

Implications of lepton number violation on high-scale baryogenesis and dark matter

CP³ Origins Wei-Chih Huang 03.01.2018 IOP Academia Sinica

F. Deppisch, J. Harz, WCH, M. Hirsch, H. Päs, Phys. Rev. D92 (2015) 036005
F. Deppisch, L. Graf, J. Harz, WCH, arXiv:1711.10432
M. T. Frandsen, C. Hagedorn, WCH, E. Molinaro, H. Päs, arXiv:1801.XXXXX

Outline

- Motivations
- Sakharov Conditions
- Introduction on mechanisms for baryon asymmetry generation
- L-violation responsible for $0\nu\beta\beta$ decay and wash-out on L and B
- Tree- and loop-level contributions to $0\nu\beta\beta$ decay
- Connection to asymmetric dark matter (ADM)
- Conclusions

Motivation

Sakharov Conditions

- B violation
- C and CP violation:
 - $\begin{array}{c} X \to B \\ \overline{X} \to \overline{B} \end{array}$
- → Total baryon number is still conserved if C or CP is conserved.

Sakharov Conditions

• C and CP violation:

$$iM_{1}(X - > B + Y) = a$$

$$iM_{2}(X - > B + Y) = B \times Ce^{i\theta}$$

$$i\overline{M}_{1}(\overline{X} - > \overline{B} + \overline{Y}) = a^{*}$$

$$i\overline{M}_{2}(\overline{X} - > \overline{B} + \overline{Y}) = B^{*} \times Ce^{i\theta}$$

$$\Gamma(X - > B + Y) - \Gamma(\overline{X} - > \overline{B} + \overline{Y}) = 4 \int d\Pi_f |AB^*| \sin \phi_{AB} \sin \theta$$
$$AB^* = |AB^*| e^{i\phi_{AB}}$$

Sakharov Conditions

 Out of equilibrium dynamics since in thermal equilibrium, we have =0

Baryon number *B* is odd under *C*, even under *P* and *T* \Rightarrow *B* is odd under *CPT* $\equiv \theta$

$$\langle B \rangle_T = \operatorname{Tr} \left(e^{-H/T} B \right)$$

= $\operatorname{Tr} \left(\theta^{-1} \theta e^{-H/T} B \right)$
= $\operatorname{Tr} \left(e^{-H/T} \theta B \theta^{-1} \right)$
= $-\langle B \rangle_T$

M. Pluimacher '09

Sphalerons

•Sphaleron processes (Klinkhammer & Manton '84; Kuzmin et al. '85) convert lepton asymmetry into baryon asymmetry

$$j_{5}^{\mu} = \overline{\psi}\gamma_{5}\gamma^{\mu}\psi, \qquad \partial_{\mu}j_{5}^{\mu} = \frac{1}{16\pi^{2}}\widetilde{F}_{\mu\nu}F^{\mu\nu} = \frac{\epsilon_{\rho\sigma\mu\nu}}{16\pi^{2}}F^{\rho\sigma}F^{\mu\nu} .$$

$$\Delta Q \ i = \frac{1}{64\pi^{2}}\int d^{4}x F_{\mu\nu}^{A}\widetilde{F}^{\mu\nu}A \qquad \text{Winding or Chern-Simons number of the field configuration}$$

$$\overset{*}{\underset{d_{L}}{\overset{b_{$$

Baryogenesis

• Baryogenesis occurs at the boundary between different vacuum

states (Kuzmin, Rubakov, Shaposhnikov '85 '86 '87)

Morrissey et al, 1206.2942

Leptogenesis

• A heavy neutrino decays out of equilibrium into leptons and antileptons unevenly (Fukugita, Yanagida '86)

Leptogenesis (Alternatives)

- Resonant leptogenesis
- Soft leptogenesis via oscillations
- Non-thermal leptogenesis
- CP-violation scattering
- *v*-N Level-crossing
- •

Volume 246, number 1, 2

PHYSICS LETTERS B

23 August 1990

Upper bound on baryogenesis scale from neutrino masses

Ann E. Nelson^{a,b,1,2} and S.M. Barr^{a,c}

^a Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA

^b Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA

^c Bartol Research Institute, University of Delaware, Newark, DE 19716, USA

Received 4 June 1990

We examine the constraints on baryogenesis if anomalous weak baryon violation is in thermal equilibrium at high temperatures. If neutrinos have Majorana masses, there is an upper bound on the scale of baryogenesis: $T_0 \leq 10^{12} \text{ GeV}(1 \text{ eV}/m_{\nu})^2$, where m_{ν} is the mass of the *lightest* neutrino, and no baryon number is generated at temperatures below T_0 .

SOUTHERN DENMARK

Chemical potential equilibirum

$$-\mu_q + \mu_H + \mu_{d_R} = 0 , \quad -\mu_q - \mu_H + \mu_{u_R} = 0 , \quad -\mu_\ell + \mu_H + \mu_{e_R} = 0 ,$$

$$3 \left(3 \,\mu_q + \mu_\ell \right) = 0 , \quad \mu_q + 2\mu_{u_R} - \mu_{d_R} - \mu_\ell - \mu_{e_R} + \frac{2}{3}\mu_H = 0 ,$$

All chemical potentials vanish after $\Delta L=2$ kicks in !

$$\mu_\ell + \mu_H = 0$$

SDU 🎓

SOUTHERN DENMARK

Wash-out Effects on Leptogenesis

 Boltzmann equations describe evolution of N / L number density

$$Hz \frac{dN_{N_1}}{dz} = -(\Gamma_D + \Gamma_S)(N_{N_1} - N_{N_1}^{eq})$$
$$Hz \frac{dN_L}{dz} = \epsilon_1 \Gamma_D(N_{N_1} - N_{N_1}^{eq}) - \Gamma_W N_L$$
with $z = \frac{M_{N_1}}{T}$

L violation and the (L+B)-violating sphalerons erase both L and B

J. Harz Helmholtz Alliance meeting, DESY

Neutrinoless Double Beta Decay ($0\nu\beta\beta$)

 Lepton number is violated if 0νββ is observed and SM neutrinos contains a Majorana component. It would wash out not only L and but also B in light of the sphalerons

Deppisch et al. 1208.0727

FIG. 1: Contributions to $0\nu\beta\beta$ decay generated by the operators in Eq. (2) in terms of effective vertices, point-like at the nuclear Fermi momentum scale.

0

Lepton Flavor Violation (LFV)

- Since we only study wash-out effects resulting from the $0\nu\beta\beta$ operators, only e-lepton asymmetry will be eliminated.
- In order to washout other flavor asymmetries, one would need LFV operators together with the $0\nu\beta\beta$ operators.
- We study $\ell_i \rightarrow \ell_j + \gamma$ and $\ell_i \rightarrow \ell_j$ conversion

$$\mathcal{O}_{\ell\ell\gamma} = \mathcal{C}_{\ell\ell\gamma} \bar{L}_{\ell} \sigma^{\mu\nu} \bar{\ell}^c H F_{\mu\nu}$$

$$\mathcal{O}_{\ell\ell qq} = \mathcal{C}_{\ell\ell qq}(\bar{\ell} \Pi_1 \ell)(\bar{q} \Pi_2 q) \qquad \mathcal{C}_{\ell\ell\gamma} = \frac{eg^3}{16\pi^2 \Lambda_{\ell\ell\gamma}^2}, \quad \mathcal{C}_{\ell\ell qq} = \frac{g^2}{\Lambda_{\ell\ell qq}^2},$$
$$\Pi : \text{Lorentz structures}$$

0

Results

Tree- and loop-level contributions

• In the following, we try to find all contributions to $0\nu\beta\beta$, given an operator.

Automation

f_L	$ar{f}_L$	Z	$g/(16\pi^2)$
f_L	\bar{f}'_L	W^-	$g/(16\pi^2)$
$ar{f}^c$	\bar{f}'_L	H^-	$y_f/(16\pi^2)$
$ar{f}^c$	$ar{f}_L$	h^0	$y_f/(16\pi^2)$
Z	$ar{f}_L$	$ar{f}_L$	$g/(16\pi^2)$
W^-	$ar{f}_L$	\bar{f}'_L	$g/(16\pi^2)$
H^{-}	f^c	\bar{f}'_L	$y_f/(16\pi^2)$
h^0	$ar{f}_L$	f^c	$y_f/(16\pi^2)$
$\langle h \rangle$	$ar{f}_L$	f^c	$vy_f/(16\pi^2)$
$h^0 W^- H^- $	$\bar{h}^0 W^+ H^+$	_	$1/(16\pi^2)$

f_L	f^c	h^0	$y_f/(16\pi^2)^2$
f^c	f'_L	H^+	$y_f/(16\pi^2)^2$
f_L	\bar{f}'_L	W^+	$g/(16\pi^2)^2$
f_L	$ar{f}_L$	Z	$g/(16\pi^2)^2$
h	$Z \mid W^+$	$Z \mid W^-$	$vg^2/(16\pi^2)^2$
Z	$H^+ W^+$	$W^- H^- $	$2vg^2/(16\pi^2)^2$

Operator lists

O	Operator	$m_{ u}$	LR	$\epsilon_{ m LR}$
1^{H^2}	$L^i L^j H^k H^l \overline{H}^t H_t \epsilon_{ik} \epsilon_{jl}$	$\frac{v^2}{\Lambda}f(\frac{v}{\Lambda})$	_	_
2	$L^i L^j L^k e^c H^l \epsilon_{ij} \epsilon_{kl}$	$\frac{y_e}{16\pi^2}\frac{v^2}{\Lambda}$	_	_
3_a	$L^i L^j Q^k d^c H^l \epsilon_{ij} \epsilon_{kl}$	$\frac{y_d g^2}{(16\pi^2)^2} \frac{v^2}{\Lambda}$	$\frac{v}{\Lambda^3}$	ϵ^{S+P}_{S+P}
3_b	$L^i L^j Q^k d^c H^l \epsilon_{ik} \epsilon_{jl}$	$\frac{y_d}{16\pi^2}\frac{v^2}{\Lambda}$	$\frac{v}{\Lambda^3}$	ϵ^{S+P}_{S+P}
4_a	$L^i L^j \overline{Q}_i \bar{u^c} H^k \epsilon_{jk}$	$\frac{y_u}{16\pi^2}\frac{v^2}{\Lambda}$	$\frac{v}{\Lambda^3}$	ϵ^{S+P}_{S-P}
4_{b}^{*}	$L^i L^j \overline{Q}_k u^{\overline{c}} H^k \epsilon_{ij}$	$\frac{y_u g^2}{(16\pi^2)^2} \frac{v^2}{\Lambda}$	$\frac{v}{\Lambda^3}$	ϵ^{S+P}_{S-P}
8	$L^i \bar{e^c} \bar{u^c} d^c H^j \epsilon_{ij}$	$\frac{y_e^{\rm ex} y_d y_u}{(16\pi^2)^2} \frac{v^2}{\Lambda}$	$rac{v}{\Lambda^3}$	$2\epsilon_{V+A}^{V+A}$

Table 4: Effective $\Delta L = 2$ SM operators at dimension 7. Dominant contributions to $0\nu\beta\beta$ decay via the effective neutrino mass (m_{ν}) and long-range (LR) mechanisms are shown. The $0\nu\beta\beta$ long-range interaction excited by a particular operator is denoted in column ϵ_{LR} . The notation of the contributions is explained in Sec. 4.3.

Operator lists

O	Operator	m_{ν}	LR	٤LR	SR	•sr
1 H4	$L^i L^j H^k H^l H^t H_t H^u H_u \epsilon_{ik} \epsilon_{jl}$	$\frac{v^2}{\Lambda}f^2(\frac{v}{\Lambda})$	-	-	-	_
1 ye	$L^i L^j H^k H^l (\overline{L}^t H_t \overline{e^c}) \epsilon_{ik} \epsilon_{jl}$	$\frac{y_c}{(16\pi^2)^2} \frac{v^2}{\Lambda}$	-	-	-	-
1 94	$L^i L^j H^k H^l (\overline{Q}^l H_t \overline{d}^c) \epsilon_{ik} \epsilon_{jl}$	$\frac{y_d}{(16\pi^2)^2} \frac{v^2}{\Lambda}$	$\frac{y_d y_{d u}^{ex}}{16\pi^2} \frac{v}{\Lambda^3} f\left(\frac{v}{\Lambda}\right)$	$\epsilon_{S\pm P}^{S+P}$	_	_
2 H ²	$L^i L^j L^k e^c H^l \overline{H}^t H_t \varepsilon_{ij} \varepsilon_{kl}$	$\frac{y_e}{16\pi^2} \frac{v^2}{\Lambda} f\left(\frac{v}{\Lambda}\right)$	-	-	_	-
$3_a^{H^2}$	$L^i L^j Q^k d^c H^l \overline{H}^t H_t \epsilon_{ij} \epsilon_{kl}$	$\frac{y_d g^2}{(16\pi^2)^2} \frac{v^2}{\Lambda} f\left(\frac{v}{\Lambda}\right)$	$\frac{v}{\Lambda^3}f(\frac{v}{\Lambda})$	ϵ_{S+P}^{S+P}	_	_
$\mathcal{S}_{b}^{H^{g}}$	$L^i L^j Q^k d^c H^l H^l H_l \epsilon_{ik} \epsilon_{jl}$	$\frac{y_d}{16\pi^2} \frac{v^2}{\Lambda} f\left(\frac{v}{\Lambda}\right)$	$v_{\Lambda^3} f(v_{\Lambda})$	ϵ_{S+P}^{S+P}	_	_
$4_a^{H^g}$	$L^i L^j \overline{Q}_i \bar{u^c} H^k \overline{H}^{\ell} H_l \epsilon_{jk}$	$\frac{y_u}{16\pi^2} \frac{v^2}{\Lambda} f\left(\frac{v}{\Lambda}\right)$	${v \atop \Lambda^3} f({v \atop \Lambda})$	ϵ_{S-P}^{S+P}	_	-
5	$L^i L^j Q^k d^c H^l H^m \overline{H}_i \epsilon_{jl} \epsilon_{km}$	$\frac{y_d}{(16\pi^2)^2} \frac{v^2}{\Lambda}$	$rac{v}{\Lambda^3}f(rac{v}{\Lambda})$	ϵ_{S+P}^{S+P}	_	-
6	$L^i L^j \overline{Q}_k \bar{u^c} H^l H^k \overline{H}_i \epsilon_{jl}$	$\frac{y_u}{(16\pi^2)^2} \frac{v^2}{\Lambda}$	$\frac{v}{\Lambda^3}f\left(\frac{v}{\Lambda}\right)$	ϵ_{S-P}^{S+P}	-	-
7	$L^i Q^j \bar{e^c} Q_k H^k H^l H^m \epsilon_{il} \epsilon_{jm}$	$\frac{y_e^{\exp}g^2}{(16\pi^2)^2} \frac{v^2}{\Lambda} f\left(\frac{v}{\Lambda}\right)$	$\frac{v^3}{\Lambda^5}$	$2\epsilon_{V-A}^{V+A}$	-	-
8 ¹¹²	$L^i \bar{c^c} \bar{u^c} d^c H^j \overline{H}^t H_t \epsilon_{ij}$	$\frac{y_c^{\text{ex}} y_d y_u}{(16\pi^2)^2} \frac{v^2}{\Lambda} f\left(\frac{v}{\Lambda}\right)$	$\frac{v}{\Lambda^3}f(\frac{v}{\Lambda})$	$2c_{V+A}^{V+A}$	_	_
9	$L^i L^j L^k e^c L^l e^c \epsilon_{ij} \epsilon_{kl}$	$\frac{y_e^2}{(16\pi^2)^2} \frac{v^2}{\Lambda}$	-	-	-	-
10	(2) $L^i L^j L^k e^c Q^l d^c \epsilon_{ij} \epsilon_{kl}$	$\frac{y_e y_d}{(16\pi^2)^2} \frac{v^2}{\Lambda}$	$\frac{y_c}{16\pi^2} \frac{v}{\Lambda^3}$	ϵ^{S+P}_{S+P}	-	-
11_a	(2) $L^i L^j Q^k d^c Q^l d^c \epsilon_{ij} \epsilon_{kl}$	$\frac{y_d^2 g^2}{(16\pi^2)^3} \frac{v^2}{\Lambda}$	$\frac{y_d}{16\pi^2} \frac{v}{\Lambda^3}$	ϵ^{S+P}_{S+P}	$\frac{g^2}{16\pi^2} \frac{1}{\Lambda^5}$	ϵ_1
11_b	(2) $L^i L^j Q^k d^c Q^l d^c \epsilon_{ik} \epsilon_{jl}$	$\frac{y_d^2}{(16\pi^2)^2} \frac{v^2}{\Lambda}$	$\frac{y_d}{16\pi^2} \frac{v}{\Lambda^3}$	ϵ^{S+P}_{S+P}	$\frac{1}{\Lambda^5}$	¢1
12a	$L^i L^j \overline{Q}_i \overline{u^c} \overline{Q_j} \overline{u^c}$	$\frac{y_u^2}{(16\pi^2)^2} \frac{v^2}{\Lambda}$	$\frac{y_u}{16\pi^2} \frac{v}{\Lambda^3}$	ϵ^{S+P}_{S-P}	$\frac{1}{\Lambda^5}$	ϵ_1
12_b^*	$L^i L^j \overline{Q}_k \bar{u^c} \overline{Q}_l \bar{u^c} \epsilon_{ij} \epsilon^{kl}$	$\frac{y_u^2 g^2}{(16\pi^2)^3} \frac{v^2}{\Lambda}$	$\frac{y_u}{16\pi^2} \frac{v}{\Lambda^3}$	ϵ^{S+P}_{S-P}	$\frac{g^2 y_d^{ex} y_u^{ex}}{(16\pi^2)^2} \frac{1}{\Lambda^5}$	61
13	$L^i L^j Q_i \bar{u^c} L^l e^c \epsilon_{jl}$	$\frac{y_e y_u}{(16\pi^2)^2} \frac{v^2}{\Lambda}$	$16\pi^2 \Lambda^3$	ϵ_{S-P}^{S+P}	-	-
14_a	(2) $L^i L^j \overline{Q}_k \bar{u^c} Q^k d^c \epsilon_{ij}$	$\frac{y_d y_u g^2}{(16\pi^2)^3} \frac{v^2}{\Lambda}$	$\frac{y_u _d}{16\pi^2} \frac{v}{\Lambda^3}$	$\epsilon^{S+P}_{S\pm P}$	$\frac{g^2}{(16\pi^2)^2} \frac{1}{\Lambda^5}$	ϵ_1
14_b	(2) $L^i L^j \overline{Q}_i \bar{u^c} Q^l d^c \epsilon_{jl}$	$\frac{y_d y_u}{(16\pi^2)^2} \frac{v^2}{\Lambda}$	$\frac{y_u _d}{16\pi^2} \frac{v}{\Lambda^3}$	$\epsilon_{S\pm P}^{S+P}$	$\frac{1}{\Lambda^5}$	¢1
15	$L^i L^j L^k d^c \overline{L}_i \overline{u^c} \epsilon_{jk}$	$\frac{y_d y_u g^2}{(16\pi^2)^3} \frac{v^2}{\Lambda}$	$\frac{g^2 y_u^{ex}_{u d e}}{(16\pi^2)^2} \frac{v}{\Lambda^3}$	$\epsilon^{S+P}_{S\pm P} 2\epsilon^{V+A}_{V+A}$	-	-
16	$L^i L^j e^c d^c \bar{e^c} \bar{u^c} \epsilon_{ij}$	$\frac{y_d y_u g^4}{(16\pi^2)^4} \frac{v^2}{\Lambda}$	$\frac{y_e}{16\pi^2} \frac{v}{\Lambda^3}$	$2\epsilon_{V+A}^{V+A}$	_	-
17	$L^i L^j d^c d^c \bar{d^c} \bar{u^c} \epsilon_{ij}$	$\frac{y_d y_u g^4}{(16\pi^2)^4} \frac{v^2}{\Lambda}$	$\frac{g^2 y_{u d e}^{\alpha x}}{(16\pi^2)^2} \frac{v}{\Lambda^3}$	$\epsilon^{S+P}_{S\pm P} 2\epsilon^{V+A}_{V+A}$	$-\frac{y_d^{\text{ex}}y_c^{\text{ex}}}{16\pi^2}\frac{1}{\Lambda^5}$	$2\epsilon_5$
18	$L^i L^j d^c u^c \bar{u^c} \bar{u^c} \epsilon_{ij}$	$\frac{y_d y_u g^4}{(16\pi^2)^4} \frac{v^2}{\Lambda}$	$\frac{g^2 y_{u d c}^{ex}}{(16\pi^2)^2} \frac{v}{\Lambda^3}$	$\epsilon^{S+P}_{S\pm P} 2\epsilon^{V+A}_{V+A}$	$\frac{y_e^{\mathrm{cx}}y_u^{\mathrm{cx}}}{16\pi^2}\frac{1}{\Lambda^5}$	$2\epsilon_5$
19	(2) $L^i Q^j d^c d^c \bar{e^c} \bar{u^c} \epsilon_{ij}$	$\frac{y_e^{ex} y_d^2 y_u}{(16\pi^2)^3} \frac{v^2}{\Lambda}$	$\frac{y_d}{16\pi^2} \frac{v}{\Lambda^3}$	$2\epsilon_{V+A}^{V+A}$	$\frac{1}{\Lambda^5}$	$2\epsilon_5$
20	(2) $L^i d^c \overline{Q}_i \bar{u^c} e^c \bar{u^c}$	$\frac{y_c^{ex} y_d y_u^2}{(16\pi^2)^3} \frac{v^2}{\Lambda}$	$\frac{y_u}{16\pi^2} \frac{v}{\Lambda^3}$	$2\epsilon_{V+\Lambda}^{V+\Lambda}$	$\frac{1}{\Lambda^5}$	$2\epsilon_5$
61	$L^i L^j H^k H^l L^r e^c \overline{H}_r \epsilon_{ik} \epsilon_{jl}$	$\frac{y_e}{16\pi^2} \frac{v^2}{\Lambda} f(\frac{v}{\Lambda})$	-	_	_	_
66	$L^i L^j H^k H^l \epsilon_{ik} Q^r d^c \overline{H}_r \epsilon_{jl}$	$\frac{y_d}{16\pi^2} \frac{v^2}{\Lambda} f\left(\frac{v}{\Lambda}\right)$	$\frac{1}{16\pi^2} \frac{v}{\Lambda^3}$	ϵ_{S+P}^{S+P}	_	-
71	$L^i L^j H^k H^l Q^r u^c H^s \epsilon_{rs} \epsilon_{ik} \epsilon_{jl}$	$\frac{y_u}{16\pi^2} \frac{v^2}{\Lambda} f\left(\frac{v}{\Lambda}\right)$	$\frac{y_u y_{d u}^{e_{\Lambda}}}{16\pi^2} \frac{v}{\Lambda^3} f\left(\frac{v}{\Lambda}\right)$	$\epsilon_{S\pm P}^{S+P}$	-	-
76	$e^{\overline{c}c}e^{\overline{c}c}d^{c}d^{c}\overline{u^{c}}\overline{u^{c}}$	$\frac{y_e^{\exp 2} y_d^2 y_u^2}{(16\pi^2)^4} \frac{v^2}{\Lambda}$	$\frac{y_d y_u y_e^{ex}}{(16\pi^2)^2} \frac{v}{\Lambda^3}$	$2\epsilon_{V+A}^{V+A}$	$\frac{1}{\Lambda^5}$	$2\epsilon_3^{LLz}$

Table 5: Effective $\Delta L = 2$ SM operators at dimension 9. Dominant contributions to $0\nu\beta\beta$ decay via the effective neutrino mass (m_{ν}) as well as long-range (LR) and short-range (SR) mechanisms are shown. The $0\nu\beta\beta$ long-range and short-range interactions excited by a particular operator are denoted in column ϵ_{LR} and ϵ_{SR} . The notation of the contributions is explained in Sec. 4.3.

O	Operator	m_{ν}	LR	ϵ_{LR}	SR	$\epsilon_{\rm SR}$
21_a	$L^i L^j L^k e^c Q^l u^c H^m H^n \epsilon_{ij} \epsilon_{km} \epsilon_{ln}$	$\frac{y_e y_u}{(16\pi^2)^2} \frac{v^2}{\Lambda} f\left(\frac{v}{\Lambda}\right)$	$\frac{y_e y_e^{ex} y_u^{ex}}{(16\pi^2)^2} \frac{v^3}{\Lambda^5}$	$2\epsilon_{V-A}^{V+A}$	-	-
21_b	$L^i L^j L^k e^c Q^l u^c H^m H^n \epsilon_{il} \epsilon_{jm} \epsilon_{kn}$	$\frac{y_e y_u}{(16\pi^2)^2} \frac{v^2}{\Lambda} f\left(\frac{v}{\Lambda}\right)$	$\frac{y_e y_c^{ex} y_u^{ex}}{(16\pi^2)^2} \frac{v^3}{\Lambda^5}$	$2\epsilon_{V-A}^{V+A}$	-	-
23	$L^i L^j L^k e^c \overline{Q}_k d^c H^l H^m \epsilon_{il} \epsilon_{jm}$	$\frac{y_c y_d}{(16\pi^2)^2} \frac{v^2}{\Lambda} f\left(\frac{v}{\Lambda}\right)$	$\frac{y_{d (e)}^{ex}y_{d}^{ex}y_{c}}{(16\pi^{2})^{2}}\frac{v}{\Lambda^{3}}f(\frac{v}{\Lambda})$	$\epsilon^{S+P}_{S-P} \epsilon^{V+A}_{V+A}$	-	-
24_a	$L^i L^j Q^k d^c Q^l d^c H^m \overline{H}_i \epsilon_{jk} \epsilon_{lm}$	$\frac{y_d^2}{(16\pi^2)^3} \frac{v^2}{\Lambda}$	$rac{y_d}{16\pi^2}rac{v}{\Lambda^3}fig(rac{v}{\Lambda}ig)$	ϵ^{S+P}_{S+P}	$\frac{1}{\Lambda^5}f(\frac{v}{\Lambda})$	ϵ_1
24_b	$L^i L^j Q^k d^c Q^l d^c H^m \overline{H}_i \epsilon_{jm} \epsilon_{kl}$	$\frac{y_d^2}{(16\pi^2)^3} \frac{v^2}{\Lambda}$	$rac{y_d}{16\pi^2}rac{v}{\Lambda^3}fig(rac{v}{\Lambda}ig)$	ϵ_{S+P}^{S+P}	$rac{g^2}{(16\pi^2)}rac{1}{\Lambda^5}fig(rac{v}{\Lambda}ig)$	ϵ_1
25	$L^i L^j Q^k d^c Q^l u^c H^m H^n \epsilon_{im} \epsilon_{jn} \epsilon_{kl}$	$\frac{y_d y_u}{(16\pi^2)^2} \frac{v^2}{\Lambda} f\left(\frac{v}{\Lambda}\right)$	$\frac{y_u}{(16\pi^2)^2} \frac{v}{\Lambda^3}$	ϵ_{S+P}^{S+P}	$\frac{y_u^{ex2}}{(16\pi^2)^2} \frac{1}{\Lambda^5}$	¢1
26_a	$L^{i}L^{j}Q^{k}d^{c}\overline{L}_{i}\overline{e^{c}}H^{l}H^{m}\epsilon_{jl}\epsilon_{km}$	$\frac{y_c y_d}{(16\pi^2)^3} \frac{v^2}{\Lambda}$	$\frac{y_e}{16\pi^2} \frac{v}{\Lambda^3} f\left(\frac{v}{\Lambda}\right)$	ϵ^{S+P}_{S+P}	-	-
26_b	$L^i L^j Q^k d^c L_k \bar{e^c} H^l H^m \epsilon_{il} \epsilon_{jm}$	$\frac{y_e y_d}{(16\pi^2)^2} \frac{v^2}{\Lambda} f\left(\frac{v}{\Lambda}\right)$	$\frac{y_c}{(16\pi^2)^2} \frac{v}{\Lambda^3}$	ϵ^{S+P}_{S+P}	-	-
27 _a	$L^i L^j Q^k d^c Q_i \bar{d^c} H^l H^m \epsilon_{jl} \epsilon_{km}$	$\frac{g^2}{(16\pi^2)^3} \frac{v^2}{\Lambda}$	$\frac{y_d}{16\pi^2} \frac{v}{\Lambda^3} f\left(\frac{v}{\Lambda}\right)$	ϵ^{S+P}_{S+P}	$\frac{y_d^{o \chi_2}}{(16\pi^2)^2} \frac{1}{\Lambda^5}$	e1
27_b	$L^i L^j Q^k d^c \overline{Q}_k d^{\overline{c}} H^l H^m \epsilon_{il} \epsilon_{jm}$	$\frac{g^2}{(16\pi^2)^3} \frac{v^2}{\Lambda}$	$\frac{y_d}{(16\pi^2)^2} \frac{v}{\Lambda^3}$	ϵ^{S+P}_{S+P}	$\frac{y_d^{ox2}}{(16\pi^2)^2} \frac{1}{\Lambda^5}$	¢1
28_a	$L^i L^j Q^k d^c \overline{Q}_j \bar{u^c} H^l \overline{H}_i \epsilon_{kl}$	$\frac{y_d y_u}{(16\pi^2)^3} \frac{v^2}{\Lambda}$	$rac{y_{\mathrm{u}}}{16\pi^2}rac{v}{\Lambda^3}fig(rac{v}{\Lambda}ig)$	ϵ_{S+P}^{S+P}	$\frac{v^2}{\Lambda^7}$	٤1
28_b	$L^i L^j Q^k d^c \overline{Q}_k \overline{u^c} H^l \overline{H}_i \epsilon_{jl}$	$\frac{y_d y_u}{(16\pi^2)^3} \frac{v^2}{\Lambda}$	$\frac{y_u d}{16\pi^2} \frac{v}{\Lambda^3} f\left(\frac{v}{\Lambda}\right)$	$\epsilon_{S\pm P}^{S+P}$	$\frac{g^2}{(16\pi^2)} \frac{1}{\Lambda^5} f\left(\frac{v}{\Lambda}\right)$	ϵ_1
28_c	$L^i L^j Q^k d^c \overline{Q}_l \bar{u^c} H^l \overline{H}_i \epsilon_{jk}$	$\frac{y_d y_u}{(16\pi^2)^3} \frac{v^2}{\Lambda}$	$\frac{y_d}{16\pi^2} \frac{v}{\Lambda^3} f\left(\frac{v}{\Lambda}\right)$	ϵ_{S-P}^{S+P}	$\frac{1}{\Lambda^5} f\left(\frac{v}{\Lambda}\right)$	e1
29_{a}	$L^i L^j Q^k u^c \overline{Q}_k \overline{u^c} H^l H^m \epsilon_{il} \epsilon_{jm}$	$\frac{g^2}{(16\pi^2)^3} \frac{v^2}{\Lambda}$	$\frac{y_u}{(16\pi^2)^2} \frac{v}{\Lambda^3}$	ϵ_{S-P}^{S+P}	$\frac{y_d^2 y_u^2}{(16\pi^2)^2} \frac{1}{\Lambda^5}$	ϵ_1
29 _b	$L^i L^j Q^k u^c Q_l \bar{u^c} H^l H^m \epsilon_{ik} \epsilon_{jm}$	$\frac{g^2}{(16\pi^2)^3} \frac{v^2}{\Lambda}$	$\frac{y_u}{16\pi^2} \frac{v}{\Lambda^3} f\left(\frac{v}{\Lambda}\right)$	ϵ_{S-P}^{S+P}	$\frac{y_d \ y_u}{(16\pi^2)^2} \frac{1}{\Lambda^5}$	ϵ_1
30_a	$L^i L^j \overline{L}_i e^{\overline{c}} \overline{Q}_k \overline{u^c} H^k H^l \epsilon_{jl}$	$\frac{y_c y_u}{(16\pi^2)^3} \frac{v^2}{\Lambda}$	$\frac{y_c}{16\pi^2} \frac{v}{\Lambda^3} f\left(\frac{v}{\Lambda}\right)$	ϵ_{S-P}^{S+P}	_	-
30 _b	$L^{i}L^{j}\overline{L}_{m}e^{\overline{c}c}\overline{Q}_{n}u^{\overline{c}c}H^{k}H^{l}\epsilon_{ik}\epsilon_{jl}\epsilon^{mn}$	$\frac{y_c y_u}{(16\pi^2)^2} \frac{v^2}{\Lambda} f\left(\frac{v}{\Lambda}\right)$	$\frac{y_c}{(16\pi^2)^2} \frac{v}{\Lambda^3}$	ϵ^{S+P}_{S-P}		-
31 _a	$L^i L^j \overline{Q}_i \overline{d}^c \overline{Q}_k \overline{u^c} H^k H^l \epsilon_{jl}$	$\frac{y_d y_u}{(16\pi^2)^2} \frac{v^2}{\Lambda} f\left(\frac{v}{\Lambda}\right)$	$\frac{y_d}{16\pi^2} \frac{v}{\Lambda^3} f\left(\frac{v}{\Lambda}\right)$	ϵ_{S-P}^{S+P}	$\frac{y_d^{-2}}{(16\pi^2)^2} \frac{1}{\Lambda^5}$	ϵ_1
31_b	$L^i L^j \overline{Q}_m \overline{d^c} \overline{Q}_n \overline{u^c} H^k H^l \epsilon_{ik} \epsilon_{jl} \epsilon^{mn}$	$\frac{y_d y_u}{(16\pi^2)^2} \frac{v^2}{\Lambda} f\left(\frac{v}{\Lambda}\right)$	$\frac{y_d}{(16\pi^2)^2} \frac{v}{\Lambda^3}$	ϵ_{S-P}^{S+P}	$\frac{y_d^{3A2}}{(16\pi^2)^2} \frac{1}{\Lambda^5}$	ϵ_1
32_a	$L^i L^j \overline{Q}_j \bar{u^c} \overline{Q}_k \bar{u^c} H^k \overline{H}_i$	$y_u^2 v^2 (16\pi^2)^3 \Lambda$	$\frac{y_u}{16\pi^2} \frac{v}{\Lambda^3} f\left(\frac{v}{\Lambda}\right)$	c_{S-P}^{S+P}	$\frac{1}{\Lambda^5}f(\frac{v}{\Lambda})$	¢1
32_b	$L^i L^j Q_m \bar{u^c} Q_n \bar{u^c} H^k H_i \epsilon_{jk} \epsilon^{mn}$	$(\frac{y_u^2}{(16\pi^2)^3} \frac{v^2}{\Lambda}$	$y_u v_{\Lambda^3} f({v \atop \Lambda})$	c_{S-P}^{S+P}	$y_d^{ex_2} = \frac{1}{(16\pi^2)^2} \Lambda^5$	ϵ_1
34	$e^{\bar{c}}e^{\bar{c}}L^iQ^je^cd^cH^kH^l\epsilon_{ik}\epsilon_{jl}$	$\frac{y_e^{ex} y_d g^2}{(16\pi^2)^4} \frac{v^2}{\Lambda}$	$\frac{g^2 y_{c u (d)}^{ex}}{(16\pi^2)^2} \frac{v}{\Lambda^3} f\left(\frac{v}{\Lambda}\right)$	$\epsilon^{S+P}_{S+P} 2\epsilon^{V+A}_{V\pm A}$	-	-
35	$\bar{e^{c}}\bar{e^{c}}L^{i}e^{c}\overline{Q}_{j}\bar{u^{c}}H^{j}H^{k}\epsilon_{ik}$	$\frac{y_{e}^{cx}y_{u}g^{2}}{(16\pi^{2})^{4}}\frac{v^{2}}{\Lambda}$	$\frac{g^2 y_{c d (u)}^{ex}}{(16\pi^2)^2} \frac{v}{\Lambda^3} f\left(\frac{v}{\Lambda}\right)$	$\epsilon^{S+P}_{S-P} 2\epsilon^{V+A}_{V\pm A}$	-	-
36	$e^{\bar{c}e}e^{\bar{c}}Q^{i}d^{c}Q^{j}d^{c}\Pi^{k}\Pi^{l}\epsilon_{ik}\epsilon_{jl}$	$\frac{y_c^{ex2}y_d^2g^2}{(16\pi^2)^5}\frac{v^2}{\Lambda}$	$\frac{y_d y_c^{c_X} y_{e u (d)}^{e_X}}{(16\pi^2)^2} \frac{v}{\Lambda^3} f\left(\frac{v}{\Lambda}\right)$	$\epsilon^{S+P}_{S+P} 2\epsilon^{V+A}_{V\pm A}$	$\frac{1}{\Lambda^5}f(\frac{v}{\Lambda})$	ϵ_1
37	$\bar{c^c} \bar{c^c} Q^i d^c \overline{Q}_j \bar{u^c} H^j H^k \epsilon_{ik}$	$\frac{y_c^{ex^2}y_dy_ug^2}{(16\pi^2)^5}\frac{v^2}{\Lambda}$	$\frac{g^2 y_c^{ex}}{(16\pi^2)^2} \frac{v^3}{\Lambda^5}$	$2\epsilon_{V+A}^{V+A}$	$\frac{1}{\Lambda^5}f(\frac{v}{\Lambda})$	ς1
38	$ar{e^c} ar{e^c} \overline{Q}_i ar{u^c} \overline{Q}_j ar{u^c} H^i H^j$	$\frac{y_e^{\exp 2} y_u^2 g^2}{(16\pi^2)^5} \frac{v^2}{\Lambda}$	$\frac{y_{c d (u)}^{\text{ex}} y_{e}^{\text{ex}} y_{u}}{(16\pi^{2})^{2}} \frac{v}{\Lambda^{3}} f\left(\frac{v}{\Lambda}\right)$	$\epsilon^{S+P}_{S-P} 2\epsilon^{V+A}_{V\pm A}$	$\frac{1}{\Lambda^5}f(\frac{v}{\Lambda})$	ϵ_1
40 _a	$L^i L^j L^k Q^l L_i Q_j H^m H^n \epsilon_{km} \epsilon_{ln}$	$\frac{g^2}{(16\pi^2)^3} \frac{v^2}{\Lambda}$	$\frac{g^2 y_{d u u e}^{ex}}{(\frac{1}{2}6\pi^2)^2} \frac{v}{\Lambda^3} f\left(\frac{v}{\Lambda}\right)$	$\epsilon^{S+P}_{S\pm P} 2\epsilon^{V+A}_{V\pm A}$	-	-
43_a	$L^i L^j L^k d^c \overline{L}_l \overline{u^c} H^l \overline{H}_i \epsilon_{jk}$	$\frac{y_d y_u g^2}{(16\pi^2)^4} \frac{v^2}{\Lambda}$	$\frac{g^2 y_{u d c}^{\text{ex}}}{(16\pi^2)^2} \frac{v}{\Lambda^3} f\left(\frac{v}{\Lambda}\right)$	$\epsilon^{S+P}_{S\pm P} 2\epsilon^{V+A}_{V+A}$	_	-
44_c	$L^{i}L^{j}Q^{k}e^{c}\overline{Q}_{l}\bar{e^{c}}H^{l}H^{m}\epsilon_{ij}\epsilon_{km}$	$\frac{g^4}{(16\pi^2)^4} \frac{v^2}{\Lambda}$	$\frac{y_e}{16\pi^2} \frac{v^3}{\Lambda^5}$	c_{V-A}^{V+A}	_	-
47 <i>a</i>	$L^i L^j Q^k Q^l \overline{Q}_i \overline{Q}_j H^m H^n \epsilon_{km} \epsilon_{ln}$	$\frac{g^2}{(16\pi^2)^3} \frac{v^2}{\Lambda}$	$\frac{g^2 y_{d \mathbf{u} (c)}^{\text{ex}}}{(16\pi^2)^2} \frac{v}{\Lambda^3} f\left(\frac{v}{\Lambda}\right)$	$\epsilon^{S+P}_{S\pm P} 2\epsilon^{V+A}_{V-A}$	$\frac{v^2}{\Lambda^7}$	$2\epsilon_3^a$
47_d	$L^{i}L^{j}Q^{k}Q^{l}\overline{Q}_{i}\overline{Q}_{m}H^{m}H^{n}\epsilon_{jk}\epsilon_{ln}$	$\frac{g^2}{(16\pi^2)^3} \frac{v^2}{\Lambda}$	$\frac{g^2 y_{d u (c)}^{ex}}{(16\pi^2)^2} \frac{v}{\Lambda^3} f\left(\frac{v}{\Lambda}\right)$	$\epsilon^{S+P}_{S\pm P} 2\epsilon^{V+A}_{V-A} $	$\frac{v^2}{\Lambda^7}$	$2\epsilon_3^a$
53	$L^i L^j d^c d^c \bar{u^c} \bar{u^c} \overline{H}_i \overline{H}_j$	$\frac{y_d^2 y_u^2 g^2}{(16\pi^2)^5} \frac{v^2}{\Lambda}$	$\frac{y_d y_u y_u^{ex}}{(16\pi^2)^2} \frac{v}{\Lambda^3} f\left(\frac{v}{\Lambda}\right)$	$\epsilon^{S+P}_{S\pm P} 2\epsilon^{V+A}_{V+A}$	$\frac{v^2}{\Lambda^7}$	$2\epsilon_3^a$
54 _a	$L^i Q^j Q^k d^c \overline{Q}_i \bar{e^c} H^l H^m \epsilon_{jl} \epsilon_{km}$	$\frac{y_c^{ex} y_d g^2}{(16\pi^2)^4} \frac{v^2}{\Lambda}$	$\frac{g^2 y_{e (d) u}^{e_X}}{(16\pi^2)^2} \frac{v}{\Lambda^3} f\left(\frac{v}{\Lambda}\right)$	$\epsilon^{S+P}_{S+P} 2\epsilon^{V+A}_{V\mp A}$	-	-
54_d	$L^i Q^j Q^k d^c \overline{Q}_l \overline{e^c} H^l H^m \epsilon_{ij} \epsilon_{km}$	$\frac{y_e^{\text{ex}} y_d g^2}{(16\pi^2)^4} \frac{v^2}{\Lambda}$	$\frac{y_d}{16\pi^2} \frac{v^3}{\Lambda^5}$	ϵ_{V-A}^{V+A}	$\frac{v^2}{\Lambda^7}$	$2\epsilon_5$
55_a	$L^i Q^j \overline{Q}_i \overline{Q}_k e^{\bar{c}} \bar{u^c} H^k H^l \epsilon_{jl}$	$\frac{y_e^{\text{ex}}y_u g^2}{(16\pi^2)^4} \frac{v^2}{\Lambda}$	$\frac{y_u}{16\pi^2} \frac{v^3}{\Lambda^5}$	ϵ_{V-A}^{V+A}	$\frac{v^2}{\Lambda^7}$	$2\epsilon_5$
59	$L^i Q^j d^c d^c \bar{e^c} \bar{u^c} H^k \overline{H}_i \epsilon_{jk}$	$\frac{y_c^{ex} y_d^2 y_u}{(16\pi^2)^4} \frac{v^2}{\Lambda}$	$\frac{y_d}{(16\pi^2)^2} \frac{v}{\Lambda^3}$	ϵ_{V+A}^{V+A}	$\frac{1}{\Lambda^5} f\left(\frac{v}{\Lambda}\right)$	$2\epsilon_5$
60	$L^i d^c \overline{Q}_j \bar{u^c} \bar{e^c} \bar{u^c} \Pi^j \overline{\Pi}_i$	$\frac{y_c^{ex} y_d y_u^2}{(16\pi^2)^4} \frac{v^2}{\Lambda}$	$\frac{y_u}{(16\pi^2)^2} \frac{v}{\Lambda^3}$	ϵ_{V+A}^{V+A}	$\frac{1}{\Lambda^5}f(\frac{v}{\Lambda})$	$2\epsilon_5$

Table 6: As Tab. 5 but showing selected effective $\Delta L = 2$ SM operators at dimension 11.

Comparison

Why is it of interest?

Dependence on experimental sensitivity

lsotope	$ \epsilon_{V-A}^{V+A} $	$ \epsilon_{V+A}^{V+A} $	$ \epsilon_{S-P}^{S+I} $	$ \epsilon_{S+P}^{S+I} $	$ \epsilon_{TL}^{IR} $	$ \epsilon_{TR}^{IR} $
$^{76}\mathrm{Ge}$	$3.3 \cdot 10^{-9}$	$5.9 \cdot 10^{-7}$	$1.0 \cdot 10^{-8}$	$1.0 \cdot 10^{-8}$	$6.4 \cdot 10^{-10}$	$1.0 \cdot 10^{-9}$
$^{136}\mathrm{Xe}$	$2.6\cdot 10^{-9}$	$5.1\cdot 10^{-7}$	$6.2\cdot 10^{-9}$	$6.2\cdot 10^{-9}$	$4.4\cdot10^{-10}$	$7.4 \cdot 10^{-10}$
	E Denpisch	M Hirsch H Pä	s J Phys G 39	(2012) 124007	arXiv:1208.0727	[hep-ph] updated

J. Harz, ACFI Workshop 2017

19/07/2017

24

Comparison

Why is it of interest?

Crucial dependence on SU(2) structure and Yukawa couplings

J. Harz, ACFI Workshop 2017

Results (1st Gen)

Results (3rd Gen)

Beyond EFT approach

Figure 19: Two example diagrams in a left-right symmetric model framework that give rise to the effective operator $\mathcal{O}_8 = L^i \bar{e^c} \bar{u^c} d^c H^j \epsilon_{ij}$.

Caveats

• $0\nu\beta\beta$ decays only probe the electron flavor, so LFV is needed to wash out asymmetries stored in μ and τ flavors

 To carry out the analysis in a model-independent way, we assume no correlation between the generation mechanism and washout

 The existence of a decoupled sector can protect asymmetries from washout in the visible sectors (Phys. Lett. B207, 210 (1988) and 1309.4770)

$$-\mu_q + \mu_H + \mu_{d_R} = 0 , \quad -\mu_q - \mu_H + \mu_{u_R} = 0 , \quad -\mu_\ell + \mu_H + \mu_{e_R} = 0 ,$$

$$3 \left(3 \,\mu_q + \mu_\ell \right) = 0 , \quad \mu_q + 2\mu_{u_R} - \mu_{d_R} - \mu_\ell - \mu_{e_R} + \frac{2}{3}\mu_H = 0 ,$$

All chemical potentials vanish after $\Delta L=2$ kicks in !

$$\mu_\ell + \mu_H = 0$$

$$-\mu_q + \mu_H + \mu_{d_R} = 0 , \quad -\mu_q - \mu_H + \mu_{u_R} = 0 , \quad -\mu_\ell + \mu_H + \mu_{e_R} = 0 ,$$

$$3(3\mu_q + \mu_\ell) = 0 , \quad \mu_q + 2\mu_{u_R} - \mu_{d_R} - \mu_\ell - \mu_{e_R} + \frac{2}{3}\mu_H = 0 ,$$

$$\mu_\ell + \mu_H = 0 \; , \qquad$$

If particles in the dark sector are also charged under $SU(2)_L$, then the sphalerons can transfer symmetry between B, L and X (dark charge) => Asymmetric DM

$$3(3\,\mu_q + \mu_\ell) + n_X \mu_X = 0,$$

$$-\mu_q + \mu_H + \mu_{d_R} = 0 , \quad -\mu_q - \mu_H + \mu_{u_R} = 0 , \quad -\mu_\ell + \mu_H + \mu_{e_R} = 0 ,$$

$$3 (3 \mu_q + \mu_\ell) = 0 , \quad \mu_q + 2\mu_{u_R} - \mu_{d_R} - \mu_\ell - \mu_{e_R} + \frac{2}{3}\mu_H = 0 ,$$

$$\mu_\ell + \mu_H = 0 \; , \qquad$$

If models need an extra asymmetry-transfer interaction, then DM asymmetry will also vanish!

$$X_{\rm DM}^2 \left(\ell H\right)^2$$
, $X_{\rm DM} d_R d_R u_R$ (or $X_{\rm DM}^2 d_R d_R u_R$)

$$Y_{\Delta B} = a_1 Y_{\Delta(B-L)} + a_2 Y_{\Delta X} \longrightarrow M_{\chi} \leq M_p \frac{|a_2|}{\left|1 - a_1 \frac{Y_{\Delta(B-L)}}{Y_{\Delta B}}\right|} \frac{\Omega_{\rm DM}}{\Omega_{\rm B}}$$

 $Y_{\Delta L} = a_2 \, a_3 \, Y_{\Delta X}$

Conclusions and Outlook

- Observation of LNV via 0vbb decay or at colliders together with LFV can falsify high-scale baryogenesis/leptogenesis
- A single LNV operator may induce at tree- and loop-level to short- and long-range contributions to 0vbb decay
- In certain ADM models, the existence of DM can *revive* highscale baryon or lepton asymmetry generation mechanisms and realize the connection of the baryon and DM density