## New angular (and other) cuts to improve the higgsino signal at the LHC

Dibyashree Sengupta

National Taiwan University

in collaboration with Howard Baer, Vernon Barger and Xerxes Tata

#### Seminar @ IOP, Academia Sinica

January 07, 2022

#### Overview

- 1. The Standard Model and its drawbacks
- 2. SUSY as a BSM Theory
  - Naturalness
  - Radiatively-Driven Natural SUSY models
- 3. SUSY Signal and SM Backgrounds
  - New Angle cuts
  - Improved efficiency due to new Angle cuts
  - Mass reach
- 4. Conclusion

#### The Standard Model and its drawbacks

Although, the Standard Model is the most celebrated theory till date, it has certain drawbacks as follows :

- Existence of Dark Matter [LSP from RPC SUSY + QCD Axion]
- The Higgs mass instability problem in the EW sector [SUSY]
- Gravity, Dark energy, Cosmological Constant [Landscape]

#### SUSY as a BSM Theory

- Softly Broken supersymmetry or SUSY is a highly motivated extension of SM which obeys a new quantum symmetry which relates fermions to bosons.
- In SUSY, the SM fields are elevated to superfields containing both fermionic and bosonic components. Supersymmetrizing the SM leads to the MSSM.
- Quadratic Divergences in Higgs Mass due to each SM particle is cancelled by its *Superpartner*. This idea solves the Big Hierarchy problem which is one of the main motivations of SUSY.
- But no sparticles have been seen in LHC yet.

#### Naturalness

$$m_{sparticles} >> m_{SMparticles}$$

Unless the spectrum is compressed,

LHC Limits:  $m_{\tilde{g}} > 2.2$  TeV,  $m_{\tilde{t}_1} > 1.3$  TeV  $\implies$  Is SUSY Unnatural?

The notion of *Practical Naturalness* states that

An Observable  $\mathcal{O}$  is natural if all independent contributions to  $\mathcal{O}$  are comparable to or less than  $\mathcal{O}$ .

The measure of Naturalness is the Electroweak fine-tuning parameter  $(\Delta_{EW})$  which is defined as

$$\Delta_{EW} = max_i |C_i| / (M_Z^2/2) \tag{1}$$

5/41

Where,  $C_i$  is any one of the parameters on the RHS of the following equation :

$$\frac{M_Z^2}{2} = \frac{m_{H_d}^2 + \Sigma_d^d - (m_{H_u}^2 + \Sigma_u^u)tan^2\beta}{tan^2\beta - 1} - \mu^2 \approx -m_{H_u}^2 - \mu^2 - \Sigma_u^u(\tilde{t}_{1,2})$$
(2)

A SUSY model is said to be natural if  $\Delta_{EW} < 30$ . This choice  $\Delta_{EW} < 30$  is not ad-hoc, rather it arises from anthropic requirements for life to sustain.

#### Naturalness



Top ten contributions to  $\Delta_{EW}=max_i|C_i|/(M_Z^2/2)$  from NUHM2 model benchmark points with  $\mu=$  150, 250, 350 and 450 GeV.

arXiv: 1509.02929 by Baer, Barger and Savoy. arXiv: 1702.06588 by Baer, Barger, Gainer, Huang, Savoy, Serce and Tata.

Requiring  $\Delta_{EW} < 30$  implies

- $\mu \leq 300 \text{ GeV} \Longrightarrow$  Light higgsinos.
- top squarks must be highly mixed  $\implies m_h \sim 125$  GeV.

### SUSY $\mu$ problem

- The MSSM superpotential contains term  $\mu H_u H_d$  which leads to  $\mu \approx m_P$ .
- $\mu \approx 100$  350 GeV phenomenologically for naturalness (no large cancellations in Equation (2))

This is the famous SUSY  $\mu$  problem

- A promising approach to solve the SUSY  $\mu$  problem is to first forbid  $\mu$ , perhaps via some symmetry, and then re-generate it of order the scale of soft SUSY breaking terms.
- However, present LHC limits suggest the soft breaking scale  $m_{soft}$  lies in the multi-TeV regime whilst naturalness requires  $\mu \sim m_{W,Z,h} \sim 100$  GeV so that a Little Hierarchy (LH) appears with  $\mu \ll m_{soft}$ .

#### arXiv : 1602.07697 by H. Baer et. al.



Evolution of the term  $sign(m_{H_u}^2)\sqrt{m_{H_u}^2}$  for the case of No~EWSB, criticality as in RNS and  $m_{weak}=$  3 TeV. Supersymmetric models with radiatively-driven naturalness enjoy modest electroweak fine-tuning while respecting LHC sparticle and Higgs mass constraints.

#### nNUHM2,3 Model

In the two- or three- extra parameter non-universal Higgs models, nNUHM2 or nNUHM3,

- The SSB parameters arise from tree level gravitational interactions of observable sector superfields with gauge singlet hidden sector fields. This mechanism is called **Gravity-mediated SUSY breaking**.
- The gaugino masses are unified to  $m_{1/2}$ , the matter scalar soft masses are unified to  $m_0$  and the trilinear couplings are unified to  $A_0$  at the GUT scale.
- In the NUHM3 model, it is further assumed that the third generation matter scalars are split from the first two generation  $m_0(1,2) \neq m_0(3)$ .
- The soft Higgs masses  $m_{H_u}$  and  $m_{H_d}$  are independent of  $m_0$ . Typically the parameter freedom in  $m_{H_u}$  and  $m_{H_d}$  is traded for the more convenient weak scale parameters  $\mu$  and  $m_A$ .

#### NUHM2



This hierarchy leads to a novel, rather clean same-sign diboson signature from wino pair production at hadron colliders.

#### nAMSB Model

arXiv : 1801.09730 by H. Baer, V. Barger and D. S.

In this model, one-loop contribution to the SSB parameters originates in the super-Weyl anomaly always when SUSY is broken. This mechanism is called the **anomaly-mediated SUSY breaking**. Though loop suppressed, this contribution is always present.



### nGMM Model

In this model, SUSY is broken through **mirage-mediation** which is a mixed gravity/moduli plus anomaly-mediated soft SUSY breaking (SSB) mechanism where we can choose how much each of gravity/moduli-mediated and anomaly-mediated SUSY breaking contribute.

A distinctive feature of this model is that gaugino(and scalar) masses evolve from non-universal values at the GUT scale to apparently universal values at some intermediate scale  $\mu_{mir} = m_{GUT} \times e^{-8\pi^2/\alpha}$ where the introduced parameter  $\alpha$  measures the relative moduliversus anomaly-mediated contributions to gaugino masses.

The natural generalized MM model is characterized by the parameter set :

 $\alpha$ ,  $m_{3/2}$ ,  $c_m$ ,  $c_{m3}$ ,  $a_3$ , tan  $\beta$ ,  $\mu$ ,  $m_A$ 

#### **Mirage Mediation**



arXiv : 1610.06205 by H. Baer et. al.

Evolution of gaugino masses from the nGMM benchmark point with  $m_{3/2}{=}$  75 TeV,  $\alpha{=}$  4.

#### **Radiatively-Driven Natural SUSY models**

- nNUHM2 Model (Nucl.Phys. B435 (1995) 115-128; JHEP 0507 (2005) 065.)
   m<sub>0</sub>, m<sub>1/2</sub>, A<sub>0</sub>, tan β, μ, m<sub>A</sub>
- nNUHM3 Model (Nucl.Phys. B435 (1995) 115-128; JHEP 0507 (2005) 065.)  $m_0(1,2), m_0(3), m_{1/2}, A_0, \tan \beta, \mu, m_A$
- nGMM Model (Phys. Rev. D 94 (2016) no.11, 115017.)  $\alpha$ ,  $m_{3/2}$ ,  $c_m$ ,  $c_{m3}$ ,  $a_3$ , tan  $\beta$ ,  $\mu$ ,  $m_A$
- nAMSB Model (Nucl. Phys. B 557 (1999) 79; Phys. Rev. D 98 (2018) no.1, 015039.)  $m_0, m_{3/2}, A_0, \tan \beta, \mu, m_A$

#### Signal and Background processes

Despite large cross-section of pair production of higgsinos, the signal is swamped by backgrounds because the decay products are soft. Hence the focus is on monojet + soft dilepton +  $\not{\!\!\!E}_T$  signal, triggered by monojet.



A generic feynman diagram for opposite-sign dilepton+jets+MET signature from higgsino pair production at hadron colliders

SM Backgrounds:  $\tau \overline{\tau} j$ ,  $t\overline{t}$ , WWj,  $W\ell \overline{\ell} j$ ,  $Z\ell \overline{\ell} j$ 

#### **Benchmark points**

We have chosen 3 Benchmark points as follows:

- BM1 (NUHM2):  $m_0 = 5$  TeV,  $m_{1/2} = 1$  TeV,  $A_0 = -8$  TeV,  $tan\beta = 10, \ \mu = 150 \ \text{GeV}, \ m_A = 2 \ \text{TeV}$  $\implies m_{\tilde{\chi_0}} = 157.6 \text{ GeV}, \ m_{\tilde{\chi_0}} = 145.4 \text{ GeV},$  $\Delta m = m_{ ilde{ extsf{v}_0}} - m_{ ilde{ extsf{v}_0}} = 12.2 \; extsf{GeV}, \; \Delta_{EW} = 13.9$ • BM2 (NUHM2):  $m_0 = 5$  TeV,  $m_{1/2} = 1$  TeV,  $A_0 = -8$  TeV,  $tan\beta = 10, \ \mu = 300 \ \text{GeV}, \ m_A = 2 \ \text{TeV}$  $\implies m_{\tilde{\chi}^0_0} = 310.1 \text{ GeV}, \ m_{\tilde{\chi}^0_1} = 293.7 \text{ GeV},$  $\Delta m = m_{ ilde{\chi}^0_2} - m_{ ilde{\chi}^0_1} = 16.4$  GeV,  $\Delta_{EW} = 21.7$ • BM3 (GMM'):  $tan\beta = 10, m_{3/2} = 75$  TeV,  $\alpha = 4$ ,
  - $c_m = c_{m3} = 6.9, a_3 = 5.1, \mu = 200 \text{ GeV}, m_A = 2 \text{ TeV}$   $\implies m_{\tilde{\chi}^0_2} = 207.0 \text{ GeV}, m_{\tilde{\chi}^0_1} = 202.7 \text{ GeV},$  $\Delta m = m_{\tilde{\chi}^0_2} - m_{\tilde{\chi}^0_1} = 4.3 \text{ GeV}, \Delta_{EW} = 26.0$

#### Signal and Background evaluation

- For simulations, we have used MadGraph5\_aMC@NLO for event generation, interfaced with Pythia 8 for parton showering and hadronization, followed by Delphes 3.4.2 for detector simulation where the default Delphes ATLAS parameter card is employed.
- The anti- $k_T$  jet algorithm has been used with R = 0.6. We consider only jets with  $E_T(\text{jet}) > 40$  GeV and  $|\eta(jet)| < 3.0$  in our analysis.
- We identify leptons with  $E_T > 5$  GeV and  $|\eta(\ell)| < 2.5$  as isolated leptons if if the sum of the transverse energy of all other objects (tracks, calorimeter towers, etc.) within  $\Delta R = 0.5$  of the lepton candidate is less than 10% of the lepton  $E_T$ .
- We have used Isajet 7.88 to generate the Les Houches Accord (LHA) file for the signal BM points and pass it through the above-mentioned simulation chain.

#### Basic cuts and C1 cuts

Basic cuts (cuts at Madgraph level):  $p_T(j) > 80$  GeV,  $p_T(\ell) > 1$  GeV,  $\Delta R(\ell \bar{\ell}) > 0.01$  and  $m(\ell \bar{\ell}) > 1$  GeV for the backgrounds including  $\gamma^*, Z^* \to \ell \bar{\ell}$ 

Next, we implement cut set C1:

- require two OS/SF isolated leptons with  $p_T(\ell) > 5$  GeV,  $|\eta(\ell)| < 2.5,$
- $n(jets) \ge 1$  with  $p_T(j1) > 100$  GeV for identified calorimeter jets,
- $\Delta R(\ell\bar{\ell}) > 0.05$  (for  $\ell = e$  or  $\mu$ ),
- $E_T > 100 \text{ GeV}$  and
- n(b jet) = 0.

 $m_{\tau\tau}^2$ 

 $Z \to \tau \bar{\tau} j$  is a significant SM BG and earlier studies had proposed  $m_{\tau\tau}^2 < 0$  cut to reduce this BG. This cut is also used by ATLAS/CMS.  $m_{\tau\tau}^2$  is calculated as:

$$m_{\tau\tau}^2 = (1+\xi_1)(1+\xi_2)m_{\ell\ell}^2 \tag{3}$$

where  $\xi_1$  and  $\xi_2$  are calculated as follows:

$$-\sum_{jets} \vec{p}_T(j) = (1+\xi_1)\vec{p}_T(\ell_1) + (1+\xi_2)\vec{p}_T(\ell_2)$$
(4)



Distribution in  $m_{\tau\tau}^2$  for three SUSY BM models with  $\mu = 150, 200$  and 300 GeV along with SM backgrounds after C1 cuts with  $n_J \ge 1$ .

#### Angle cuts



Sketch of the ditau background, decay products and MET configuration.

 $\not\!\!E_T(tot)$  is expected between the direction of leptons, as long as both  $\tau$ s are fast moving. For a case of very asymmetric  $\tau$  pair,  $\not\!\!E_T(tot)$  would be close to the fast  $\tau$  direction. Then mismeasurements can cause  $\not\!\!E_T(tot)$  to be slightly outside the two leptons, motivating the strip cuts.

Angle cuts:

veto  $\phi_1$ ,  $\phi_2 > 0$ ,  $\phi_1 + \phi_2 < \pi/2$ , veto  $|\phi_1| \le \pi/10$  and  $\phi_2 \ge -\pi/10$  or  $|\phi_2| \le \pi/10$  and  $\phi_1 \ge -\pi/10$ . [strip cuts]

#### Angle cuts



SUSY BM point  $\mu=150~{\rm GeV}$ 





 $m_{\tau\tau}^2$  vs. new angular cuts

| cuts/process              | BM1  | BM2  | $BM3_{_{GMM'}}$ | $	au ar{	au} j$ | $t\bar{t}$ | WWj    | $W\ell\bar\ell j$ | $Z\ell\bar\ell j$ |
|---------------------------|------|------|-----------------|-----------------|------------|--------|-------------------|-------------------|
| BC                        | 83.1 | 9.3  | 31.3            | 43800.0         | 41400      | 9860.0 | 1150.0            | 311               |
| C1                        | 1.2  | 0.19 | 0.07            | 94.2            | 179        | 35.9   | 14.7              | 5.9               |
| $C1 + m_{\tau\tau}^2 < 0$ | 0.92 | 0.13 | 0.043           | 23.1            | 75.6       | 12.8   | 7.7               | 3.2               |
| C1 + angle                | 0.69 | 0.12 | 0.04            | 2.2             | 130        | 22.1   | 11.0              | 4.9               |

Table: Cross sections (in fb) for signal benchmark points and the various SM backgrounds listed in the text after various cuts.

This shows that the angle cuts reduce the  $\tau \tau j$  BG more efficiently than the  $m_{\tau\tau}^2$  cut, though the more of the other SM BGs get through. We impose further cuts, namely **C2** and **C3**, to reduce the other SM BGs.

#### Distributions after C1+Angle cuts



n(jets) distribution  $\longrightarrow n(jets) = 1$ 

 $p_T(\ell_2)$  distribution  $\longrightarrow p_T(\ell_2): 5-15 \text{ GeV}$ 



 $\not\!\!\! E_T/H_T(\ell\bar\ell) \text{ distribution} \longrightarrow \not\!\!\! E_T/H_T(\ell\bar\ell) > 4$ 

#### Distributions after C1+Angle cuts



In light of the above distributions, we next include the following cut set **C2**:

- C1 plus angle cuts
- $p_T(\ell_2): 5-15 \text{ GeV}$
- $E_T/H_T(\ell \bar{\ell}) > 4$ ,
- n(jets) = 1
- $H_T(\ell\bar{\ell}) < 60 \text{ GeV}$
- $m(\ell\bar{\ell}) < 50 \text{ GeV}$

#### Distributions after C2 cuts





 $\Delta\phi(j1,\not\!\!\!E_T) \text{ distribution} \longrightarrow \Delta\phi(j1,\not\!\!\!E_T) > 2.0 \qquad p_T(j1)/\not\!\!\!\!E_T \text{ distribution} \longrightarrow p_T(j1)/\not\!\!\!\!E_T < 1.5$ 



 $m_{cT}(\ell \bar{\ell}, \not\!\!\!E_T)$  distribution  $\longrightarrow m_{cT}(\ell \bar{\ell}, \not\!\!\!E_T) < 100 \text{ GeV}$ 

#### Distributions after C2 cuts



 $|p_T(j1) - \not\!\!\! E_T|$  distribution  $\longrightarrow |p_T(j1) - \not\!\!\! E_T| < 100~{\rm GeV}$ 

In light of the above distributions, we next include the following cut set **C3**:

- apply all C2 cuts,
- $\Delta \phi(j1, \not\!\!\!E_T) > 2.0$
- $m_{cT}(\ell \bar{\ell}, \not{\!\! E}_T) < 100 \text{ GeV}$
- $p_T(j1)/E_T < 1.5$
- $|p_T(j1) \not\!\!\!E_T| < 100 \text{ GeV}$

#### Cut flow table

| cuts/process              | BM1  | BM2   | $BM3_{_{GMM'}}$ | $	au ar{	au} j$ | $t\bar{t}$ | WWj    | $W\ell\bar\ell j$ | $Z\ell\bar{\ell}j$ |
|---------------------------|------|-------|-----------------|-----------------|------------|--------|-------------------|--------------------|
| BC                        | 83.1 | 9.3   | 31.3            | 43800.0         | 41400      | 9860.0 | 1150.0            | 311                |
| C1                        | 1.2  | 0.19  | 0.07            | 94.2            | 179        | 35.9   | 14.7              | 5.9                |
| $C1 + m_{\tau\tau}^2 < 0$ | 0.92 | 0.13  | 0.043           | 23.1            | 75.6       | 12.8   | 7.7               | 3.2                |
| C1 + angle                | 0.69 | 0.12  | 0.04            | 2.2             | 130        | 22.1   | 11.0              | 4.9                |
| C2                        | 0.29 | 0.049 | 0.019           | 0.13            | 0.99       | 0.49   | 0.18              | 0.14               |
| C3                        | 0.25 | 0.033 | 0.017           | 0.13            | 0.29       | 0.39   | 0.15              | 0.07               |

Table: Cross sections (in fb) for signal benchmark points and the various SM backgrounds listed in the text after various cuts.

#### Distributions after C3 cuts



 $m(\ell \bar{\ell})$  distribution for BM1 ( $\Delta m \sim 12$  GeV)

 $m(\ell\bar{\ell})$  distribution for BM2 ( $\Delta m \sim 16~{\rm GeV}$ )



 $m(\ell\bar\ell)$  distribution for BM3 (  $\Delta m\sim 4~{\rm GeV})$ 

Mass reach after C3 +  $m(\ell \bar{\ell}) \leq \Delta m$  cuts



#### Summary plot



The  $5\sigma$  and 95% CL reach of LHC with 300 and 3000 fb<sup>-1</sup> in the  $\mu$  vs.  $\Delta m$  plane after  $C3 + m(\ell\bar{\ell}) \leq \Delta m$  cuts.

#### Conclusion

- Naturalness require the higgsino mass parameter  $\mu \sim m_{weak}$  but allow the other soft terms (which are pulled to large values by string landscape) to be large such that sparticles other than higgsinos are well beyond HL-LHC reach.
- Such a stringy naturalness picture provides strong motivation for higgsino pair production reactions as an avenue to SUSY discovery at LHC14.
- Here, we re-examine higgsino pair production reactions leading to soft opposite-sign/same flavor dilepton pairs +  $E_T$  at LHC with  $\sqrt{s} = 14$  TeV.
- We propose a new set of angular cuts which eliminate ditau backgrounds much more efficiently than  $m_{\tau\tau}^2 < 0$  cut. Several other cuts have been devised to further reduce the other SM backgrounds and yield a clean signal.

- After the final set of cuts, namely the **C3** cuts, we expect higgsino pair production to manifest itself as a low end excess in the  $m(\ell\bar{\ell})$  distribution with a cutoff at the  $\Delta m = m_{\tilde{\chi}^0_2} m_{\tilde{\chi}^0_1}$  value.
- Therefore, after the **C3** cuts we impose a cut of requiring  $m(\ell \bar{\ell}) \leq \Delta m$  and evaluate the reach of LHC14 for 300 and 3000 fb<sup>-1</sup> of integrated luminosity.
- We see that the reach is strongest for larger  $\Delta m$  values up to  $15-20~{\rm GeV}$  but drops off for smaller mass gaps.
- However, some significant portion of natural parameter space with  $\mu\sim m_{\tilde{\chi}^0_2}\sim 200-350~{\rm GeV}$  and  $\Delta m\sim 4-10~{\rm GeV}$  can still be evaded by HL-LHC.

## Thank You

### Questions ?

## Back Up Slides

#### Where are the sparticles ?



Results of ATLAS searches for gluino pair production in SUSY for various simplified models with up to 139  $fb^{-1}$  of data at  $\sqrt{s}=$  13 TeV.



Results of CMS searches for top squark pair production in SUSY for various simplified models with up to 137  $fb^{-1}$  of data at  $\sqrt{s}=$  13 TeV.

#### Naturalness

# $\begin{array}{l} m_{sparticles} >> m_{SMparticles} \\ \mbox{LHC Limits:} \ m_{\tilde{g}} > 2.2 \ \mbox{TeV}, \ m_{\tilde{t}_1} > 1.3 \ \mbox{TeV} \Longrightarrow \mbox{Is SUSY} \\ \mbox{Unnatural?} \end{array}$

Various notions of Naturalness found in literature include :  $\Delta_{BG}$ ,  $\Delta_{HS}$  and  $\Delta_{EW}$ .

 $\Delta_{HS}$  and  $\Delta_{BG}$  measure put a stringent upper bound on the masses of the sparticles. Hence, these notions of naturalness, along with the above-mentioned experimental limits, render weak scale SUSY unnatural/highly fine-tuned.

However, a critical assessment of these older measures of Naturalness reveal that they must be updated to the model-independent electroweak measure of Naturalness ( $\Delta_{EW}$ ) so as to follow the notion of *Practical Naturalness* which states that An Observable  $\mathcal{O}$  is natural if all independent contributions to  $\mathcal{O}$  are comparable to or less than  $\mathcal{O}$ .  $\Delta_{EW}$ 

A more conservative measure of Naturalness is the Electroweak fine-tuning parameter ( $\Delta_{EW}$ ) which is defined as

$$\Delta_{EW} = max_i |C_i| / (M_Z^2/2) \tag{5}$$

Where,  $C_i$  is any one of the parameters on the RHS of the following equation :

$$\frac{M_Z^2}{2} \approx -m_{H_u}^2 - \mu^2 - \Sigma_u^u(\tilde{t}_{1,2})$$
(6)

Since all the terms on RHS of Eqn. 6 must be comparable to  $M_Z^2/2$ , it implies

- $\mu \leq 300 \text{ GeV} \implies$  Light higgsinos.
- top squarks must be highly mixed

#### Understanding $\Delta_{EW}$



Top ten contributions to  $\Delta_{EW}=max_i|C_i|/(M_Z^2/2)$  from NUHM2 model benchmark points with  $\mu=$  150, 250, 350 and 450 GeV.

arXiv: 1702.06588 by Baer, Barger, Gainer, Huang, Savoy, Serce and Tata.

#### **Radiatively-Driven Natural SUSY**



Evolution of the term  $sign(m_{H_u}^2)\sqrt{m_{H_u}^2}$  for the case of No~EWSB, criticality as in RNS and  $m_{weak} = 3$  TeV.

arXiv: 1602.07697 by Baer, Barger, Savoy and Serce.