+
1

2
λ1(Φ

†
1Φ1)

2 +
1

2
λ2(Φ

†
2Φ2)

2 + λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+

[
1

2
λ5(Φ

†
1Φ2)

2 + λ6(Φ
†
1Φ1)(Φ

†
1Φ2) + λ7(Φ

†
2Φ2)(Φ

†
1Φ2) + H.c.

]
(1.2)

In general, m2
12, λ5, λ6 and λ7 can be complex. In this note, we assume them to be real.

Note that the discrete symmetry: Φ1 → Φ1, Φ2 → −Φ2, which may be imposed to avoid tree-level
FCNC (see Subsection 2.2 and 2.5), forbids λ6 and λ7. This discrete symmetry can be softly broken by
nonzero m2

12.
1

1.2 Stability of potential

To ensure that the scalar potential is bounded from below, the following conditions are required:

λ1 > 0, λ2 > 0, λ3 > −(λ1λ2)
1/2 (1.3)

The fourth condition, when λ6 = λ7 = 0, is

λ3 + λ4 − |λ5| > −(λ1λ2)
1/2 (1.4)

For λ6 = λ7 = 0, these four conditions are necessary and sufficient conditions for the scalar potential
to be bounded from below [3] (not checked; see Ref. [4] also).

Necessary condition involving λ6 and λ7 is [5, 6] (not checked):

2|λ6 + λ7| <
λ1 + λ2

2
+ λ3 + λ4 + λ5 (1.5)

Copositivity criteria can be also used to derive stability conditions [7].

1.3 Electroweak symmetry breaking

We assume the following VEVs (any conditions on parameters?):

⟨Φ1⟩ =
(

0
v1/

√
2

)
, ⟨Φ2⟩ =

(
0

v2/
√
2

)
. (1.6)

1Any constraint from one-loop induced FCNC from m2
12?

2

discrete symmetry is imposed: Φ" → Φ",Φ% → −Φ%, which forbids '( and ') but 
may be softly broken by the mixing term *"%% . 

CP -even Higgs bosons h and H (defined by mh ≤ mH) are obtained by diagonalizing the mass matrix
for S1 and S2, via the rotation given by 2

(
H
h

)
=

(
cos(α− β) sin(α− β)
− sin(α− β) cos(α− β)

)(
S1

S2

)
. (1.15)

If one goes back to the original basis, the Higgs fields can be represented as

Φ1 =

(
G+ cosβ −H+ sinβ

1√
2
[v1 + h1 + i(G0 cosβ −A sinβ)]

)
=

(
G+ cosβ −H+ sinβ

1√
2
[v cosβ − h sinα+H cosα+ i(G0 cosβ −A sinβ)]

)

Φ2 =

(
G+ sinβ +H+ cosβ

1√
2
[v2 + h2 + i(G0 sinβ +A cosβ)]

)
=

(
G+ sinβ +H+ cosβ

1√
2
[v sinβ + h cosα+H sinα+ i(G0 sinβ +A cosβ)]

)

(1.16)

h1,2 are related to h,H or S1,2 by

(
H
h

)
=

(
cosα sinα
− sinα cosα

)(
h1

h2

)
,

(
S1

S2

)
=

(
cosβ sinβ
− sinβ cosβ

)(
h1

h2

)
(1.17)

1.5 Mass spectrum

The mass terms for the physical scalar bosons are given by

−Lmass =
1

2

(
h1 h2

)(M2
11 M2

12

M2
12 M2

22

)(
h1

h2

)
+

1

2
m2

AA
2 +m2

H±H+H− (1.18)

The scalar masses are expressed as

M2
11 = m2

11 +
3

2
λ1v

2
1 +

1

2
λ345v

2
2 + 3λ6v1v2

M2
22 = m2

22 +
3

2
λ2v

2
2 +

1

2
λ345v

2
1 + 3λ7v1v2

M2
12 = −m2

12 + λ345v1v2 +
3

2
λ6v

2
1 +

3

2
λ7v

2
2

m2
A = m2

11s
2
β +m2

22c
2
β + 2m2

12cβsβ +
1

2
λ1s

2
βv

2
1 +

1

2
λ2c

2
βv

2
2 +

1

2
λ3(c

2
βv

2
1 + s2βv

2
2) +

1

2
λ4(−2cβsβv1v2 + v2)

+
1

2
λ5(−2cβsβv1v2 − v2) + λ6(−cβsβv

2
1 + s2βv1v2) + λ7(−cβsβv

2
2 + c2βv1v2)

m2
H± = m2

A +
1

2
(λ5 − λ4)v

2 (1.19)

Removing m2
11, m

2
22 in terms of the stationary conditions [Eqs. (1.11)], mA and mH± are given by

m2
A =

m2
12

sβcβ
− 1

2
v2(2λ5 + λ6t

−1
β + λ7tβ)

m2
H± = m2

A +
1

2
v2(λ5 − λ4) (1.20)

while the squared-mass matrix for CP -even sector is given by

M2 =

(
M2

11 M2
12

M2
12 M2

22

)
= m2

A

(
s2β −sβcβ

−sβcβ c2β

)
+ B2 (1.21)

2The angle α gives the rotation angle if one works in the original basis rather than in the Higgs basis.
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Table 1: Charge assignments of the Z2 symmetry and the corresponding ξf factors in the four-types of
2HDM. ξf ≡ ρf/κf is a constant for fermions of a given charge in each models.

Φ1 Φ2 uiR diR ℓiR QiL, LiL ξu ξd ξℓ
Type I + − − − − + cotβ cotβ cotβ
Type II + − − + + + cotβ − tanβ − tanβ
Type X (lepton-specific) + − − − + + cotβ cotβ − tanβ
Type Y (flipped) + − − + − + cotβ − tanβ cotβ

2.5 2HDMs with softely broken Z2 symmetry: Type I, II, X, Y

As discussed in Ref. [2], one can avoid tree-level FCNCs in the couplings to neutral Higgs boson, if all
the fermions of a given electromagnetic charge couple to a single Higgs filed. If we call the Higgs field
coupling to uR Φ2, then, we have four types of Yukawa structure depending on choice of how dR/ℓR are
coupled to Φ1/Φ2. They are give by

−LY =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Q′
LY

uΦ̃2u′
R +Q′

LY
dΦ2d′R + L′

LY
ℓΦ2ℓ′R +H.c. (Type I)

Q′
LY

uΦ̃2u′
R +Q′

LY
dΦ1d′R + L′

LY
ℓΦ1ℓ′R +H.c. (Type II)

Q′
LY

uΦ̃2u′
R +Q′

LY
dΦ2d′R + L′

LY
ℓΦ1ℓ′R +H.c. (Type X)

Q′
LY

uΦ̃2u′
R +Q′

LY
dΦ1d′R + L′

LY
ℓΦ2ℓ′R +H.c. (Type Y)

We do not include right-handed neutrinos νiR, which would double the possible types of Yukawa structure
if included 9. Each structure can be realized by imposing the Z2 symmetry shown in Table 1, which may
be softly broken. The Z2 symmetry forbids the terms with λ6 and λ7 in the scalar potential, Eq. (1.2),
but permits m2

12 if soft breaking is allowed. (And we allow the soft symmetry breaking of the Z2.) As
for nomenclature of four Yukawa models, we follow Ref. [13] 10.

This corresponds to the following particular choices of the Yukawa couplings in the general expression
given in Eq.(2.1):

ηu1 = 0, ηu2 = Y u, ηd1 = 0, ηd2 = Y d, ηℓ1 = 0, ηℓ2 = Y ℓ (Type I)

ηu1 = 0, ηu2 = Y u, ηd1 = Y d, ηd2 = 0, ηℓ1 = Y ℓ, ηℓ2 = 0 (Type II)

ηu1 = 0, ηu2 = Y u, ηd1 = 0, ηd2 = Y d, ηℓ1 = Y ℓ, ηℓ2 = 0 (Type X)

ηu1 = 0, ηu2 = Y u, ηd1 = Y d, ηd2 = 0, ηℓ1 = 0, ηℓ2 = Y ℓ (Type Y) (2.35)

Applying the results in subsection 2.1,

ρu = κu cotβ, ρd = κd cotβ, ρℓ = κℓ cotβ (Type I)

ρu = κu cotβ, ρd = −κd tanβ, ρℓ = −κℓ tanβ (Type II)

ρu = κu cotβ, ρd = κd cotβ, ρℓ = −κℓ tanβ (Type X)

ρu = κu cotβ, ρd = −κd tanβ, ρℓ = κℓ cotβ (Type Y) (2.36)

where κf =
√
2Mf/v.

addition, the appearance of ϵ
d(u)
fi in their Eq. (12), instead of ϵ

d(u)
0,fi , is not correct, since ϵ

d(u)
fi which also appears in their

Eq. (14) is the quantity in the quark mass eigenstate (not in the gauge eigenstate).
9See Ref. [12] for a neutrino-specific 2HDM.

10For other naming schemes, see, e.g., Ref. [14, 15, 16]. In Ref. [14], the Type-X (Type-Y) 2HDM is called the Type-IV
(Type-III) 2HDM. In Ref. [16], the Type-X (Type-Y) 2HDM is referred to as the lepton-specific (flipped) 2HDM.

15

Table 1: Charge assignments of the Z2 symmetry and the corresponding ξf factors in the four-types of
2HDM. ξf ≡ ρf/κf is a constant for fermions of a given charge in each models.

Φ1 Φ2 uiR diR ℓiR QiL, LiL ξu ξd ξℓ
Type I + − − − − + cotβ cotβ cotβ
Type II + − − + + + cotβ − tanβ − tanβ
Type X (lepton-specific) + − − − + + cotβ cotβ − tanβ
Type Y (flipped) + − − + − + cotβ − tanβ cotβ

2.5 2HDMs with softely broken Z2 symmetry: Type I, II, X, Y

As discussed in Ref. [2], one can avoid tree-level FCNCs in the couplings to neutral Higgs boson, if all
the fermions of a given electromagnetic charge couple to a single Higgs filed. If we call the Higgs field
coupling to uR Φ2, then, we have four types of Yukawa structure depending on choice of how dR/ℓR are
coupled to Φ1/Φ2. They are give by

−LY =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Q′
LY

uΦ̃2u′
R +Q′

LY
dΦ2d′R + L′

LY
ℓΦ2ℓ′R +H.c. (Type I)

Q′
LY

uΦ̃2u′
R +Q′

LY
dΦ1d′R + L′

LY
ℓΦ1ℓ′R +H.c. (Type II)

Q′
LY

uΦ̃2u′
R +Q′

LY
dΦ2d′R + L′

LY
ℓΦ1ℓ′R +H.c. (Type X)

Q′
LY

uΦ̃2u′
R +Q′

LY
dΦ1d′R + L′

LY
ℓΦ2ℓ′R +H.c. (Type Y)

We do not include right-handed neutrinos νiR, which would double the possible types of Yukawa structure
if included 9. Each structure can be realized by imposing the Z2 symmetry shown in Table 1, which may
be softly broken. The Z2 symmetry forbids the terms with λ6 and λ7 in the scalar potential, Eq. (1.2),
but permits m2

12 if soft breaking is allowed. (And we allow the soft symmetry breaking of the Z2.) As
for nomenclature of four Yukawa models, we follow Ref. [13] 10.

This corresponds to the following particular choices of the Yukawa couplings in the general expression
given in Eq.(2.1):

ηu1 = 0, ηu2 = Y u, ηd1 = 0, ηd2 = Y d, ηℓ1 = 0, ηℓ2 = Y ℓ (Type I)

ηu1 = 0, ηu2 = Y u, ηd1 = Y d, ηd2 = 0, ηℓ1 = Y ℓ, ηℓ2 = 0 (Type II)

ηu1 = 0, ηu2 = Y u, ηd1 = 0, ηd2 = Y d, ηℓ1 = Y ℓ, ηℓ2 = 0 (Type X)

ηu1 = 0, ηu2 = Y u, ηd1 = Y d, ηd2 = 0, ηℓ1 = 0, ηℓ2 = Y ℓ (Type Y) (2.35)

Applying the results in subsection 2.1,

ρu = κu cotβ, ρd = κd cotβ, ρℓ = κℓ cotβ (Type I)

ρu = κu cotβ, ρd = −κd tanβ, ρℓ = −κℓ tanβ (Type II)

ρu = κu cotβ, ρd = κd cotβ, ρℓ = −κℓ tanβ (Type X)

ρu = κu cotβ, ρd = −κd tanβ, ρℓ = κℓ cotβ (Type Y) (2.36)

where κf =
√
2Mf/v.

addition, the appearance of ϵ
d(u)
fi in their Eq. (12), instead of ϵ

d(u)
0,fi , is not correct, since ϵ

d(u)
fi which also appears in their

Eq. (14) is the quantity in the quark mass eigenstate (not in the gauge eigenstate).
9See Ref. [12] for a neutrino-specific 2HDM.

10For other naming schemes, see, e.g., Ref. [14, 15, 16]. In Ref. [14], the Type-X (Type-Y) 2HDM is called the Type-IV
(Type-III) 2HDM. In Ref. [16], the Type-X (Type-Y) 2HDM is referred to as the lepton-specific (flipped) 2HDM.

15

Yukawa coupling 

Table 1: Charge assignments of the Z2 symmetry and the corresponding ξf factors in the four-types of
2HDM. ξf ≡ ρf/κf is a constant for fermions of a given charge in each models.

Φ1 Φ2 uiR diR ℓiR QiL, LiL ξu ξd ξℓ
Type I + − − − − + cotβ cotβ cotβ
Type II + − − + + + cotβ − tanβ − tanβ
Type X (lepton-specific) + − − − + + cotβ cotβ − tanβ
Type Y (flipped) + − − + − + cotβ − tanβ cotβ

where sgn(Qf ) = +1 for f = u, while−1 for f = d, ℓ. κf = diag(κf1 ,κf2 ,κf3) = (
√
2/v) diag(mf1 ,mf2 ,mf3),

while ρf are general complex 3× 3 matrices.

3.1.2 Hermitian ρf

If ρf is Hermitian, i.e., ρf† = ρf (f = u, d, ℓ), Feynman rule becomes

φf̄ifj : −i[Xf
ij(φ) + Y f

ij (φ)γ5] (3.3)

where

Xf (h) =
1√
2
(κfsβ−α + ρfcβ−α), Y f (h) = 0

Xf (H) =
1√
2
(κfcβ−α − ρfsβ−α), Y f (H) = 0

Xf (A) = 0, Y f (A) = −sgn(Qf )
i√
2
ρf (3.4)

3.1.3 Type I, II, X and Y

The 2HDM of Type I, II, X and Y (see Table 1 for Z2 parity assignment) corresponds to:

ρu = κu cotβ, ρd = κd cotβ, ρℓ = κℓ cotβ (Type I)

ρu = κu cotβ, ρd = −κd tanβ, ρℓ = −κℓ tanβ (Type II)

ρu = κu cotβ, ρd = κd cotβ, ρℓ = −κℓ tanβ (Type X)

ρu = κu cotβ, ρd = −κd tanβ, ρℓ = κℓ cotβ (Type Y) (3.5)

We also denote the vertex as:

Hf̄f : igHff

Af̄f : igAffγ5 (3.6)

where H = h,H and

ghff = −mf

v
(sβ−α + ξfcβ−α)

gHff = −mf

v
(cβ−α − ξfsβ−α)

gAff = i sgn(Qf )
mf

v
ξf (3.7)
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