Dark Matter Co-annihilating with a Top/Bottom Partner with effects of bound states

Wai-Yee Keung
University of Illinois at Chicago

arXiv:1703.02977 published in PRD 96, 015008 (2017)
with lan Low, and Yue Zhang

Feb 2, 2018, talk at AS, Taipei

Background on DM annihilation and decoupling

- Starting $T \gg m$ with chemica $\frac{m}{\bar{T}}$ equilibrium,

Background on DM annihilation and decoupling

- Starting $T \gg m$ with chemica $\frac{m}{\bar{f}}$ equilibrium,
- Freezing $T \ll m$ out from chemical equilibrium.

Background on DM annihilation and decoupling

- Starting $T \gg m$ with chemicaf $\frac{m}{\bar{T}}$ equilibrium,
- Freezing $T \ll m$ out from chemical equilibrium.
- (relic density) \uparrow as $\sigma_{\text {ann. }} \downarrow$.

WIMP Miracle and Subtlety

- Weak scale annihilation cross section $\sigma_{\text {ann }}$ gives the correct relic abundance.

WIMP Miracle and Subtlety

- Weak scale annihilation cross section $\sigma_{\text {ann }}$ gives the correct relic abundance.
- If DM is Majorana fermion, $\sigma_{\text {ann. }}$ suffers depression from helicity.

WIMP Miracle and Subtlety

- Weak scale annihilation cross section $\sigma_{\text {ann }}$. gives the correct relic abundance.
- If DM is Majorana fermion, $\sigma_{\text {ann. }}$. suffers depression from helicity.
Solution by Co-annihilation, [Griest and Seckel].

WIMP Miracle and Subtlety

- Weak scale annihilation cross section $\sigma_{\text {ann }}$. gives the correct relic abundance.
- If DM is Majorana fermion, $\sigma_{\text {ann. }}$ suffers depression from helicity.
Solution by Co-annihilation, [Griest and Seckel].

- If the partner (squark) too heavy, DM relic density overproduced

WIMP Miracle and Subtlety

- Weak scale annihilation cross section $\sigma_{\text {ann }}$. gives the correct relic abundance.
- If DM is Majorana fermion, $\sigma_{\text {ann. }}$ suffers depression from helicity.
Solution by Co-annihilation, [Griest and Seckel].

- If the partner (squark) too heavy, DM relic density overproduced
- Parameter space: $m_{\chi}=100 \mathrm{GeV} \sim 1 \mathrm{TeV}$, $m_{\tilde{q}}-m_{\chi}<100 \mathrm{GeV}$.

Relevant particles X, Y, B, q

- Denote DM particle X and assume it is a SM singlet and conjugate to itself.

Relevant particles X, Y, B, q

- Denote DM particle X and assume it is a SM singlet and conjugate to itself.
- Its slightly heavier partner particle Y which is colored under the fundamental representation of $S U(3)_{c}$.

Relevant particles X, Y, B, q

- Denote DM particle X and assume it is a SM singlet and conjugate to itself.
- Its slightly heavier partner particle Y which is colored under the fundamental representation of $S U(3)_{c}$.
- In the cases we study, there is a tree level coupling between X, Y and a third generation SM quark, denoted by q.

Relevant particles X, Y, B, q

- Denote DM particle X and assume it is a SM singlet and conjugate to itself.
- Its slightly heavier partner particle Y which is colored under the fundamental representation of $S U(3)_{c}$.
- In the cases we study, there is a tree level coupling between X, Y and a third generation SM quark, denoted by q.
- Furthermore, the bound states (onia) formed by co-annihilation partners Y and \bar{Y} is denoted by B.

Physics added

- Sommerfeld effect [Hisano et al., Cirelli et al.] $\left(\sqrt{s}>2 m_{Y}\right)$ in the annihilation of the colored co-annihilating partner pair $Y \bar{Y}$, whose wavefunction at the origin is strongly distorted due to the gluon exchange between the two initial particles. e.g. $\tilde{q} \tilde{q}^{*}$.

Physics added

- Sommerfeld effect [Hisano et al., Cirelli et al.] $\left(\sqrt{s}>2 m_{Y}\right)$ in the annihilation of the colored co-annihilating partner pair $Y \bar{Y}$, whose wavefunction at the origin is strongly distorted due to the gluon exchange between the two initial particles. e.g. $\tilde{q} \tilde{q}^{*}$.
- QCD onia $m_{B}<2 m_{Y}$ exists below the $2 m_{Y}$ threshold. [Pierce et al., Wise et al., Ellis et al. ...]

Physics added

- Sommerfeld effect [Hisano et al., Cirelli et al.] $\left(\sqrt{s}>2 m_{Y}\right)$ in the annihilation of the colored co-annihilating partner pair $Y \bar{Y}$, whose wavefunction at the origin is strongly distorted due to the gluon exchange between the two initial particles. e.g. $\tilde{q} \tilde{q}^{*}$.
- QCD onia $m_{B}<2 m_{Y}$ exists below the $2 m_{Y}$ threshold. [Pierce et al., Wise et al., Ellis et al. ...] The Krammer process $Y Y \rightarrow B+g$ is treated carefully.

Physics added

- Sommerfeld effect [Hisano et al., Cirelli et al.] $\left(\sqrt{s}>2 m_{Y}\right)$ in the annihilation of the colored co-annihilating partner pair $Y \bar{Y}$, whose wavefunction at the origin is strongly distorted due to the gluon exchange between the two initial particles. e.g. $\tilde{q} \tilde{q}^{*}$.
- QCD onia $m_{B}<2 m_{Y}$ exists below the $2 m_{Y}$ threshold. [Pierce et al., Wise et al., Ellis et al. ...] The Krammer process $Y Y \rightarrow B+g$ is treated carefully.
- $X X \rightarrow \mathrm{SM}$ and $Y Y$ to SM included

Channel list

- DM self-annihilation into SM (labelled by $X X$): $X X \leftrightarrow q \bar{q}$

Channel list

- DM self-annihilation into SM (labelled by $X X$): $X X \leftrightarrow q \bar{q}$
- DM-partner conversion (labelled by $X \leftrightarrow Y$): $X q \leftrightarrow Y g$ and $X g \leftrightarrow Y \bar{q}$, as well as decay and inverse decays of $Y \rightarrow X+$ SM particles

Channel list

- DM self-annihilation into SM (labelled by $X X$): $X X \leftrightarrow q \bar{q}$
- DM-partner conversion (labelled by $X \leftrightarrow Y$): $X q \leftrightarrow Y g$ and $X g \leftrightarrow Y \bar{q}$, as well as decay and inverse decays of $Y \rightarrow X+$ SM particles
- DM-partner co-annihilation (labelled by $X Y$): $X Y \leftrightarrow q g$

Channel list

- DM self-annihilation into SM (labelled by $X X$): $X X \leftrightarrow q \bar{q}$
- DM-partner conversion (labelled by $X \leftrightarrow Y$): $X q \leftrightarrow Y g$ and $X g \leftrightarrow Y \bar{q}$, as well as decay and inverse decays of $Y \rightarrow X+$ SM particles
- DM-partner co-annihilation (labelled by $X Y$): $X Y \leftrightarrow q g$
- Partner annihilation with Sommerfeld enhancement (labelled by $Y \bar{Y}): Y \bar{Y} \leftrightarrow g g, Y \bar{Y} \leftrightarrow q \bar{q}$, etc.

Channel list

- DM self-annihilation into SM (labelled by $X X$): $X X \leftrightarrow q \bar{q}$
- DM-partner conversion (labelled by $X \leftrightarrow Y$): $X q \leftrightarrow Y g$ and $X g \leftrightarrow Y \bar{q}$, as well as decay and inverse decays of $Y \rightarrow X+$ SM particles
- DM-partner co-annihilation (labelled by $X Y$): $X Y \leftrightarrow q g$
- Partner annihilation with Sommerfeld enhancement (labelled by $Y \bar{Y}): Y \bar{Y} \leftrightarrow g g, Y \bar{Y} \leftrightarrow q \bar{q}$, etc.
- Bound state B decay into DM particles (labelled by $B \leftrightarrow X$): $B \leftrightarrow X X$

Channel list

- DM self-annihilation into SM (labelled by $X X$): $X X \leftrightarrow q \bar{q}$
- DM-partner conversion (labelled by $X \leftrightarrow Y$): $X q \leftrightarrow Y g$ and $X g \leftrightarrow Y \bar{q}$, as well as decay and inverse decays of $Y \rightarrow X+$ SM particles
- DM-partner co-annihilation (labelled by $X Y$): $X Y \leftrightarrow q g$
- Partner annihilation with Sommerfeld enhancement (labelled by $Y \bar{Y}): Y \bar{Y} \leftrightarrow g g, Y \bar{Y} \leftrightarrow q \bar{q}$, etc.
- Bound state B decay into DM particles (labelled by $B \leftrightarrow X$): $B \leftrightarrow X X$
- Bound state B decay into SM particles (labelled by $B \leftrightarrow \mathrm{SM}): B \leftrightarrow 2 g$ or $3 g, B \leftrightarrow q \bar{q}$, etc.

Channel list

- DM self-annihilation into SM (labelled by $X X$): $X X \leftrightarrow q \bar{q}$
- DM-partner conversion (labelled by $X \leftrightarrow Y$): $X q \leftrightarrow Y g$ and $X g \leftrightarrow Y \bar{q}$, as well as decay and inverse decays of $Y \rightarrow X+$ SM particles
- DM-partner co-annihilation (labelled by $X Y$): $X Y \leftrightarrow q g$
- Partner annihilation with Sommerfeld enhancement (labelled by $Y \bar{Y}): Y \bar{Y} \leftrightarrow g g, Y \bar{Y} \leftrightarrow q \bar{q}$, etc.
- Bound state B decay into DM particles (labelled by $B \leftrightarrow X$): $B \leftrightarrow X X$
- Bound state B decay into SM particles (labelled by $B \leftrightarrow \mathrm{SM}): B \leftrightarrow 2 g$ or $3 g, B \leftrightarrow q \bar{q}$, etc.
- Bound state B radiative capture and dissociation (labelled by $B \leftrightarrow Y): Y \bar{Y} \leftrightarrow B g$

Physics quantities \mathcal{Y}, z, γ

- $\mathcal{Y} \equiv n / s$ where
n is the number density of a species and s is the entropy density in the universe.

Physics quantities \mathcal{Y}, z, γ

- $\mathcal{Y} \equiv n / s$ where
n is the number density of a species and s is the entropy density in the universe.
- $z \equiv m_{X} / T$ with Boltzmann distribution for calculating the thermal number densities. T is the temperature of the universe.

$$
\gamma=\int d \Phi_{i} d \Phi_{f}(2 \pi)^{4} \delta^{4}(\Sigma p)|\mathcal{M}(i \leftrightarrow f)|^{2} e^{-\left(E_{i}\right) / T}
$$

Coupled Boltzmann equations involving X, Y, B

$$
\begin{aligned}
s H z \frac{d \mathcal{Y}_{X}}{d z}= & -\gamma_{X X}\left[\left(\frac{\mathcal{Y}_{X}}{\mathcal{Y}_{X}^{\text {eq }}}\right)^{2}-1\right]-2 \gamma_{X Y}\left[\frac{\mathcal{Y}_{X}}{\mathcal{Y}_{X}^{e q}} \frac{\mathcal{Y}_{Y}}{\mathcal{Y}_{Y}^{\text {eq }}}-1\right] \\
& -2 \gamma_{X \leftrightarrow Y}\left[\frac{\mathcal{Y}_{X}}{\mathcal{Y}_{X}^{\text {eq }}}-\frac{\mathcal{Y}_{Y}}{\mathcal{Y}_{Y}^{e q}}\right]-2 \gamma_{B \leftrightarrow X}\left[\left(\frac{\mathcal{Y}_{X}}{\mathcal{Y}_{X}^{\text {eq }}}\right)^{2}-\frac{\mathcal{Y}_{B}}{\mathcal{Y}_{B}^{\text {eq }}}\right],
\end{aligned}
$$

Coupled Boltzmann equations involving X, Y, B

$$
\begin{aligned}
s H z \frac{d \mathcal{Y}_{X}}{d z}= & -\gamma_{X X}\left[\left(\frac{\mathcal{Y}_{X}}{\mathcal{Y}_{X}^{e q}}\right)^{2}-1\right]-2 \gamma_{X Y}\left[\frac{\mathcal{Y}_{X}}{\mathcal{Y}_{X}^{\text {eq }}} \frac{\mathcal{Y}_{Y}}{\mathcal{Y}_{Y}^{\text {eq }}}-1\right] \\
& -2 \gamma_{X \leftrightarrow Y}\left[\frac{\mathcal{Y}_{X}}{\mathcal{Y}_{X}^{e q}}-\frac{\mathcal{Y}_{Y}}{\mathcal{Y}_{Y}^{\text {eq }}}\right]-2 \gamma_{B \leftrightarrow X}\left[\left(\frac{\mathcal{Y}_{X}}{\mathcal{Y}_{X}}\right)^{2}-\frac{\mathcal{Y}_{B}}{\mathcal{Y}_{B}^{e q}}\right], \\
s H z \frac{d \mathcal{Y}_{Y}}{d z}= & -\gamma_{Y \bar{Y}}\left[\left(\frac{\mathcal{Y}_{Y}}{\mathcal{Y}_{Y}^{\text {eq }}}\right)^{2}-1\right]-\gamma_{X Y}\left[\frac{\mathcal{Y}_{X}}{\mathcal{Y}_{X}^{\text {eq }}} \frac{\mathcal{Y}_{Y}}{\mathcal{Y}_{Y}^{e q}}-1\right] \\
& +\gamma_{X \leftrightarrow Y}\left[\frac{\mathcal{Y}_{X}}{\mathcal{Y}_{X}^{e q}}-\frac{\mathcal{Y}_{Y}}{\mathcal{Y}_{Y}^{e q}}\right]-\gamma_{B \leftrightarrow Y}\left[\left(\frac{\mathcal{Y}_{Y}}{\mathcal{Y}_{Y}^{e q}}\right)^{2}-\frac{\mathcal{Y}_{B}}{\mathcal{Y}_{B}^{e q}}\right],
\end{aligned}
$$

Coupled Boltzmann equations involving X, Y, B

$$
\begin{aligned}
s H z \frac{d \mathcal{Y}_{X}}{d z}= & -\gamma_{X X}\left[\left(\frac{\mathcal{Y}_{X}}{\mathcal{Y}_{X}^{\text {eq }}}\right)^{2}-1\right]-2 \gamma_{X Y}\left[\frac{\mathcal{Y}_{X}}{\left.\mathcal{Y}_{X}^{e^{e q}} \frac{\mathcal{Y}_{Y}}{\mathcal{Y}_{Y}^{\text {eq }}}-1\right]}\right. \\
& -2 \gamma_{X \leftrightarrow Y}\left[\frac{\mathcal{Y}_{X}}{\mathcal{Y}_{X}^{e q}}-\frac{\mathcal{Y}_{Y}}{\mathcal{Y}_{Y}^{\text {eq }}}\right]-2 \gamma_{B \leftrightarrow X}\left[\left(\frac{\mathcal{Y}_{X}}{\mathcal{Y}_{X}^{X}}\right)^{2}-\frac{\mathcal{Y}_{B}}{\mathcal{Y}_{B}^{e q}}\right], \\
s H z \frac{d \mathcal{Y}_{Y}}{d z}= & -\gamma_{Y \bar{Y}}\left[\left(\frac{\mathcal{Y}_{Y}}{\mathcal{Y}_{Y}^{e q}}\right)^{2}-1\right]-\gamma_{X Y}\left[\frac{\mathcal{Y}_{X}}{\mathcal{Y}_{X}^{e q}} \frac{\mathcal{Y}_{Y}}{\mathcal{Y}_{Y}^{e q}}-1\right] \\
& +\gamma_{X \leftrightarrow Y}\left[\frac{\mathcal{Y}_{X}}{\mathcal{Y}_{X}^{e q}}-\frac{\mathcal{Y}_{Y}}{\mathcal{Y}_{Y}^{e q}}\right]-\gamma_{B \leftrightarrow Y}\left[\left(\frac{\mathcal{Y}_{Y}}{\mathcal{Y}_{Y}^{e q}}\right)^{2}-\frac{\mathcal{Y}_{B}}{\mathcal{Y}_{B}^{e q}}\right],
\end{aligned}
$$

$s H z \frac{d \mathcal{Y}_{B}}{d z}=$

Simplified

- $\mathcal{Y}_{Y}=\mathcal{Y}_{\bar{Y}}, \gamma_{X \bar{Y}}=\gamma_{X Y}$, and $\gamma_{X \leftrightarrow \bar{Y}}=\gamma_{X \leftrightarrow Y}$ by CP.

Simplified

- $\mathcal{Y}_{Y}=\mathcal{Y}_{\bar{Y}}, \gamma_{X \bar{Y}}=\gamma_{X Y}$, and $\gamma_{X \leftrightarrow \bar{Y}}=\gamma_{X \leftrightarrow Y}$ by CP.
- $\because \gamma_{Y \leftrightarrow X} \gg s H z, \mathcal{Y}_{X} / \mathcal{Y}_{X}^{e q} \simeq \mathcal{Y}_{Y} / \mathcal{Y}_{Y}^{e q}$, partial chemical equilibrium.

Simplified

- $\mathcal{Y}_{Y}=\mathcal{Y}_{\bar{Y}}, \gamma_{X \bar{Y}}=\gamma_{X Y}$, and $\gamma_{X \leftrightarrow \bar{Y}}=\gamma_{X \leftrightarrow Y}$ by CP.
- $\because \gamma_{Y \leftrightarrow X} \gg s H z, \mathcal{Y}_{X} / \mathcal{Y}_{X}^{e q} \simeq \mathcal{Y}_{Y} / \mathcal{Y}_{Y}^{e q}$, partial chemical equilibrium.
- $\because \gamma_{B \leftrightarrow X, Y, g} \gg s H z$,

$$
\frac{\mathcal{Y}_{B}}{\mathcal{Y}_{B}^{e q}} \simeq \frac{\gamma_{B \leftrightarrow X}\left(\frac{\mathcal{Y}_{X}}{\mathcal{Y}_{X}^{e q}}\right)^{2}+\gamma_{B \leftrightarrow Y}\left(\frac{\mathcal{Y}_{Y}}{\mathcal{Y}_{Y}^{e 一 ⿻^{e q}}}\right)^{2}+\gamma_{B \leftrightarrow \mathrm{SM}}}{\gamma_{B \leftrightarrow Y}+\gamma_{B \leftrightarrow X}+\gamma_{B \leftrightarrow \mathrm{SM}}}
$$

Simplified

- $\mathcal{Y}_{Y}=\mathcal{Y}_{\bar{Y}}, \gamma_{X \bar{Y}}=\gamma_{X Y}$, and $\gamma_{X \leftrightarrow \bar{Y}}=\gamma_{X \leftrightarrow Y}$ by CP.
- $\because \gamma_{Y \leftrightarrow X} \gg s H z, \mathcal{Y}_{X} / \mathcal{Y}_{X}^{e q} \simeq \mathcal{Y}_{Y} / \mathcal{Y}_{Y}^{e q}$, partial chemical equilibrium.
- $\because \gamma_{B \leftrightarrow X, Y, g} \gg s H z$,

$$
\frac{\mathcal{Y}_{B}}{\mathcal{Y}_{B}^{e q}} \simeq \frac{\gamma_{B \leftrightarrow X}\left(\frac{\mathcal{Y}_{X}}{\mathcal{Y}_{X}^{e q}}\right)^{2}+\gamma_{B \leftrightarrow Y}\left(\frac{\mathcal{Y}_{Y}}{\mathcal{Y}_{Y}^{e 一 ⿻^{q}}}\right)^{2}+\gamma_{B \leftrightarrow \mathrm{SM}}}{\gamma_{B \leftrightarrow Y}+\gamma_{B \leftrightarrow X}+\gamma_{B \leftrightarrow \mathrm{SM}}}
$$

$$
s H z \frac{d \mathcal{Y}_{\text {dark }}}{d z}=-\gamma_{\text {added }}\left[\left(\frac{\mathcal{Y}_{\text {dark }}}{\mathcal{Y}_{\text {dark }}^{e q}}\right)^{2}-1\right]
$$

Simplified

- $\mathcal{Y}_{Y}=\mathcal{Y}_{\bar{Y}}, \gamma_{X \bar{Y}}=\gamma_{X Y}$, and $\gamma_{X \leftrightarrow \bar{Y}}=\gamma_{X \leftrightarrow Y}$ by CP.
- $\because \gamma_{Y \leftrightarrow X} \gg s H z, \mathcal{Y}_{X} / \mathcal{Y}_{X}^{e q} \simeq \mathcal{Y}_{Y} / \mathcal{Y}_{Y}^{e q}$, partial chemical equilibrium.
- $\because \gamma_{B \leftrightarrow X, Y, g} \gg s H z$,

$$
\begin{aligned}
& \rightarrow X, Y, g \gg S H z, \\
& \frac{\mathcal{Y}_{B}}{\mathcal{Y}_{B}^{e q}} \simeq \frac{\gamma_{B \leftrightarrow X}\left(\frac{\mathcal{Y}_{X}}{\mathcal{Y}_{X}^{e q}}\right)^{2}+\gamma_{B \leftrightarrow Y}\left(\frac{\mathcal{Y}_{Y}}{\mathcal{Y}_{Y}^{\text {eq }}}\right)^{2}+\gamma_{B \leftrightarrow \mathrm{SM}}}{\gamma_{B \leftrightarrow Y}+\gamma_{B \leftrightarrow X}+\gamma_{B \leftrightarrow \mathrm{SM}}}
\end{aligned}
$$

$$
s H z \frac{d \mathcal{Y}_{\text {dark }}}{d z}=-\gamma_{\text {added }}\left[\left(\frac{\mathcal{Y}_{\text {dark }}}{\mathcal{Y}_{\text {dark }}^{\text {eq }}}\right)^{2}-1\right]
$$

$$
\mathcal{Y}_{\text {dark }}=\mathcal{Y}_{X}+\mathcal{Y}_{Y}+\mathcal{Y}_{\bar{Y}}
$$

$$
\gamma_{\text {added }}=\gamma_{X X}+4 \gamma_{X Y}+2 \gamma_{Y \bar{Y}}+2 \gamma_{\text {bound state }}
$$

Simplified

- $\mathcal{Y}_{Y}=\mathcal{Y}_{\bar{Y}}, \gamma_{X \bar{Y}}=\gamma_{X Y}$, and $\gamma_{X \leftrightarrow \bar{Y}}=\gamma_{X \leftrightarrow Y}$ by CP.
- $\because \gamma_{Y \leftrightarrow X} \gg s H z, \mathcal{Y}_{X} / \mathcal{Y}_{X}^{e q} \simeq \mathcal{Y}_{Y} / \mathcal{Y}_{Y}^{e q}$, partial chemical equilibrium.
- $\because \gamma_{B \leftrightarrow X, Y, g} \gg s H z$,

$$
\frac{\mathcal{Y}_{B}}{\mathcal{Y}_{B}^{e q}} \simeq \frac{\gamma_{B \leftrightarrow X}\left(\frac{\mathcal{Y}_{X}}{\mathcal{Y}_{X}^{e q}}\right)^{2}+\gamma_{B \leftrightarrow Y}\left(\frac{\mathcal{Y}_{Y}}{\mathcal{Y}_{Y}^{\text {eq }}}\right)^{2}+\gamma_{B \leftrightarrow \mathrm{SM}}}{\gamma_{B \leftrightarrow Y}+\gamma_{B \leftrightarrow X}+\gamma_{B \leftrightarrow \mathrm{SM}}}
$$

$$
\begin{gathered}
s H z \frac{d \mathcal{Y}_{\text {dark }}}{d z}=-\gamma_{\text {added }}\left[\left(\frac{\mathcal{Y}_{\text {dark }}}{\mathcal{Y}_{\text {dark }}^{e q}}\right)^{2}-1\right] \\
\mathcal{Y}_{\text {dark }}=\mathcal{Y}_{X}+\mathcal{Y}_{Y}+\mathcal{Y}_{\bar{Y}} \\
\gamma_{\text {added }}=\gamma_{X X}+4 \gamma_{X Y}+2 \gamma_{Y \bar{Y}}+2 \gamma_{\text {bound state }} \\
\gamma_{\text {bound state }}=\frac{\left(\gamma_{B \leftrightarrow X}+\gamma_{B \leftrightarrow Y}\right) \gamma_{B \leftrightarrow \mathrm{SM}}}{\gamma_{B \leftrightarrow X}+\gamma_{B \leftrightarrow Y}+\gamma_{B \leftrightarrow \mathrm{SM}}}
\end{gathered}
$$

Sommerfeld

$$
\mathcal{S}_{1}=\frac{4 \pi \alpha_{3} /(3 v)}{1-\exp \left[-4 \pi \alpha_{3} /(3 v)\right]}>1
$$

Sommerfeld

$$
\begin{gathered}
\mathcal{S}_{1}=\frac{4 \pi \alpha_{3} /(3 v)}{1-\exp \left[-4 \pi \alpha_{3} /(3 v)\right]}>1 \\
\mathcal{S}_{8}=\frac{\pi \alpha_{3} /(6 v)}{\exp \left[\pi \alpha_{3} /(6 v)\right]-1}<1
\end{gathered}
$$

Sommerfeld

$$
\begin{gathered}
\mathcal{S}_{1}=\frac{4 \pi \alpha_{3} /(3 v)}{1-\exp \left[-4 \pi \alpha_{3} /(3 v)\right]}>1 \\
\mathcal{S}_{8}=\frac{\pi \alpha_{3} /(6 v)}{\exp \left[\pi \alpha_{3} /(6 v)\right]-1}<1 \\
\sigma_{\tilde{t t^{*} \leftrightarrow h h}} v_{r e l} \rightarrow \mathcal{S}_{1} \times\left.\left(\sigma_{\tilde{t t^{*}} \leftrightarrow h h} v_{r e l}\right)\right|_{v_{r e l} \rightarrow 0} \\
\sigma_{\tilde{t \tilde{t}^{*} \leftrightarrow g h}} v_{r e l} \rightarrow \mathcal{S}_{8} \times\left.\left(\sigma_{\tilde{t t^{*} \leftrightarrow g h}} v_{r e l}\right)\right|_{v_{r e l} \rightarrow 0}
\end{gathered}
$$

Sommerfeld

$$
\begin{gathered}
\mathcal{S}_{1}=\frac{4 \pi \alpha_{3} /(3 v)}{1-\exp \left[-4 \pi \alpha_{3} /(3 v)\right]}>1 \\
\mathcal{S}_{8}=\frac{\pi \alpha_{3} /(6 v)}{\exp \left[\pi \alpha_{3} /(6 v)\right]-1}<1 \\
\sigma_{\tilde{t t^{*} \leftrightarrow h h}} v_{r e l} \rightarrow \mathcal{S}_{1} \times\left.\left(\sigma_{\tilde{t t^{*} \leftrightarrow h h}} v_{r e l}\right)\right|_{v_{r e l} \rightarrow 0} \\
\sigma_{\tilde{t t^{*} \leftrightarrow g h}} v_{r e l} \rightarrow \mathcal{S}_{8} \times\left.\left(\sigma_{\tilde{t} \tilde{t}^{*} \leftrightarrow g h} v_{r e l}\right)\right|_{v_{r e l} \rightarrow 0} \\
\sigma_{\tilde{t t^{*} \leftrightarrow g g}} v_{r e l} \rightarrow\left(\frac{2}{7} \mathcal{S}_{1}+\frac{5}{7} \mathcal{S}_{8}\right) \times\left.\left(\sigma_{\tilde{t} \tilde{t}^{*} \leftrightarrow g g} v_{r e l}\right)\right|_{v_{r e l} \rightarrow 0} \\
\left.\sigma_{\tilde{t t^{*} \leftrightarrow \bar{q} q}} v_{r e l} \rightarrow \mathcal{S}_{1}\left(\sigma_{\tilde{t t^{*}} \leftrightarrow\left(h^{*}\right) \leftrightarrow \bar{q} q} v_{r e l}\right)\right|_{v_{r e l} \rightarrow 0}+\left.\mathcal{S}_{8}\left(\sigma_{\left.\tilde{t t^{*} \leftrightarrow\left(g^{*}\right.}\right) \leftrightarrow \bar{q} q} v_{r e l}\right)\right|_{v_{r e l} \rightarrow 0}
\end{gathered}
$$

QM, Krammer extended

D

$$
\left(\sigma v_{\mathrm{rel}}\right)_{Y \bar{Y} \rightarrow B g}^{n, \ell}=\frac{4 \alpha_{D}}{81 \pi} \omega_{n}\left[\ell\left|\int d r r^{3}\left(\omega_{n}-\Delta V\right) R_{n \ell} R_{k \ell-1}\right|^{2}\right.
$$

$$
\left.+(\ell+1)\left|\int d r r^{3}\left(\omega_{n}-\Delta V\right) R_{n \ell} R_{k \ell+1}\right|^{2}\right]
$$

$$
\omega_{n}=E_{n}+k^{2} /(2 \mu), \Delta V(r)=\Delta V_{1}(r)+\Delta V_{2}(r)
$$

$$
\Delta V_{1}(r)=\frac{4 \alpha_{S}^{(f)}}{3 r}+\frac{\alpha_{S}^{(i)}}{6 r}, \Delta V_{2}(r)=\frac{3 \alpha_{S}^{(f)}}{2 r} .
$$

More on Dipole Transition

D
D

$$
H_{i n t}^{(1)}=\frac{g_{S} T_{i^{\prime} i}^{C} \delta_{j^{\prime} j}}{m_{Y}} \vec{k} \cdot \vec{G}^{C}(\vec{r} / 2)+\frac{g_{S} \delta_{i^{\prime} i} T_{j^{\prime} j}^{C}}{m_{Y}} \vec{k} \cdot \vec{G}^{C}(-\vec{r} / 2)
$$

More on Dipole Transition

$$
\begin{gathered}
H_{i n t}^{(1)}=\frac{g_{S} T_{i^{\prime} i}^{C} \delta_{j^{\prime} j}}{m_{Y}} \vec{k} \cdot \vec{G}^{C}(\vec{r} / 2)+\frac{g_{S} \delta_{i^{\prime} i} T_{j^{\prime} j}^{C}}{m_{Y}} \vec{k} \cdot \vec{G}^{C}(-\vec{r} / 2) \\
\mathcal{V}_{f i}^{(1)}=\frac{\delta^{C D}}{\sqrt{6}} \frac{g_{S}}{\mu}\left\langle\Psi_{f}\right| \vec{k}\left|\Psi_{i}\right\rangle \cdot \vec{\varepsilon}_{\lambda}^{C}
\end{gathered}
$$

More on Dipole Transition

$$
\begin{gathered}
H_{i n t}^{(1)}=\frac{g_{S} T_{i^{\prime} i}^{C} \delta_{j^{\prime} j}}{m_{Y}} \vec{k} \cdot \vec{G}^{C}(\vec{r} / 2)+\frac{g_{S} \delta_{i^{\prime} i} T_{j^{\prime} j}^{C}}{m_{Y}} \vec{k} \cdot \vec{G}^{C}(-\vec{r} / 2) \\
\mathcal{V}_{f i}^{(1)}=\frac{\delta^{C D}}{\sqrt{6}} \frac{g_{S}}{\mu}\left\langle\Psi_{f}\right| \vec{k}\left|\Psi_{i}\right\rangle \cdot \vec{\varepsilon}_{\lambda}^{C} \\
\vec{k}=-i \mu[\vec{r}, \mathrm{KE}]=-i \mu\left(\vec{r} H_{8}-H_{1} \vec{r}-\Delta V_{1}(r) \vec{r}\right)
\end{gathered}
$$

More on Dipole Transition

$$
\begin{gathered}
H_{i n t}^{(1)}=\frac{g_{S} T_{i^{\prime} i}^{C} \delta_{j^{\prime} j}}{m_{Y}} \vec{k} \cdot \vec{G}^{C}(\vec{r} / 2)+\frac{g_{S} \delta_{i^{\prime} i} T_{j^{\prime} j}^{C}}{m_{Y}} \vec{k} \cdot \vec{G}^{C}(-\vec{r} / 2) \\
\mathcal{V}_{f i}^{(1)}=\frac{\delta^{C D}}{\sqrt{6}} \frac{g_{S}}{\mu}\left\langle\Psi_{f}\right| \vec{k}\left|\Psi_{i}\right\rangle \cdot \vec{\varepsilon}_{\lambda}^{C} \\
\vec{k}=-i \mu[\vec{r}, \mathrm{KE}]=-i \mu\left(\vec{r} H_{8}-H_{1} \vec{r}-\Delta V_{1}(r) \vec{r}\right) \\
\hat{H}_{1}=\vec{k}^{2} /(2 \mu)-4 \alpha_{s}^{(f)} /(3 r), \text { and } \hat{H}_{8}=\vec{k}^{2} /(2 \mu)+\alpha_{s}^{(i)} /(6 r) \\
\mathcal{V}_{f i}^{(1)}=\frac{\delta^{C D}}{\sqrt{6}}\left(-i g_{S}\right)\left\langle\Psi_{f}\right|\left(E_{i}-E_{f}-\Delta V_{1}(r)\right) \vec{r}\left|\Psi_{i}\right\rangle \cdot \vec{\varepsilon}_{\lambda}^{C}
\end{gathered}
$$

Tri-gluon vertex

$$
\mathcal{L}_{3 G}=g_{S} f^{A B C}\left(\vec{\nabla} G_{0}^{A}\right) G_{0}^{B} \cdot \vec{G}^{C}
$$

Tri-gluon vertex

$$
\mathcal{L}_{3 G}=g_{S} f^{A B C}\left(\vec{\nabla} G_{0}^{A}\right) G_{0}^{B} \cdot \vec{G}^{C} \underset{c_{i}}{\mathcal{A}_{i}}
$$

Tri-gluon vertex

$$
\mathcal{L}_{3 G}=g_{S} f^{A B C}\left(\vec{\nabla} G_{0}^{A}\right) G_{0}^{B} \cdot \vec{G}^{C}
$$

$$
\mathcal{M}=2\left(i g_{S} T_{i^{\prime} i}^{A}\right)\left(\frac{-i}{q^{2}}\right)\left(i g_{S} f^{A B C}\right)\left(i \vec{q} \cdot \vec{\varepsilon}^{C}\right)\left(\frac{-i}{q^{2}}\right)\left(-i g_{S} T_{j^{\prime} j}^{B}\right)
$$

$$
\mathcal{M}=2 g_{S}^{3} T_{i^{\prime} i}^{A} T_{j^{\prime} j}^{B} f^{A B C} \frac{\vec{q} \cdot \vec{\varepsilon}^{C}}{\vec{q}^{4}}, \quad H_{i n t}^{(2)}=-g_{S} \alpha_{S} T_{i^{\prime} i}^{A} T_{j^{\prime} j}^{B} f^{A B C} \vec{r} \cdot \vec{G}^{C}
$$

Tri-gluon vertex

$$
\mathcal{L}_{3 G}=g_{S} f^{A B C}\left(\vec{\nabla} G_{0}^{A}\right) G_{0}^{B} \cdot \vec{G}^{C}
$$

$$
\mathcal{M}=2\left(i g_{S} T_{i^{\prime} i}^{A}\right)\left(\frac{-i}{q^{2}}\right)\left(i g_{S} f^{A B C}\right)\left(i \vec{q} \cdot \vec{\varepsilon}^{C}\right)\left(\frac{-i}{q^{2}}\right)\left(-i g_{S} T_{j^{\prime} j}^{B}\right)
$$

$$
\mathcal{M}=2 g_{S}^{3} T_{i^{\prime} i}^{A} T_{j^{\prime} j}^{B} f^{A B C} \frac{\vec{q} \cdot \vec{\varepsilon}^{C}}{\vec{q}^{4}}, \quad H_{i n t}^{(2)}=-g_{S} \alpha_{S} T_{i^{\prime} i}^{A} T_{j^{\prime} j}^{B} f^{A B C} \vec{r} \cdot \vec{G}^{C}
$$

$$
\mathcal{V}_{f i}^{(2)}=i g_{S} \delta^{C D} \sqrt{\frac{1}{6}}\left\langle\Psi_{f}\right| \underbrace{\frac{3 \alpha_{S}}{2 r}}_{\Delta V_{2}(r)} \vec{r}\left|\Psi_{i}\right\rangle \cdot \vec{\varepsilon}_{\lambda}^{C}
$$

Bino-Stop

$$
\mathcal{L}_{\text {bino-stop }}=\sqrt{2} g_{1} \frac{2}{3}\left(\bar{\chi} \frac{1}{2}\left(1+\gamma_{5}\right) t\right) \tilde{t}^{*}+\text { h.c. }
$$

Bino-Stop

$$
\mathcal{L}_{\text {bino-stop }}=\sqrt{2} g_{1} \frac{2}{3}\left(\bar{\chi} \frac{1}{2}\left(1+\gamma_{5}\right) t\right) \tilde{t}^{*}+\text { h.c. }
$$

$\tilde{t}^{*} \tilde{t} \rightarrow g g, h h, Z Z, W W, \gamma \gamma, g h, g Z, g \gamma, h Z, g \gamma, Z \gamma, \cdots$

Bino-Stop

$$
\mathcal{L}_{\text {bino-stop }}=\sqrt{2} g_{1} \frac{2}{3}\left(\bar{\chi} \frac{1}{2}\left(1+\gamma_{5}\right) t\right) \tilde{t}^{*}+\text { h.c. }
$$

$\tilde{t}^{*} \tilde{t} \rightarrow g g, h h, Z Z, W W, \gamma \gamma, g h, g Z, g \gamma, h Z, g \gamma, Z \gamma, \cdots$

$$
\begin{aligned}
\Gamma_{B_{\tilde{t}} \rightarrow \chi \chi} & =\frac{128 \pi \alpha_{1}^{2} m_{\chi}^{2}\left(m_{\tilde{t}}^{2}-m_{\chi}^{2}\right)^{3 / 2}}{27 m_{\tilde{t}}^{3}\left(m_{\tilde{t}}^{2}-m_{\chi}^{2}+m_{t}^{2}\right)^{2}}|\Psi(0)|^{2} \\
\Gamma_{B_{\tilde{t}} \rightarrow t \bar{t}} & =\frac{64 \pi \alpha_{1}^{2} m_{t}^{2}\left(m_{\tilde{t}}^{2}-m_{t}^{2}\right)^{3 / 2}}{81 m_{\tilde{t}}^{3}\left(m_{\tilde{t}}^{2}-m_{t}^{2}+m_{\chi}^{2}\right)^{2}}|\Psi(0)|^{2}
\end{aligned}
$$

Bino-Stop Coannihilation

LHC constraint on the decay $\tilde{t} \rightarrow t^{*}+\chi \rightarrow W *+b+\chi$.

Conclusion

- Most complete calculation of DM relic abundance including colored partner states of masses near DM.

Conclusion

- Most complete calculation of DM relic abundance including colored partner states of masses near DM.
- Co-annihilation: DM was converted into its partner efficiently and then the partner pair particles annihilated via QCD.

Conclusion

- Most complete calculation of DM relic abundance including colored partner states of masses near DM.
- Co-annihilation: DM was converted into its partner efficiently and then the partner pair particles annihilated via QCD.
- Sommerfeld factors $\mathcal{S}_{1}>1\left(\mathcal{S}_{8}<1\right)$ for the color singlet (octet) are relevant.

Conclusion

- Most complete calculation of DM relic abundance including colored partner states of masses near DM.
- Co-annihilation: DM was converted into its partner efficiently and then the partner pair particles annihilated via QCD.
- Sommerfeld factors $\mathcal{S}_{1}>1\left(\mathcal{S}_{8}<1\right)$ for the color singlet (octet) are relevant.
- Attention of the color in the Krammer process for the bound state formation.

Backup material

Bino-Sbottom Coannihilation

