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YESTERDAY AND TODAY

1. Beginning of 20th century, two clouds in Physics
-— black body radiation & Michelson interference
—» quantum mechanics & relativity theory
, the concept of symmetry is raised up.

2. Questions in today’s physics (begging of 21th century)
-— the neutrino oscillation (the massive neutrino)

-- dark matter NEW LANGUAGE?
-- dark energy NEW CONCEPT?

—-— quantization of gravity.. etc.



NEUTRINO OSCLLLATIONS

The neutrino oscillation, which is the phenomenon that some
fraction of neutrinos change flavours in the quantity
L(distance)/E(energy), have been confirmed since 1998.
(Nobel Prize in physics, 2015) oxzfoune 0 flremx ;550 ]
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Standard neutrino oscillations are described by a CP phase,
three rotations and two mass-squared differences(MSDs).



THE NEUTRINO OSCILLATION
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THE NEUTRINO OSCILLATION
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THE FLAVOUR SYMMETRY AT LEPTONIC SECTOR

The flavour symmetry at the higher energy (e.g. Sa4, A4,
etc) explains neutrino mixing and simplifies the
standard language for neutrino oscillations.

e.g. Tri-bimaximal (TBM), which was a popular model
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ONE FLAVOUR MODEL IN DUNE AND T2HK
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ONE FLAVOUR MODEL IN DUNE AND T2HK
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Even though we can do well in testing flavour models by
measuring oscillation parameters, this does not lead us to
say this 1is the final story.



1"VE BEEN THINKING. .

e Can we test the symmetry of flavour at the extreme (very
high energy) in the attainable environment (upcoming
experiments)?

e We cannot guarantee that any symmetry can be observed 1in
the charged lepton sector. (charge assignment)

e We are entering the era of precision measurement for
neutrino physics. (Superbeam, Neutrino Factory, LarTPC,

<g\etc....)
, which are theoretically
flavour-dependent interactions of neutrinos beyond the
standard model, can be a new window.
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Oscillation in  Standard NSI
vacuum Matter effects Matter effects

We will focus on those 1in matter,
and describe them in a matrix 1in
the Hamiltonian governing
neutrino oscillations:
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EFT OPERATORS (D < §) FOR NSIS @

Requirements:

L

Lorentz invariance and the SM gauge symmetry are
satisfied around and above EW scale.

Lepton number and baryon number are conserved.

Involving 4 fermions and D-6 Higgs.

In more details, 2 SU(2). doublets L are needed for
matter-effect NSIs, and at least 1 L is for NSIs at the
source and detector.

NSIs are considered to avoid the strong constraints from
4-charge-fermion 1interactions.
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Tri-bimaximal
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(ONCLUSTONS

e We have proposed an idea to test the consistency of the
flavour symmetry by measuring both oscillation and NSI
parameters.

e The flavour symmetry predicts the flavour dependence of
NSIs.

e We see the high exclusion level for DUNE to test A4 and
Z2 symmetry.

e We should not waste these tiny but influential
information for flavour symmetries.



NEXT...

e Test more symmetry models for NSIs.
e With sum rules for oscillation parameters (s,a,r).
e Other phenomenologies,
e.g. non-unitarity of Upmns (TEXONO?).
e Including collider data.









THE LEPTONIC FLAVOUR SYMMETRY

e The flavour symmetry at the higher energy (e.g. A4,
Z2...etc) explains neutrino mixing and simplifies the
standard language for the oscillations.

e Under a certain symmetry, the pattern of neutrino mixing

and MSDs 1is imposed by flavons, which are too heavy to
be detected i1n the prediction.

e.g. Irimaximal (TM),
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1"VE BEEN THINKING. .

e Test the symmetry of flavour at the extreme (very high
energy) 1in the attainable environment (upcoming
experiments) in an indirect way?
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e We introduce one
sterile neutrino and
one charged scaler.

e The main constraint 1is
by the nonunitarity,
which allows NSIs at
the level of 0.01.

e The NSI matrix 1is
simplified with 4
parameters (x,y,z,w).
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TESTING A% @DUNE

1. We cover all possible correlations with oscillation
parameters, and consider possible degree of freedom. The
results can been seen as a general case.

2. We assume Wilks’ theorem is applicable for
high-sensitivity cases.

3. High exclusion level for A4 symmetry 1is seen.

4. o23 has better sensitivity at the right panel, because 1its
lc allowed region is wider in GF results.



TESTING 12 @DUNE

1. We cover all possible correlations with oscillation
parameters, and consider possible degree of freedom. The
results can been seen as a general case.

2. We assume Wilks’ theorem is applicable for
high-sensitivity cases.

3. High exclusion level for A4 symmetry 1is seen.

4. o2 has better sensitivity at the right panel, because 1its
lc allowed region is wider in GF results.
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