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What Triggered the Formation of Our Solar System?

A Fascinating Story for the Inquiring Minds



You arose from the death of stars (01/10/2017) 
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Standard Model of Particle Physics & Life of a Baryon: 
Big Bang Nucleosynthesis
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Big Bang:

75% H + 25% He
(by mass)

Sun:
71.1% H + 27.4% He

+1.5% “Metals”
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How to Become a Star

Virial theorem for a contracting gas cloud
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Neutrino Emission from NS Formation

for a Galactic SN at ~10 kpc
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Bethe & Wilson 1985

gain radius rg
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Neutrino-Driven Explosion 
of a Low-Mass SN



O’Connor & Ott 2011
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Compactness & Explodability

Sukhbold & Woosley 2014
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Ertl et al. 2015



Giant Molecular Cloud: Stellar Nursery



ANRV320-AA45-09 ARI 24 July 2007 18:59

dissipation, and the difficulty of obtaining high-quality molecular-line data of whole
clouds will surely continue to challenge theorists and observers alike for a number of
years.

2.6. Internal Structure
A common feature of dark clouds is that they show a partly hierarchical structure, with
smaller subunits appearing within large ones when observed with increasing spatial
resolution. To characterize this structure, two different approaches have been gen-
erally followed, depending on whether the discrete or the continuous nature of the
structure is emphasized. In the first approach, the cloud is assumed to be composed
of subunits, referred to as clumps and defined as coherent regions in position-velocity
space that may contain significant substructure (Williams, Blitz & McKee 2000) (see
below and Table 1 for typical clump parameters). These clumps are identified from
the data using an automatic clump-finding algorithm that simplifies the process and
avoids human bias. The most popular algorithms in use are GAUSSCLUMPS, de-
veloped by Stutzki & Güsten (1990), and CLUMPFIND from Williams, de Geus
& Blitz (1994). These algorithms follow different approaches to identify and char-
acterize clumps, but they generally agree in the derived properties, especially in the
intermediate- and high-mass end (Williams, de Geus & Blitz 1994). When they are
applied, usually to CO isotopologue data, the spectrum of clump properties is found
to follow a power law in the range for which the data are complete. The mass of the
clumps, for example, commonly presents a distribution of the form dN/dM ∼ M−α ,
where α lies in a narrow range between 1.4 and 1.8 for both dark clouds and giant
molecular clouds (Blitz 1993, Kramer et al. 1998). As a reference, and in this form,
we note that the initial mass function of stars follows a steeper power law with a slope
of α = 2.35 (Salpeter 1955). The clump distribution, therefore, contains most of
the mass in massive clumps, whereas the stellar distribution has most of the mass in
low-mass objects.

Table 1 Properties of dark clouds, clumps, and cores

Cloudsa Clumpsb Coresc

Mass (M⊙) 103 – 104 50–500 0.5–5
Size (pc) 2–15 0.3–3 0.03–0.2
Mean density (cm−3) 50–500 103–104 104–105

Velocity extent (km s−1) 2–5 0.3–3 0.1–0.3
Crossing time (Myr) 2–4 ≈1 0.5–1
Gas temperature (K) ≈10 10–20 8–12
Examples Taurus, Oph, Musca B213, L1709 L1544, L1498, B68

aCloud masses and sizes from the extinction maps by Cambrésy (1999), velocities and temperatures from
individual cloud CO studies.
bClump properties from Loren (1989) (13CO data) and Williams, de Geus & Blitz (1994) (CO data).
cCore properties from Jijina, Myers & Adams (1999), Caselli et al. (2002a), Motte, André & Neri (1998),
and individual studies using NH3 and N2H+.
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Bergin & Tafalla 2007

Lifetime of Giant Molecular Clouds ~ 15-39 Myr (Murray 2011)







Boss & Keiser
2014, 2015

shock velocity
~ 20-40 km/s

injection of shock
material via

Rayleigh-Taylor
fingers

injection efficiency
~ 3-10%

rotation axis

0.0280 Myr

0.0539 Myr 0.0833 Myr



Life Cycle of Interstellar Medium



Arise from the Ashes

resurrection 
in binaries !



Contributing CCSNe prior to Solar System Formation

RCCSN ⇠ (30 yr)�1

Mg ⇠ 1010 M�
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Constraints on a CCSN Trigger for Solar System Formation

Do No Evil !

�(iE/jE) ⌘ (iE/jE)� (iE/jE)�
(iE/jE)�

for stable isotopes of major elements, e.g., Mg, Si, Ca, Fe

|�(iE/jE)| . 1%

high-mass CCSNe problematic !

Wasserburg et al. 2006



if SN trigger
had provided 
too much of 
any stable 
isotope,

incomplete 
mixing with
proto-solar
cloud would

have produced
large isotopic 

anomalies

0.085 
Myr

Boss & Keiser
2015
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SLR 41Ca 36Cl 26Al 10Be 135Cs

Lifetime

(Myr) 0.147 0.434 1.03 2.00 3.32

SLR 60Fe 53Mn 107Pd 182Hf 247Cm

Lifetime

(Myr) 3.78 5.40 9.38 12.8 22.5

SLR 129I 205Pb 92Nb 146Sm 244Pu

Lifetime

(Myr) 22.7 25.0 50.1 98.1 115

Short-Lived Radionuclides in the Early Solar System
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Constraints from Short-Lived Radionuclides (SLRs)





Neutrino-Induced Production of 10Be (Banerjee et al. 2016)

⌫ + 12C ! 10Be + 2p+ ⌫0

number of 12C targets 
increases with 

progenitor mass 

neutrino flux in C shell 
decreases with 
progenitor mass

approximately constant 
production of 10Be

by CCSNeMcKeegan et al. 2000
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Table 1: Contributions of a 11.8M� CCSN to SLRs in the early SS compared to isotopic ratios

deduced from meteoritic data

R/I ⌧R YR X�
I (NR/NI)ESS

(Myr) (M�) Data Case 1 Case 2 Case 3

10Be/9Be 2.00 3.26(�10) 1.40(�10) (7.5± 2.5)(�4) 6.35(�4) 6.35(�4) 5.20(�4)

26Al/27Al 1.03 2.91(�6) 5.65(�5) (5.23± 0.13)(�5) 1.02(�5) 9.90(�6) 5.77(�6)

36Cl/35Cl 0.434 1.44(�7) 3.50(�6) ⇠ (3–20)(�6) 2.00(�6) 1.45(�6) 6.15(�7)

41Ca/40Ca 0.147 3.66(�7) 5.88(�5) (4.1± 2.0)(�9) 3.40(�9) 2.74(�9) 2.26(�9)

53Mn/55Mn 5.40 1.22(�5) 1.29(�5) (6.28± 0.66)(�6) 4.04(�4) 6.39(�6) 6.16(�6)

60Fe/56Fe 3.78 3.08(�6) 1.12(�3) ⇠ 1(�8); (5–10)(�7) 9.80(�7) 9.80(�7) 1.10(�7)

107Pd/108Pd 9.38 1.37(�10) 9.92(�10) (5.9± 2.2)(�5) 6.27(�5) 6.27(�5) 5.72(�5)

135Cs/133Cs 3.32 2.56(�10) 1.24(�9) ⇠ 5(�4) 7.51(�5) 7.51(�5) 3.18(�5)

182Hf/180Hf 12.84 4.04(�11) 2.52(�10) (9.72± 0.44)(�5) 7.36(�5) 7.36(�5) 6.34(�6)

8.84(�12) 1.60(�5) 1.60(�5) 2.37(�6)

205Pb/204Pb 24.96 9.20(�11) 3.47(�10) ⇠ 1(�4); 1(�3) 1.27(�4) 1.27(�4) 7.78(�5)

Case 1 estimates are calculated from equation (1) using the approximate best-fit f and � of

Fig. 2, determined from the data in bold, assuming no fallback. The higher and lower yields

for 182Hf are obtained from the laboratory and estimated stellar decay rates [47] of 181Hf,

respectively. Case 2 (3) is a fallback scenario in which only 1.5% of the innermost 1.02 ⇥

10�2 M� (0.116M�) of shocked material is ejected. With guidance from Refs. [22, 31], well-

determined data are quoted with 2� errors, while data with large uncertainties are preceded

by “⇠”. Note that x(�y) denotes x⇥ 10�y. Data references are: 10Be [14, 16, 18, 19], 26Al

[2, 32], 36Cl [33–35], 41Ca [36, 37], 53Mn [38], 60Fe [39, 40], 107Pd [41], 135Cs [42], 182Hf [43],

205Pb [44, 45].

Forensic Evidence for a Low-Mass CCSN Trigger



Test of a Low-Mass CCSN Trigger for Solar System Formation

neutrino-induced 
co-production of

7Li and 11B

higher (10Be/9Be)0 
correlates with

higher (7Li/6Li)0 &
lower (10B/11B)0

0

(10B/11B)0



Summary

Constraints on shifts in ratios of stable isotopes 
of major elements, e.g., Mg, Si, Ca, Fe, and 

on contributions to SLRs, especially 53Mn & 60Fe, 
 strongly favor a low-mass CCSN trigger 

for solar system formation

Such a CCSN can account for the SLR 10Be
by neutrino-induced production, and 41Ca & 107Pd,
possibly also 53Mn & 60Fe, by other mechanisms

The neutrino-induced co-production of 7Li & 11B
provides a test for this CCSN trigger



Future Studies

3D modeling of low-mass SN explosion & associated 
nucleosynthesis, especially production of 53Mn & 60Fe

simulations of low-mass SN remnant evolution in a
giant molecular cloud to quantify the triggering 

scenario of solar system formation

explanations of other SLRs, especially 26Al, 
in the early solar system
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