Did a Low-Mass Supernova Trigger the Formation of the Solar System? Clues from Stable Isotopes and ¹⁰Be

> Yong-Zhong Qian University of Minnesota

Banerjee, YZQ, Heger, & Haxton 2016, Nat. Commun.

Institute of Physics Seminar Academia Sinica, Taiwan July 27, 2018

You arose from the death of stars (01/10/2017)

Standard Model of Particle Physics & Life of a Baryon: Big Bang Nucleosynthesis

Big Bang: 75% H + 25% He (by mass)

Sun: 71.1% H + 27.4% He +1.5% "Metals"

$$"p" \to "n" + e^+ + \nu_e$$
$$\bar{\nu}_e + "p" \to "n" + e^+$$

How to Become a Star

Virial theorem for a contracting gas cloud

$$T_c + \frac{\hbar^2}{2m_e d^2} \sim \frac{GMm_p}{R}$$

$$\left(\frac{M}{m_p}\right)d^3 \sim R^3 \Rightarrow$$

$$T_c \sim \frac{GMm_p}{R} - \frac{\hbar^2}{2m_e} \left(\frac{M}{m_p}\right)^{2/3} \frac{1}{R^2}$$

 $\Rightarrow T_{c,\max} \propto M^{4/3}$

Neutrino Emission from NS Formation

 $\dot{q}_{\nu N} \propto rac{L_{
u}}{\langle E_{
u}
angle} rac{\langle E_{
u} \sigma_{
u N}
angle}{r^2}$ $\dot{q}_{eN} \propto n_e \langle E_e \sigma_{eN} \rangle$ $\propto T^6$ gain radius rg $\dot{q}_{\nu N}(r_q) = \dot{q}_{eN}(r_q)$ outside gain radius $\dot{q}_{\nu N}(r) > \dot{q}_{eN}(r)$ Bethe & Wilson 1985

Giant Molecular Cloud: Stellar Nursery

Lifetime of Giant Molecular Clouds ~ 15-39 Myr (Murray 2011)

	Clouds ^a	Clumps ^b	Cores ^c
${ m Mass}~({ m M}_{\odot})$	$10^3 - 10^4$	50-500	0.5-5
Size (pc)	2–15	0.3–3	0.03-0.2
Mean density (cm^{-3})	50-500	$10^3 - 10^4$	$10^4 - 10^5$
Velocity extent (km s ⁻¹)	2-5	0.3–3	0.1–0.3
Crossing time (Myr)	2–4	≈1	0.5–1
Gas temperature (K)	≈ 10	10–20	8–12
Examples	Taurus, Oph, Musca	B213, L1709	L1544, L1498, B68

Table 1Properties of dark clouds, clumps, and cores

^aCloud masses and sizes from the extinction maps by Cambrésy (1999), velocities and temperatures from individual cloud CO studies.

^bClump properties from Loren (1989) (¹³CO data) and Williams, de Geus & Blitz (1994) (CO data). ^cCore properties from Jijina, Myers & Adams (1999), Caselli et al. (2002a), Motte, André & Neri (1998), and individual studies using NH₃ and N₂H⁺.

Bergin & Tafalla 2007

Sources of Shock Waves Triggering Star Formation

Previous star formation can trigger further star formation through:

a) Shocks from
 supernovae
 (explosions of
 massive stars):

Massive (O, B) stars die young => Supernovae tend to happen near sites of recent star formation

Obligatory star & planet formation slide

5

shock velocity ~ 20-40 km/s

injection of shock material via Rayleigh-Taylor fingers

injection efficiency ~ 3-10%

Life Cycle of Interstellar Medium

Contributing CCSNe prior to Solar System Formation

$$R_{\rm CCSN} \sim (30 \text{ yr})^{-1}$$

$$M_g \sim 10^{10} M_{\odot}$$

$$M_{\rm mix} \sim 3 \times 10^4 M_{\odot}$$

$$R_{\rm mix} \sim R_{\rm CCSN} \left(\frac{M_{\rm mix}}{M_g}\right)$$

$$\sim \frac{1}{10^7 \text{ yr}} \left[\frac{R_{\rm CCSN}}{(30 \text{ yr})^{-1}}\right] \left(\frac{M_{\rm mix}}{3 \times 10^4 M_{\odot}}\right) \left(\frac{10^{10} M_{\odot}}{M_g}\right)$$

$$t \sim 9 \text{ Gyr} \Rightarrow N_{\rm CCSN} \sim R_{\rm mix} t \sim 900$$

Constraints on a CCSN Trigger for Solar System Formation

Do No Evil !

$$\delta(^{i}\mathbf{E}/^{j}\mathbf{E}) \equiv \frac{(^{i}\mathbf{E}/^{j}\mathbf{E}) - (^{i}\mathbf{E}/^{j}\mathbf{E})_{\odot}}{(^{i}\mathbf{E}/^{j}\mathbf{E})_{\odot}}$$

for stable isotopes of major elements, e.g., Mg, Si, Ca, Fe

high-mass CCSNe problematic !

Wasserburg et al. 2006

if SN trigger had provided too much of any stable isotope, incomplete mixing with proto-solar cloud would have produced large isotopic anomalies

Short-Lived Radionuclides in the Early Solar System

SLR	⁴¹ Ca	36 C	26 A	¹⁰ Be	¹³⁵ Cs
Lifetime (Myr)	0.147	0.434	1.03	2.00	3.32
SLR	⁶⁰ Fe	⁵³ Mn	¹⁰⁷ Pd	¹⁸² Hf	²⁴⁷ Cm
Lifetime (Myr)	3.78	5.40	9.38	12.8	22.5
SLR	129	²⁰⁵ Pb	⁹² Nb	¹⁴⁶ Sm	²⁴⁴ Pu
Lifetime (Myr)	22.7	25.0	50.1	98.1	115

Forensic Evidence for a Low-Mass CCSN Trigger

R/I	$ au_R$	Y_R	X_I^{\odot}	$(N_R/N_I)_{\rm ESS}$				
	(Myr)	(M_{\odot})		Data	Case 1	Case 2	Case 3	
¹⁰ Be/ ⁹ Be	2.00	3.26(-10)	1.40(-10)	$({f 7.5\pm 2.5})(-4)$	6.35(-4)	6.35(-4)	5.20(-4)	
$^{26}\mathrm{Al}/^{27}\mathrm{Al}$	1.03	2.91(-6)	5.65(-5)	$(5.23 \pm 0.13)(-5)$	1.02(-5)	9.90(-6)	5.77(-6)	
$^{36}\mathrm{Cl}/^{35}\mathrm{Cl}$	0.434	1.44(-7)	3.50(-6)	$\sim (3-20)(-6)$	2.00(-6)	1.45(-6)	6.15(-7)	
$^{41}\mathrm{Ca}/^{40}\mathrm{Ca}$	0.147	3.66(-7)	5.88(-5)	$({f 4.1\pm 2.0})(-{f 9})$	3.40(-9)	2.74(-9)	2.26(-9)	
$^{53}\mathrm{Mn}/^{55}\mathrm{Mn}$	5.40	1.22(-5)	1.29(-5)	$(6.28 \pm 0.66)(-6)$	4.04(-4)	6.39(-6)	6.16(-6)	
$^{60}\mathrm{Fe}/^{56}\mathrm{Fe}$	3.78	3.08(-6)	1.12(-3)	$\sim 1(-8); (5-10)(-7)$	9.80(-7)	9.80(-7)	1.10(-7)	
107Pd/ 108 Pd	9.38	1.37(-10)	9.92(-10)	$({f 5.9\pm 2.2})(-{f 5})$	6.27(-5)	6.27(-5)	5.72(-5)	
$^{135}Cs/^{133}Cs$	3.32	2.56(-10)	1.24(-9)	$\sim 5(-4)$	7.51(-5)	7.51(-5)	3.18(-5)	
$^{182}{ m Hf}/^{180}{ m Hf}$	12.84	4.04(-11)	2.52(-10)	$(9.72 \pm 0.44)(-5)$	7.36(-5)	7.36(-5)	6.34(-6)	
		8.84(-12)			1.60(-5)	1.60(-5)	2.37(-6)	
$^{205}Pb/^{204}Pb$	24.96	9.20(-11)	3.47(-10)	$\sim 1(-4); 1(-3)$	1.27(-4)	1.27(-4)	7.78(-5)	

Test of a Low-Mass CCSN Trigger for Solar System Formation

Summary

Constraints on shifts in ratios of stable isotopes of major elements, e.g., Mg, Si, Ca, Fe, and on contributions to SLRs, especially ⁵³Mn & ⁶⁰Fe, strongly favor a low-mass CCSN trigger for solar system formation

Such a CCSN can account for the SLR ¹⁰Be by neutrino-induced production, and ⁴¹Ca & ¹⁰⁷Pd, possibly also ⁵³Mn & ⁶⁰Fe, by other mechanisms

The neutrino-induced co-production of ⁷Li & ¹¹B provides a test for this CCSN trigger

Future Studies

3D modeling of low-mass SN explosion & associated nucleosynthesis, especially production of ⁵³Mn & ⁶⁰Fe

simulations of low-mass SN remnant evolution in a giant molecular cloud to quantify the triggering scenario of solar system formation

explanations of other SLRs, especially ²⁶Al, in the early solar system

