Dark Matter Showering in $U_D(1)$ dark gauge group

Jinmian Li

Korea Institute for Advanced Study

Based on 1807.00530, J. Chen, P. Ko, H. Li, JL, H. Yokoya

Oct. 19th, 2018

Mini-Workshop on Dark Sector Phenomenology: Models, Satellites, and Colliders

Institute of Physics, Academia Sinica

1 Motivation: Dark matter showering?

2 Unbroken $SU_D(N)$ dark sector: brief review

3 Massive dark photon in $U_D(1)$ case: revisit

- The toy model setup
- Splitting functions and improvements
- Dark showering algorithm
- Benchmark study
- \bullet Toward a realistic search (In progressing ...)

4 Conclusion

Motivation: Dark matter showering?

- Dark matter is neutral under SM $U_{\rm EM}(1)$, does not mean it is neutral under dark $U_D(1)$.
- Hidden sector dark matter can release the tension between DM annihilation and DM direct detection.
- Strongly interaction in dark sector can explain the problems: core-cusp, missing satellites ...

Unbroken $SU_D(N)$ dark sector: minimal setup

• Lagrangian of dark sector, at scale much higher than confinement scale

$$\mathcal{L}_{\text{dark}} = \bar{\chi}_{\alpha} (i\not\!\!D - M_{\alpha})\chi_{\alpha} - \frac{1}{4}G^{d}_{\mu\nu}G^{d\mu\nu}$$

- Dark particles χ_{α} form bound states at the confinement scale Λ_d .
- Depending on the symmetries of the theory, some fraction of these states are likely to be stable, providing good DM candidates.
- However, many of the mesons should decay back to the visible sector through the portal coupling.
- The portal also gives the dark sector production at colliders.

Semi-invisible jet versus QCD-like jet

The dark sector shower and "hadronization" are implement in Pythia8 (Hidden Vally model). The following facts impact the multiplicity of the dark jet and the relative p_T of the states in the shower:

- Spin and CP configurations of the bound states: determine aspects of the decay parametrics.
- Relative number of stable and unstable states in the dark sector.
- Mass splitting between the various mesons/hadrons.

Three important parameter to describe the collider phenomenology:

- The characteristic mass scale for the dark hadrons, M_d .
- The dark strong coupling, α_d .

•
$$r_{\text{inv}} = \langle \frac{\# \text{ of stable hadrons}}{\# \text{ of hadrons}} \rangle.$$

• The portal coupling Λ .

Search for semi-invisible jet

T. Cohen, 1707.05326

Tagging the QCD-like jet with jet-substructures variables $(r_{inv} = 0)$

M. Park, 1712.09279

	N _d	n_f	$egin{array}{c} \Lambda_d \ ({ m GeV}) \end{array}$	$egin{array}{c} ilde{m}_{q'} \ ({ m GeV}) \end{array}$	$egin{array}{c} m_{\pi_d} \ ({ m GeV}) \end{array}$	$egin{array}{c} m_{ ho_d} \ ({ m GeV}) \end{array}$	π_d Decay Mode	ρ_d Decay Mode
A	3	2	15	20	10	50	$\pi_d \to c\bar{c}$	$ ho_d ightarrow \pi_d \pi_d$
B	3	6	2	2	2	4.67	$\pi_d \to s\bar{s}$	$ ho_d ightarrow \pi_d \pi_d$
C	3	2	15	20	10	50	$\pi_d \rightarrow \gamma' \gamma'$ with $m_{\gamma'} = 4.0 GeV$	$ ho_d ightarrow \pi_d \pi_d$
D	3	6	2	2	2	4.67	$\pi_d \rightarrow \gamma' \gamma'$ with $m_{\gamma'} = 0.7 GeV$	$ ho_d ightarrow \pi_d \pi_d$

 $p_T(j) \in [180, 220] \text{ GeV}$

Jinmian Li (KIAS)

Dark Matter Showering

P. Shwaller, 1502.05409

Parton shower of dark sector is followed by displaced hadrons/mesons back to SM particles:

- composed dominantly of displaced tracks
- have many different vertices within the jet cone

A case study:

			Model A	model D
		Λ_d	$10~{ m GeV}$	$4 {\rm GeV}$
		m_V	$20~{ m GeV}$	$8 {\rm GeV}$
٩	Signal: $pp \to X_d X^{\dagger} \to (Q_d \bar{q}) \ (\bar{Q}_d q), \ m_X = 1 \text{ TeV}$	m_{π_d}	$5~{ m GeV}$	$2 {\rm GeV}$
-	$\sim 10^{-10} PP + 10^{-1} d + (9^{-1} d) + (9^{-1} d) + 10^{-1} d$	$c au_{\pi_d}$	$150 \mathrm{~mm}$	$5 \mathrm{~mm}$

$$N_c = 3, \ n_f = 7$$

• Dominant background for these sorts of four jet events will be from high p_T QCD Jinmian Li (KIAS) Dark Matter Showering Oct. 19th (AS) 8 / 31

Emerging jet

Definition of Emerging jet $E(p_T^{\min}, n, r)$: a jet with $\leq n$ tracks with $p_T > p_T^{\min}$ originating a transverse distance smaller than r from the interaction point

	$Model \ \mathbf{A}$	Model \mathbf{B}	QCD 4-jet	Modified Pythia
Tree level	14.6	14.6	410,000	410,000
$\geq 4 ext{ jets}, \eta < 2.5$ $p_T(ext{jet}) > 200 ext{ GeV}$ $H_T > 1000 ext{ GeV}$	4.9	8.5	48,000	48,000
$E(1{ m GeV},0,3{ m mm})\geq 1$	3.6	3.5	45	57
$E(1{ m GeV},0,3{ m mm})\geq 2$	1.2	0.5	~ 0.08	~ 0.04
$E(1 \mathrm{GeV}, 0, 100 \mathrm{mm}) \geq 1$	1.4	$\lesssim 0.01$	8.5	12
$E(1{ m GeV},0,100{ m mm})\geq 2$	0.1	$\lesssim 0.01$	$\lesssim 0.02$	$\lesssim 0.02$

Jinmian Li (KIAS)

Oct. 19th (AS) 9 / 31

1 Motivation: Dark matter showering?

2 Unbroken $SU_D(N)$ dark sector: brief review

3 Massive dark photon in $U_D(1)$ case: revisit

- The toy model setup
- Splitting functions and improvements
- Dark showering algorithm
- Benchmark study
- \bullet Toward a realistic search (In progressing ...)

Conclusion

The model setup

M. Buschmann, 1505.07459, M. Kim, 1612.02850

$$\mathcal{L}^{\text{chiral}} = -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{\epsilon}{2} F'_{\mu\nu} F^{\mu\nu} + |D_{\mu}\Phi'|^2 - \frac{\lambda_{\Phi'}}{4} \left(|\Phi'|^2 - \frac{v_{\Phi'}^2}{2} \right)^2 + \sum_{s=L/R} i \overline{\chi}_s \not D \chi_s - (y_\chi \overline{\chi_L} \Phi' \chi_R + h.c.) \mathcal{L}^{\text{vector}} = -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{\epsilon}{2} F'_{\mu\nu} F^{\mu\nu} + \frac{1}{2} m_{A'}^2 A'_{\mu} A'^{\mu} + \sum_s \overline{\chi}_s \left(i \not D - m_\chi \right) \chi_s,$$

•
$$D_{\mu} = \partial_{\mu} - ig' Q_{L/R} A'_{\mu}, Q_L \neq Q_R$$
 for chiral case.
 $\mathcal{L}_{int} \subset g' Q_L A'_{\mu} \bar{\chi}_L \gamma^{\mu} \chi_L + g' Q_R A'_{\mu} \bar{\chi}_R \gamma^{\mu} \chi_R$

• Higgs mechanism for chiral case $(\langle \Phi' \rangle = v_{\Phi'})$:

$$m_{A'} = g' Q_{\Phi'} v_{\Phi'}, \ m_{\chi} = y_{\chi} v_{\Phi'} / \sqrt{2}.$$

• Requiring perturbative Yukawa coupling: $y_{\chi}/\sqrt{2} < \sqrt{4\pi} \Rightarrow \alpha' \frac{m_{\chi}^2}{m_{A'}^2} Q_{\Phi'}^2 < 1.$

Jinmian Li (KIAS)

Decay of dark photon

M. Buschmann, 1505.07459 Induce by the kinetic mixing with the SM photon: $\frac{\epsilon}{2}F'_{\mu\nu}F^{\mu\nu}$

•
$$\Gamma(A' \to \ell^+ \ell^-) = \frac{1}{3} \alpha \epsilon^2 m_{A'} \sqrt{1 - 4 \frac{m_\ell^2}{m_{A'}^2}} (1 + 2 \frac{m_\ell^2}{m_{A'}^2})$$

• $\Gamma(A' \to \text{hadrons}) = \Gamma(A' \to \mu^+ \mu^-) R(s = m_{A'}^2),$
 $R(s) = \sigma(e^+ e^- \to \text{hadrons}) / \sigma(e^+ e^- \to \mu^+ \mu^-); \text{ for } m_{A'} \lesssim 2 \text{ GeV}.$
• $\Gamma(A' \to q_f \bar{q}_f) = N_c Q_{qf}^2 \Gamma(A' \to \ell^+ \ell^-) |_{m_\ell = m_{qf}}; \text{ for } m_{A'} \gtrsim 2 \text{ GeV}$

Dark photon constraints

• Dark photon search experiments

D. Curtin, 1412.0018

• For $m_{A'} \sim 1$ GeV, kinetic mixing $\epsilon \gtrsim 10^{-5}$, so that A' decays within a length of $\sim \mathcal{O}(1)$ mm.

Jinmian Li (KIAS)

13 / 31

Splitting functions and improvements

The differential probability of a splitting process

$$\frac{\alpha'}{2\pi} dx \frac{dt}{t} P_{\chi \to \chi \gamma_d}(x, t), \quad x = \frac{E_{\chi, \text{ out}}}{E_{\chi, \text{ in}}}$$

• M. Buschmann et.al, (arXiv:1505.07459), splitting kernel contains only transverse modes in a high energy limit

$$P_{\chi \to \chi \gamma_d}(x, t) = Q_V'^2 \frac{1 + x^2}{1 - x}$$

• M. Kim et.al, (arXiv:1612.02850), the longitudinal mode of dark photon is included (for chiral model)

$$P_{\chi \to \chi \gamma_d}(x,t) = (Q_V'^2 + Q_A'^2) \frac{1+x^2}{1-x} + 2Q_A'^2 \frac{m_\chi^2}{m_{\gamma_d}^2}$$

1. The helicity information of fermion DM splitting

$$\frac{d\mathcal{P}}{dxdk_T^2}(\chi_s \to \chi_s + A_T') = \frac{\alpha'}{2\pi}Q_s^2 \frac{1+x^2}{1-x} \frac{k_T^2}{\tilde{k}_T^4},$$
$$\frac{d\mathcal{P}}{dxdk_T^2}(\chi_s \to \chi_{-s} + A_L') = \frac{\alpha'}{2\pi} \frac{m_\chi^2}{m_{A'}^2} Q_{\Phi'}^2 \frac{1-x}{2} \frac{k_T^2}{\tilde{k}_T^4},$$

- Initial particle in the shower may be polarized.
- In chiral model, the left-handed and right handed components have different $U(1)_D$ charges, thus different splitting probability.
- The radiation of A'_T change the helicity while A'_L is not.
- As an example: take the benchmark point A (will be introduced later) for the Chiral Model, starting from unpolarized DM fermions, we get roughly 70% left-handed DM fermions and 30% right-handed DM fermions in the final states.

• $d\sigma_{n+1} \sim |\mathcal{M}_{n+1}|^2 d\Phi_{n+1} = d\sigma_n \cdot dP_{A \to B+C}$, for massive particle

$$\frac{dP_{A\to B+C}}{dxdk_T^2} \sim \frac{1}{16\pi^2} \frac{x(1-x)}{\tilde{k}_T^4} |\mathcal{M}^{\text{split}}|^2,$$

with
$$\tilde{k}_T^2 = k_T^2 + xm_{\chi}^2 + (1-x)m_{A'}^2 - x(1-x)m_{\chi}^2$$
.
Taylor expansion of $\frac{k_T^2}{\tilde{k}_T^4} \sim \frac{1}{k_T^2} + \frac{m^2}{k_T^4}$.

$$\frac{d\mathcal{P}}{dxdk_T^2}(\chi_s \to \chi_{-s} + A_T') = \frac{\alpha'}{2\pi}(1-x)(Q_s - Q_{-s}x)^2 \frac{m_{\chi}^2}{\tilde{k}_T^4}$$

• The fermion dark matter wave function:

$$u_L \sim \sqrt{2E} \begin{pmatrix} \binom{-\theta/2}{1} \\ \frac{m_{\chi}}{2E} \binom{-\theta/2}{1} \end{pmatrix}, \qquad u_R \sim \sqrt{2E} \begin{pmatrix} \frac{m_{\chi}}{2E} \binom{1}{\theta/2} \\ \binom{1}{\theta/2} \end{pmatrix}.$$

Large interference in high-energy splitting:

17 / 31

$$\frac{d\mathcal{P}}{dxdk_T^2}(\chi_s \to \chi_s + A_L') = \frac{\alpha'}{2\pi} \frac{1}{2(1-x)} \left(2Q_s x + (-1)^{s+\frac{1}{2}} \frac{(1-x)^2 m_\chi^2}{m_{A'}^2} Q_{\Phi'}\right)^2 \frac{m_{A'}^2}{\tilde{k}_T^4}$$

• Take into account the symmetry breaking effects by imposing the Goldstone equivalence gauge

$$\epsilon^{\mu}_{L} = \frac{k^{\mu}}{m_{A^{\prime}}} - \frac{m_{A^{\prime}}}{n \cdot k} n^{\mu}$$

• The first term $\frac{k^{\mu}}{m_{A'}}$ induces a bad high-energy behavior and large interference

- It is identified as the Goldstone mode and removed from the freedom of gauge boson.
- The remnant term $-\frac{m_{A'}}{n \cdot k} n^{\mu}$ can still receive a compensating ultra-collinear power-enhancement in the region $k_T \sim m_{A'}$.
- The amplitudes involving longitudinal vector bosons are then evaluated by summing diagrams for both the Goldstone and gauge components in GEG.

$$\frac{d\mathcal{P}}{dxdk_T^2}(\chi_s \to \chi_{-s} + h') = \frac{\alpha'}{2\pi} \frac{m_\chi^2}{m_{A'}^2} Q_{\Phi'}^2 \frac{1-x}{2} \frac{k_T^2}{\tilde{k}_T^4},$$
$$\frac{d\mathcal{P}}{dxdk_T^2}(\chi_s \to \chi_s + h') = \frac{\alpha'}{2\pi} Q_{\Phi'}^2 \frac{(1-x)(1+x)^2}{2} \frac{m_\chi^2}{m_{A'}^2} \frac{m_\chi^2}{\tilde{k}_T^4}$$

- The dark Higgs may be split further. (we do not consider)
- The dark Higgs can decay either into dark matter pair or dark photon pair, depending on the mass hierarchy, gauge and Yukawa couplings.

List of splitting functions

$$\begin{split} \frac{d\mathcal{P}}{dxdk_T^2}(\chi_s \to \chi_s + A_T') &= \frac{\alpha'}{2\pi}Q_s^2 \frac{1+x^2}{1-x} \frac{k_T^2}{\tilde{k}_T^4}, \\ \frac{d\mathcal{P}}{dxdk_T^2}(\chi_s \to \chi_{-s} + A_L') &= \frac{\alpha'}{2\pi} \frac{m_\chi^2}{m_{A'}^2} Q_{\Phi'}^2 \frac{1-x}{2} \frac{k_T^2}{\tilde{k}_T^4}, \\ \frac{d\mathcal{P}}{dxdk_T^2}(\chi_s \to \chi_{-s} + A_T') &= \frac{\alpha'}{2\pi} (1-x)(Q_s - Q_{-s}x)^2 \frac{m_\chi^2}{\tilde{k}_T^4} \\ \frac{d\mathcal{P}}{dxdk_T^2}(\chi_s \to \chi_s + A_L') &= \frac{\alpha'}{2\pi} \frac{1}{2(1-x)} \left(2Q_s x + (-1)^{s+\frac{1}{2}} \frac{(1-x)^2 m_\chi^2}{m_{A'}^2} Q_{\Phi'}\right)^2 \frac{m_{A'}^2}{\tilde{k}_T^4} \\ \frac{d\mathcal{P}}{dxdk_T^2}(\chi_s \to \chi_{-s} + h') &= \frac{\alpha'}{2\pi} \frac{m_\chi^2}{m_{A'}^2} Q_{\Phi'}^2 \frac{1-x}{2} \frac{k_T^2}{\tilde{k}_T^4}, \\ \frac{d\mathcal{P}}{dxdk_T^2}(\chi_s \to \chi_{-s} + h') &= \frac{\alpha'}{2\pi} \frac{m_\chi^2}{2\pi} Q_{\Phi'}^2 \frac{(1-x)(1+x)^2}{2} \frac{m_\chi^2}{m_{A'}^2} \frac{m_\chi^2}{\tilde{k}_T^4} \end{split}$$

Jinmian Li (KIAS)

The dark shower Algorithm

J. Chen, T. Han and B. Tweedie, arXiv:1611.00788Evolution of the virtuality t:

• At given virtuality t^0 , integrate over x for each splitting function

$$I_i = \int_{x_{\min}}^{x_{\max}} \mathcal{P}(x, t^0) dx, \quad J_i = \sum_{i=1,i} I_i$$

- Generating an random number between $R = [0, J_N]$. If $J_{j-1} < R < J_j$, select the *j*th splitting function.
- Calculate the next $t' = t^0 dt$, $dt = dt^0 \times R^t$ with dt^0 set by hand and $R^t \in [0, 1]$.
- The Sudakov factor is given by

$$\Delta(t^0) = e^{-dt \cdot J_N}$$

- Generate another random number $R^s \in [0, 1]$, if $R^s > \Delta(t^0)$, do the branching and calculate the kinematic information of daughters
- Continue the evolution with daughters until meeting the cut off.

Jinmian Li (KIAS)

- We choose $(Q_V, Q_A) = (1/2, 1/2)$ for the Chiral Model and $(Q_V, Q_A) = (1, 0)$ for the Vector Model, where $Q_V = \frac{Q_L + Q_R}{2}$ and $Q_A = \frac{Q_L Q_R}{2}$.
- The Yukawa couplings are $\sim \sqrt{2}\sqrt{4\pi}$, close to the perturbative limit.

Energetic DM @ collider

- The portal to the SM sector can be described by an effective coupling $(\bar{q}\gamma^{\mu}q)(\bar{\chi}\gamma_{\mu}\chi)$, by integrating out a heavy vector boson.
- The decay of dark photon is induced by the kinetic mixing, its time scale is assumed to be much larger than DM shower. For all points, Br(A' → ee) = Br(A' → μμ) = 0.45 and Br(A' → ππ) = 0.1. Assuming ε ≥ 8.2 × 10⁻⁶, so that A' decays within a length of ~ O(1) mm.
- Dark Higgs exclusively decay into pairs of dark photons (later than DM shower).
- Consider the DM production at hadron collider, hard initial state radiation to boost the DM pair system, $p_T(j) > 200$ GeV.

• The expectation value for the number of radiated dark photon:

$$\langle n_{A'} \rangle \sim \frac{\alpha_{A'}}{2\pi} \int dx \int \frac{dt}{t} \sum P^i_{\chi \to \chi}(x,t)$$

• The probability that χ radiates exactly m dark photons is given by a Poisson distribution

$$p_m = \frac{e^{-\langle n_{A'} \rangle} \langle n_{A'} \rangle^m}{m!}$$

• The scalar sum of the dark photons transverse momenta (that for DM particles are almost the same)

$$H_T(A') = \sum_{i=\text{all } A'} |p_T(A'_i)|$$

Oct. 19th (AS) 24 / 31

H_T distributions for benchmark points

- H_T distribution in the Vector Model is more enhanced at lower value, compared with the Chiral Model.
- The unbroken splitting $\chi_s \to \chi_s A'_T$ contains soft singularity, whereas $\chi_s \to \chi_{-s} A'_L$ and $\chi_s \to \chi_{-s} h'$ do not.
- This feature is most useful, as the Yukawa coupling, characterized by the ratio $\frac{m_{\chi}}{m_{A'}}$, is comparable to the gauge coupling, from A to C.
- There is also additional contribution from dark Higgs bosons in the Chiral Model.

Dark photon number distributions for benchmark points

- Peak in the $n_{A'}$ distribution is generally higher, while the peak position is smaller, in the Vector Model than in the Chiral Model.
- Additional emissions of longitudinally polarized dark photons and dark Higgs bosons in the Chiral Model.
- From A to C, reduced gauge coupling.

The jet profile for each cases

- Cluster the final state particles radiated by a DM fermion using the anti- k_t jet algorithm for the jet radius R = 2 to determine the jet axis
- Jet profile is described by the variable $f_E(r)$, defined as the energy fraction outside the cone with the radius r < R.
- The jets are broader in the Chiral Model than in the Vector Model, soft singularity in the momentum fraction for transversely polarized γ_D .
- The jet profile is mainly determined by the DM fermion chirality, and almost independent of the DM energy.

Jinmian Li (KIAS)

Dark Matter Showering

27 / 31

Toward a realistic search - prompt lepton jet search at the LHC

ATLAS, arXiv:1511.05542 Search for a new, light boson with a mass of about 1 GeV and decaying promptly to jets of collimated electrons and/or muons (lepton-jets) Lepton jet:

- Starting from the hardest track, find the next hard track within $\Delta R = 0.5$.
- Sum two track momentum to give the lepton-jet candidate.
- Subsequent tracks within $\Delta R = 0.5$ of the lepton-jet candidate are added iteratively.
- Tracks that are added to a lepton-jet candidate are removed from consideration for subsequent LJ candidates.
- Additional lepton-jets are built from the remaining tracks in the list following the same procedure
- Each lepton-jet candidate contains at least two tracks $(p_T > 5 \text{ GeV})$.

Muon jet: If at least two muons with $p_T > 10$ GeV are found within $\Delta R = 0.5$ of the lepton-jet but no electrons.

Jinmian Li (KIAS)

Dark Matter Showering

Backgrounds

- Hadronic multijet (hadrons being misidentified as leptons, Data driven)
- Diboson $(WW, WZ, ZZ, \gamma\gamma, \mathbf{MC})$

Discriminating variables (muon-jets)

- Track isolation: ratio of the scalar sum of the p_T of the ID tracks, excluding the muon tracks, within $\Delta R = 0.5$ around the muLJ direction, to the pT of the muLJ (< 0.25).
- Calorimeter isolation: ratio of the total transverse energy in the calorimeter within $\Delta R = 0.2$ from the leading muon of a muLJ to the pT of that muon (< 0.15).

Channel	Hadronic multijet	All BKGs	Observation
muLJ-muLJ	2.9 ± 0.6	4.4 ± 1.1	4

Toward a realistic search - future prospects

- More discriminating variable specified to models
- Distinguishing the vector-DM and chiral-DM cases.

- Distinguishing the DM internal parameters, such as DM mass, DM spin, ...
- Indirect detection signals?

- Dark sector could have gauge symmetry.
- Dark matter shower under unbroken SU(N) and unbroken/broken U(1) have been established.
- The mass origin in U(1) dark sector can affect the pattern of dark photon radiation.
- LHC may not only find dark matter (dark sector), but also able to measure properties of a dark sector.