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Source of the gravitational field:
stress energy tensor of matter,
including the energy density

Classical physics: energy density is positive and 
gravity is attractive

Quantum field theory: energy density can be 
negative - possibility of repulsive gravity



Negative energy as a subvacuum effect-
suppression of usual vacuum fluctuations

Example: Casimir effect

Perfectly reflecting plates: constant density negative energy

Casimir effect stress tensor:

⇥Tµ⇥⇤ = � diag(1,�1,�1, 3)

⇥ = � �c�2

720L4L

Brown & Maclay, DeWitt

Gravity determines what is 
zero energy.
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Figure 3:
The energy density in the vacuum region between two dielectric half-spaces is illustrated
for three values of the parameter ωpa. The dashed horizontal line is the energy density for
the perfectly conducting limit, (52).

and ωp. As ωpa grows, U at the midpoint decreases, becoming negative for ωpa ≈ 100, as
seen in Figure 3 and Figure 4.

In Figure 4 we see how the energy density at the center of the vacuum region changes as
the product ωpa increases. It can be seen both in Figure 3 and Figure 4 that U approaches
the value given in (52) as ωpa becomes large. The separation at which U becomes negative
at the center is

a > ac =
99

ωp
= 1.3µm

(

14.8eV

ωp

)

, (51)

where 14.8eV is the plasma frequency of aluminum.

4.4 A Perfect Conductor Case

In the limit ωp → ∞, r → −1 and r′ → 1. Then only the first (z-independent) term survives
in (50), and we get the familiar result [8]:

U = −
π2

720a4
. (52)

It is also interesting to examine the expressions for
〈

E2
〉

and
〈

B2
〉

in this limit. After
performing the t integration, (48) can be written as

〈

E2
〉

=
1

2π2

∫ ∞

0
duu3

[

2

3

1

1 − e2ua
+

(

e−2u(a−z)

1 − e−2ua
+

e−2uz

1 − e−2ua

)]

, (53)
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Result: energy density can be negative, but requires high 
reflectivity or large separations  (Sopova & LF)

Effects of finite reflectivity - can there be a large 
positive self energy? (Helfer & Lang)

Classical electrostatics: attractive forces but positive energy density

�p = plasma frequency



An example:  A superposition of the 
vacuum and a two photon state

|�� =
1⇤

1 + ⇥2
(|0�+ ⇥|2�) |�|� 1

can be negative at a given spacetime point

Non-classical quantum states

⇢ = h | : Ttt : | i = 2" h0| : Ttt : |2i+O("2)

A quantum interference effect



Negative energy density in a squeezed vacuum state 
(a superposition of all even particle number states):

Can be made arbitarily negative at a given point 
by increasing the frequency of the mode

� ⇥ ⇥ sinh r[sinh r � cosh r cos(2⇥ t)]

squeeze parameter

Another example:



Possible effects of negative energy: 

Singularity avoidance

Traversable wormholes

Violation of the weak energy conditions allows the 
singularity theorems to be evaded.

Negative energy is needed at the 
throat of the wormhole to cause 

light rays to defocus.

Repulsive gravity

Morris & Thorne



Faster than light travel - Alcubierre warp drive

Time Machines

Can modify a traversable wormhole or warp 
drive to travel backwards in time

Hawking’s Theorem: Negative energy is 
essential to          a time machine.build



Violations of  the second law of thermodynamics

Shine negative energy on a black hole and reduce 
its horizon area.



Violations of cosmic censorship: shine negative 
energy on an extreme black hole

?



Effects on light rays in classical gravity:

Light deflection

Shapiro time delay

light slowed by the sun’s 
gravitational field

Negative Energy and Superluminal Light Propagation

Negative energy can lead to “Shapiro time advance”, light 
travels faster than it would have in flat spacetime.

Local light speed is unchanged, but positive energy density 
increases the optical path length and negative energy 

density decreases it.



Constraints on negative energy in Minkowski spacetime
(without boundaries):

1) Total energy is non-negative - positivity of the 
Hamiltonian

2) Averaged weak energy condition - 
�
⇥Tµ⇥⇤uµ u⇥ d� � 0

Neither of these conditions is strong enough to 
avoid negative energy problems; the positive energy 

could be very far from the negative energy.

uµ
= four velocity of an inertial observer



3) Quantum inequalities -
�
⇤Tµ⇥⌅uµ u⇥ g(�, �0) d� ⇥ � C

�d
0

g(�, �0)
�0 d

C= sampling function

= sampling time
= positive constant

= spacetime dimension



Some Minkowski space examples with a Lorentzian 
sampling function:

Two dimensions (1+1)

Four dimensions (3+1)

⇥0

�

� ⇥

�⇥

⇤Tµ⇥⌅uµ u⇥

⇥2 + ⇥2
0

d⇥ ⇥ � 1
48� ⇥2

0

⇥0

�

� ⇥

�⇥

⇤Tµ⇥⌅uµ u⇥

⇥2 + ⇥2
0

d⇥ ⇥ � 3
32�2 ⇥4

0

Optimum bound(Flanagan)

(LF&Roman, 
Fewster&Eveson)



In the limit that            , we recover the 
averaged weak energy condition as a special 

case.
�
⇥Tµ⇥⇤uµ u⇥ d� � 0

�0 �⇥

A negative energy density cannot last 
longer than about �t = |�|�1/4

(4D)



Physical implication:

The amount of negative energy that can be 
absorbed by a system in time    is less than       t 1/t

In 4D, need the collecting area < 1/t2

This is less than the quantum energy uncertainty on 
this time scale.





Maximally negative energy density as the lowest 
eigenvalue of an averaged stress tensor operator

Let T̄ =

Z
Tµ⌫u

µu⌫ g(⌧, ⌧0) d⌧

The lowest eigenvalue of         is negative and is the 
optimum quantum inequality bound. The corresponding 

eigenstate is a squeezed vacuum state.

T̄

Fewster & Teo, Dawson

In many cases, the mean number of particles in the state 
of maximally negative averaged energy density is of 

order one, so the vacuum + two particle state is a good 
approximation.

Korolov & LF



Estimate of the typical magnitudes of the gravitational 
effects of negative energy density:

�Tµ⌫ ⇠ 1

⌧4
characteristic time scale⌧ =

�Rµ⌫ ⇠ `2P
⌧4

�h ⇠
✓
`P
⌧

◆2

`P = Planck lengthRicci 
tensor

metric 
perturbation

Very small on macroscopic scales



Negative energy or related subvacuum effects might 
still be observable.

Some proposed laboratory experiments:

1) Effects on magnetic moments of spin systems

LF, Grove & Ottewill

Basic idea: vacuum fluctuations cause de-alignment of 
spins and their suppression can cause a temporary 

re-alignment, or increase in magnetization.

Very small effect.



2) Effects on atomic decay rates LF & Roman 

3) Effects on the speed of light in a nonlinear 
material DeLorenci & LF 

Basic idea: vacuum fluctuations are essential or 
radiative decay of excite states, and their 

suppression decreases the decay rate

Basic idea:  A background electric field in a nonlinear 
material can change the speed of a probe pulse, 
analogous to the effect of a gravitational field.



Consider a situation where both fields are polarized in 
the z-direction, but propagating in the x-direction.

Electric field: Ei = �iz E = �iz E(t, x)

Polarization: Pz = �(1)E + �(2)E2 + �(3)E3 + · · ·

where �(1) = �(1)
zz , �(2) = �(2)

zzz , �(3) = �(3)
zzzz

Material can be anisotropic, but only z-components of 
the susceptibility tensors contribute here.

linear
 term

non-linear
terms



E = E0 + E1Let

lower frequency
background field

Assume that the material is approximately 
dispersionless over the frequency range defined by 

these two frequencies, and 

probe field

|E1| < |E0|

Also consider the case where                , but               , 
the Kerr effect.

�2 = 0 �3 > 0



Equation for E1(t, x)

@

2
E1

@x

2
� 1

v

2
(1 + 3✏2)

@

2
E1

@t

2
= 0

where v =
c�

1 + �(1)
Wave speed in the linear 

approximation

�2 =
⇥(3)

1 + ⇥(1)
E2

0(t, x)

u =
v

1 + 3✏2
⇡ v

✓
1� 3

2
✏2

◆Wave speed in the 
presence of the 
background field



Let the background field represent a non-
classical photon state and set

E

2
0 ! hE2

0(x, t)i

Regions where                          lead to “superluminal” 
pulses in that

hE2
0(x, t)i < 0

u > v

Here the subvacuum effect is that the pulse travels faster 
than it would in the absence of the background field. 

Given that                         is a transient effect,  can we 
have an effect which is large enough to observe?

hE2
0(x, t)i < 0



One possibility: 
Let the probe pulse propagate with the                        region.                       hE2

0(x, t)i < 0

x

The modified speed of the pulse leads to a phase shift
                     compared to a pulse in a                region.          �' / hE2

0i�x

hE2
0i = 0

�x = travel distance



Estimate of the magnitude of the effect:

�(3) = 3⇥ 10�19m2V�2

|hE0
2i| ⇡ 1(µm)�4 ⇡ (6⇥ 104Vm�1)2

Let (e.g., Si or Ge)

For the background field in a squeezed 
vacuum state with � = 1µm

�' ⇡
✓
�(3)hE0

2i
10�9

◆⇣ z

10m

⌘✓
0.1µm

�p

◆

characteristic wavelength of 
the probe pulse

Can this be observed?



Summary
1) Quantum field theory allows states in which subvacuum 
effects occur. Examples include negative energy density. 

These are quantum interference effects.
2) Negative energy density leads to repulsive gravity effects, 

including superluminal propagation.

3) Negative energy density and other subvacuum effects are 
limited by quantum inequalities.

4) These effects may still be large enough to be observable, 
especially in analog models.

5) One example is a model of superluminal light propagation 
in a nonlinear dielectric.


