

DAMPE experiment and its latest results

Qiang Yuan (袁强) (On behalf of the DAMPE collaboration Purple Mountain Observatory, CAS

2018-10-11 @ NTU

Outline

- Overview of dark matter indirect detection
- Dark matter particle explorer (DAMPE)
 - DAMPE experiment
 - Status and on-orbit performance
 - Physical results
- Summary

Composition of the Universe

- The universe is made up of 68% dark energy, 27% dark matter and 5% ordinary matter
- We know little about the Universe!

Detection of (WIMP) dark matter particles

Underground direct detection

- Nuclear recoil from WIMPnuclei collision
- Placed in deep underground laboratory to shield cosmic ray backgrounds

Jinping dark matter experiments

Current status

No signal has been successfully found. Stringent limits are placed.

Collider detection

Missing energy events.

No signal of dark matter production has been identified yet in many colliders.

Some ongoing cosmic-ray/gamma-ray experiments

Yangbajing/LHAASO

HESS/MAGIC/VERITAS/CTA

Excess of high energy positron fraction

Gamma-ray excess from Galactic center

Goodenough & Hooper (2009) Vitale & Morselli (2009) Hooper & Goodenough (2011) Hooper & Linden (2011) Abazajian & Kaplinghat (2012) Gordon & Macias (2013) Huang et al. (2013) Abazajian et al. (2014) Daylan et al. (2014) Zhou et al. (2014) ...

- Generalized NFW² distribution
- Spectrum peaks at 1-3 GeV
- Consistent with dark matter annihilation with 40 GeV mass and 10⁻²⁶ cm³/s cross section
- Millisecond pulsars?

Possible GeV antiproton excess?

- The standard background model under-predicts cosmic ray antipotons in 1-10 GeV band, which could be explained by ~50 GeV dark matter annihilation
- Uncertainties of hadronic/nuclear interactions and solar modulation

Cui, QY et al. (2017) Cuoco et al. (2017) ¹²

Summary of dark matter searches

- Collider: Null!
- Direct: Null!

- Indirect:
 - 1. positron exess
 - 2. gamma-ray excess
 - 3. antiproton excess

Inconclusive!

Summary of dark matter searches

- Collider: Null!
- Direct: Null!

- Indirect:
 - 1. positron exess
 - 2. gamma-ray excess
 - 3. antiproton excess

Inconclusive!

- Astronomers can not see dark matter, but they discover dark matter
- Physicsts can in principle "see" dark matter, but they find nothing yet

Outline

- Overview of dark matter indirect detection
- Dark matter particle explorer (DAMPE)

DAMPE experiment

- Status and on-orbit performance
- Physical results
- Summary

Dark Matter Particle Explorer: probe the high-energy window with higher energy resolution, higher energy reach, and clearer particle ID

Dark matter particles
High energy cosmic rays
Gamma-ray astronomy

The DAMPE collaboration

China

- Purple Mountain Observatory, CAS
- University of Science and Technology of China
- Institute of High Energy Physics, CAS
- Institute of Modern Physics, CAS
- National Space Science Center, CAS

• Italy

- INFN Perugia and University of Perugia
- INFN Bari and University of Bari
- INFN Lecce and University of Salento

• Switzerland

- University of Geneva

Launched on Dec. 17, 2015, at JiuQuan satellite launch center

Named as "Wukong"

DAMPE detector

- Particle identity (BGO and NUD)

Chang et al. (2017, Astropart. Phys.)

Beam tests at CERN

- 14days@PS, 29/10-11/11 2014
 - e @ 0.5GeV/c, 1GeV/c, 2GeV/c, 3GeV/c, 4GeV/c, 5GeV/c
 - p @ 3.5GeV/c, 4GeV/c, 5GeV/c, 6GeV/c, 8GeV/c, 10GeV/c
 - π-@ 3GeV/c, 10GeV/c
 - γ @ 0.5-3GeV/c
- 8days@SPS,12/11-19/11 2014
 - e @ 5GeV/c, 10GeV/c, 20GeV/c, 50GeV/c, 100GeV/c, 150GeV/c, 200GeV/c, 250GeV/c
 - p @ 400GeV/c (SPS primary beam)
 - γ@ 3-20GeV/c
 - μ @ 150GeV/c,
- 17days@SPS,16/3-1/4 <u>2015</u>
 - Fragments: 66.67-88.89-166.67GeV/c
 - Argon: 30A-40A-75AGeV/c
 - Proton: 30GeV/c, 40GeV/c
- 21days@SPS,10/6-1/7 <u>2015</u>
 - Primary Proton: 400GeV/c
 - Electrons @ 20, 100, 150 GeV/c
 - γ @ 50, 75 , 150 GeV/c
 - μ @ 150 GeV /c
 - π+ @10, 20, 50, 100 GeV/c
- 6days@SPS, 20/11-25/11 2015
 - -- Pb 030 AGeV/c (and fragments)

Beam tests of electrons

Chang et al. (2017, Astropart. Phys.)

Beam tests of protons

Chang et al. (2017, Astropart. Phys.)

Outline

- Overview of dark matter indirect detection
- Dark matter particle explorer (DAMPE)

> DAMPE experiment

- Status and on-orbit performance
- Physical results

• Summary

Observation overview

5 full scans of the sky

5M events/day 4.6 billion in total

On-orbit performance

Typical DAMPE event

Z-X View	Z-Y View
	10.6 5.3 202 60 0 197e+05 147e+04 9.35e+03 244+03 244+03 244+03 244+04 9.35e+03 244+03 245+03 244+03 245+03 259+030+03 259+050000000000000000000000000000000000
<< First	
File Name(s): electron_above500GeV.root Event Number: 525 Time Point: 09:06:04.660, 27/04/2016 Total Energy: 4731.992000 GeV 4.7 TeV electron Track Status: Has BGO Track: Yes. Has Global Track: Yes. Direction: Theta: 29.3 deg, Phi: -103.4 deg	

Typical DAMPE events

On-orbit performance: energy calibration

Particle identification is crucial

On-orbit performance: particle identification

0.5-1.0 TeV

- We use the lateral (SumRMS) and longitudinal (energy ratio in last layer) developments of the showers to discriminate electrons from protons
- For 90% electron efficiency, proton background is ~2% @ TeV, ~5% @ 2 TeV, ~10% @ 5 TeV

(Nature 552 (2017) 63-66)

Outline

- Overview of dark matter indirect detection
- Dark matter particle explorer (DAMPE)
 - > DAMPE experiment
 - Status and on-orbit performance
 - Physical results
- Summary

Physical results: electron+positron fluxes

- Highest precision and lowest background in TeV energy range
- Direct detection of a spectral break at ~1 TeV with 6.6σ confidence level

Three-component e+e- model

Primary e- accelerated together with ions (in e.g., supernova remnants)

- Secondary e- and e+ from hadronic interaction of cosmic ray nuclei
- Additional e- and e+ from extra sources (e.g., pulsars, ...)

Implication of DAMPE data: improve constraints on model parameters of the 1st and 3rd components

bkg cutoff energy vs. pulsar cutoff

mchi vs. <σv>

Yuan et al. (2017) arXiv:1711.10989

Implication of the spectral break: break of continuous source distributions in space and time

- > Cooling time of TeV electrons ~ Myr, effective propagation range ~ kpc
- Assuming a total SN rate of 0.01 per year, the total number of SNRs within the effective volume and cooling time is O(10)

Physical results: variable AGNs

- DAMPE detected outbursts of CTA 102 and 3C 454.3
- Consistent with multi-wavelength observations

Yuan et al. (2017; ICRC)

Physical results: pulsars

Summary

- DAMPE detector is working extremely well since its launch more than 2 years ago
 - The electron + positron spectrum at TeV energies has been precisely measured \rightarrow as anticipated!
 - A clear spectral break has been directly measured at ~ 1 TeV
 → crucial to understanding some mysteries in cosmic ray
 physics!
 - Nuclei measurements are ongoing
 - Photon detection capability is demonstrated but more statistics to profit the excellent energy resolution at high energy is needed

Thanks for your attention!