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WIMP Miracle and Subtlety

> Weak scale annihilation cross section o,y gives the correct
relic abundance.

> If DM is Majorana fermion, oany. suffers depression from
helicity.
Solution by Co-annihilation, [Griest and Seckel |.

» If the partner (squark) too heavy, DM relic density
overproduced

» Parameter space: m, = 100 GeV~1 TeV,
mg —m, < 100 GeV.

[m] = =
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Relevant particles X, Y, B, q

» Denote DM particle X and assume it is a SM singlet and
conjugate to itself.

> lts slightly heavier partner particle Y which is colored under
the fundamental representation of SU(3)..

> In the cases we study, there is a tree level coupling between
X, Y and a third generation SM quark, denoted by g¢.

» Furthermore, the bound states (onia) formed by
co-annihilation partners Y and Y is denoted by B.
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Physics added

» Sommerfeld effect [Hisano et al., Cirelli et al] (y/s > 2my) in
the annihilation of the colored co-annihilating partner pair
Y'Y, whose wavefunction at the origin is strongly distorted
due to the gluon exchange between the two initial particles.

e.g. 4q*.
» QCD onia mp < 2my exists below the 2my threshold.
[Pierce et al., Wise et al., Ellis et al. ---] The Krammer

process YY — B + g is treated carefully.
» XX — SM and YY to SM included
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Channel list

» DM self-annihilation into SM (labelled by X X): XX « ¢q

» DM-partner conversion (labelled by X <+ Y): X¢q < Yg and
Xg < Yq, as well as decay and inverse decays of
Y — X + SM particles

» DM-partner co-annihilation (labelled by XY): XY <+ qg

» Partner annihilation with Sommerfeld enhancement (labelled
by YY): YY ¢« gg, YY ¢ qq, etc.

» Bound state B decay into DM particles (labelled by B <+ X):
B+ XX

» Bound state B decay into SM particles (labelled by
B+ SM): B < 2g or 3g, B <> qq, etc.

» Bound state B radiative capture and dissociation (labelled by
B+ Y): YY < Bg
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Physics quantities Y, z,

» Y =n/s where
n is the number density of a species and
s is the entropy density in the universe.
» z =mx /T with Boltzmann distribution for calculating the

thermal number densities. T is the temperature of the
universe.
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Coupled Boltzmann equations involving X, Y, B
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Coupled Boltzmann equations involving X, Y, B
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Simplified
» Wy = Vy, Yxy = Yxv, and vy v = Yxoy by CP.

> Cvex > sHz, Yx /Y = Yy /Y,
partial chemical equilibrium.

> U VBeXY,y > sHz, ) )
Vg  VBeX (%) + 7By (%) + YBoSM

Vi YBoY + VBoX + YBoSM

d ar ar 2
sHz yd £ = —Yadded [(y(ei:qk> - 1]

dz dark
Vdark = Vx + Wy + Vy

Yadded = VXX + dyxy + 2’YY§7 + 27bound state

_ (YBex +yBeY)VBOSM
Ybound state =
YB&X T YBeoy + YBoSM
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QM, Krammer extended
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Bino-Stop
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ratios among bound state rates
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Bino-Stop Coannihilation

Bound states
....... - Sommerfeld
------- - Born approx.
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LHC constraint on the decay ¢ — t* +x — W * +b + x.
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Conclusion

» Most complete calculation of DM relic abundance including
colored partner states of masses near DM.

» Co-annihilation: DM was converted into its partner efficiently
and then the partner pair particles annihilated via QCD.

» Sommerfeld factors S; > 1 (Sg < 1) for the color singlet
(octet) are relevant.

» Attention of the color in the Krammer process for the bound
state formation.
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Bino—Sbottom Coannihilation
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