

Higgs-boson-pair production $H(\rightarrow bb)H(\rightarrow \gamma\gamma)$ from gluon fusion at the HL-LHC and HL-100 TeV hadron collider

Collaborators : Prof. Kingman Cheung, Prof. Jae Sik Lee, Dr. Chih-Ting Lu, Dr. Jung Chang

Ref: 1. An exploratory study of Higgs-boson pair production (JHEP 1508(2015) 133)

- 2. Higgs-boson-pair production $H(\rightarrow bb)H(\rightarrow \gamma\gamma)$ from gluon fusion at the HL-LHC and HL-100 TeV hadron collider (arxiv :1804.07130)
- 3. <u>Higgs-boson-pair production H(→bb⁻)H(→γγ) from gluon fusion with multivariate techenique</u> (Work in Progress)

24 August @ ACADEMIA SINICA, TAIWAN Jubin Park (Chonnam National University)

Contents I

- Motivations
- Understanding the process in the effective Lagrangian
- Outline of simulations and event selections
- Essence of analysis results at the HL-LHC and HL-100 TeV hadron collider
- Conclusion I

Contents II

- Why Higgs pair production so difficult ?
- Why Higgs pair production so interesting ?
- Machine Learning approaches to the Higgs boson self coupling
- Summary Table
- Conclusion II

Contents in the near future

- Recent updates
 - 1. NLO and NNLO QCD corrections....
 - 2. TMVA is used. The BTD method can give a better result.
 - 2. Improving the efficiencies (or removing background more) using the deep neural network....

Motivations

- Self-coupling of the Higgs boson is a crucial property which depends on the dynamics of the electroweak symmetry breaking sector.
- One of the probes of Higgs self-coupling is the Higgs-bosonpair production at the LHC.
- In this work, we perform the most up-to-date comprehensive signal-background analysis for Higgs-pair production through gluon fusion and the H(\rightarrow bb)H($\rightarrow \gamma\gamma$) channel at the HL-LHC and HL-100 TeV hadron collider, with the goal of probing the self-coupling λ_{3H} of the Higgs boson.

Understanding the process in the effective Lagrangian

$$-\mathcal{L} = \frac{1}{3!} \left(\frac{3M_H^2}{v} \right) \lambda_{3H} H^3 + \frac{m_t}{v} \bar{t} \left(g_t^S + i\gamma_5 g_t^P \right) t H + \frac{1}{2} \frac{m_t}{v^2} \bar{t} \left(g_{tt}^S + i\gamma_5 g_{tt}^P \right) t H^2$$

★ In the SM, $\lambda_{3H} = g_t^s = 1$ and $g_{tt}^s = g_{tt}^P = 0$

SM Higgs self couplings

$$\mathcal{L} = -\frac{1}{2}m_{H}^{2}H^{2} - \frac{g_{HHH}}{3!}H^{3} - \frac{g_{HHHH}}{4!}H^{4}$$

In the gluon fusion process at the hadron collide $g(p_1)g(p_2) \rightarrow H(p_3)H(p_4)$

 $g_{HHH} = rac{3m_H^2}{v}$, $g_{HHHH} = rac{3m_H^2}{v^2}$

The differential cross section is given by

$$\frac{d\hat{\sigma}(gg \to HH)}{d\hat{t}} = \frac{G_F^2 \alpha_s^2}{512(2\pi)^3} \left[\left| \lambda_{3H} g_t^S D(\hat{s}) F_{\triangle}^S + (g_t^S)^2 F_{\Box}^{SS} \right|^2 + \left| (g_t^S)^2 G_{\Box}^{SS} \right|^2 \right]$$

Feynman diagrams

Only QCD Leading Order (LO) ---h 9000 g_{00000} 1 h Propagator of Higgs hgoood 9000 $D(\hat{s}) = \frac{3M_H^2}{\hat{s} - M_H^2 + iM_H\Gamma_H}$ $\frac{d\hat{\sigma}(gg \to HH)}{d\hat{t}} = \frac{G_F^2 \alpha_s^2}{512(2\pi)^3} \left[\left| \lambda_{3H} g_t^S D(\hat{s}) F_{\triangle}^S + (g_t^S)^2 F_{\Box}^{SS} \right|^2 + \left| (g_t^S)^2 G_{\Box}^{SS} \right|^2 \right]$ Important Interference term $!!! \leftrightarrow \lambda_{3H}^{Non-SM}$

For the reference, there are various production modes

The gluon fusion production mode is dominant one !

 $(gg \rightarrow HH) = 45.05 \text{ fb},$ $(qq_0 \rightarrow HHqq_0) = 1.94 \text{ fb},$ $(qq(_0) \rightarrow V HH = 0.567(V = W) = 0.415(V = Z) \text{ fb},$ $(gg/qq \rightarrow ttHH) = 0.949 \text{ fb}$ are calculated at NNLO+NNLL, NLO, NNLO, and NLO, respectively

Including top Yukawa uncertainty !

Ratio of cross sections $(gg -> HH)=(gg -> HH)_{SM}$ versus $_{3H}$ taking account of 10% uncertainty of the top-Yukawa coupling: $g_{St} = 1:1$ (black), 1 (blue), and 0:9 (red) for sqrt(s) = 14 TeV (left) and sqrt(s) = 100 TeV (right).

$$\frac{d\hat{\sigma}(gg \to HH)}{d\hat{t}} = \frac{G_F^2 \alpha_s^2}{512(2\pi)^3} \left[\left| \lambda_{3H} g_t^S D(\hat{s}) F_{\triangle}^S + (g_t^S)^2 F_{\Box}^{SS} \right|^2 + \left| (g_t^S)^2 G_{\Box}^{SS} \right|^2 \right]$$

In the heavy quark limit

$$F^S_{\triangle} = +\frac{2}{3} + \mathcal{O}(\hat{s}/m_Q^2) \,, \qquad \qquad F^{SS}_{\Box} = -\frac{2}{3} + \mathcal{O}(\hat{s}/m_Q^2) \,, \quad F^{PP}_{\Box} = +\frac{2}{3} + \mathcal{O}(\hat{s}/m_Q^2) \,,$$

There is large cancellation between the triangle and box diagrams

The production cross section normalized to the corresponding SM cross section :

$$\frac{\sigma^{\text{LO}}(gg \to HH)}{\sigma^{\text{LO}}_{\text{SM}}(gg \to HH)} = \underbrace{c_1(s)}_{0.263} \lambda_{3H}^2 (g_t^S)^2 + \underbrace{c_2(s)}_{2(s)} \lambda_{3H} (g_t^S)^3 + \underbrace{c_3(s)}_{2.047} (g_t^S)^4 \\ -1.310 \\ 1.900 \\ 100 \text{ TeV}$$

JHEP 1508(2015) 133

Outline of simulations and event selections

- Our goal is to disentangle the effects of the trilinear Higgs coupling, which is present in the triangle diagram, in Higgs pair production.
- We vary the value of the trilinear coupling λ_{3H} between -5 and 10 to visualize the effects of λ_{3H} .
- We consider the full set of backgrounds.

Outline of simulations

2015 MadGraph school on Collider Phenomenology November 23-27 @ Shanghai

			_=	Signal	4	Te	
Cignal		Signal proc	cess	Generator/Parton Shower	$\sigma \cdot BR$ [fb]	Order	PDF used
Signal						in QCD	
		$gg \to HH \to b \bar{b}$	$\bar{b}\gamma\gamma$ [15]	MG5_aMC@NLO/PYTHIA8	0.119	NNLO	NNPDF2.3LO
					5	+NNLL	
				Backgrounds			
/		Background(BG)	Process	Generator/Parton Shower	$\sigma \cdot BR \; [{\rm fb}]$	Order	PDF used
						in QCD	
		Single-Higgs associated BG [15]	$ggH(\to\gamma\gamma)$	POWHEG - BOX/PYTHIA6	1.20×10^2	NNNLO	CT10
			$t\bar{t}H(\to\gamma\gamma)$	PYTHIA8/PYTHIA8	1.37	NLO	
			$ZH(\to\gamma\gamma)$	PYTHIA8/PYTHIA8	2.24	NLO	
			$b\bar{b}H(\to\gamma\gamma)$	PYTHIA8/PYTHIA8	1.26	NLO	
			$b\bar{b}\gamma\gamma$	$MG5_aMC@NLO/PYTHIA8$	1.40×10^2	LO	CTEQ6L1
Backaron	mdle		$c\bar{c}\gamma\gamma$	MG5_aMC@NL0/PYTHIA8	1.14×10^3	LO	
			$jj\gamma\gamma$	$MG5_aMC@NLO/PYTHIA8$	1.62×10^4	LO	
		Non-resonant BG	$bar{b}j\gamma$	MG5_aMC@NL0/PYTHIA8	3.67×10^5	LO	
			$car{c}j\gamma$	MG5_aMC@NL0/PYTHIA8	1.05×10^6	LO	
			$b\bar{b}jj$	MG5_aMC@NLO/PYTHIA8	4.34×10^8	LO	
			$Z(\rightarrow b\bar{b})\gamma\gamma$	MG5_aMC@NL0/PYTHIA8	5.17	LO	
		t and tax BC	$t\bar{t}$ [18]	POWHEG - BOX/PYTHIA8	5.30×10^5	NNLO	CT10
					3	+NNLL	
		$(\geq 1 \text{ lepton})$	$t\bar{t}\gamma$ [19]	MG5_aMC@NL0/PYTHIA8	1.60×10^3	NLO	CTEQ6L1

Main fake processes and the corresponding rates

HL-LHC 14 TeV

Background(BG)	Process	Fake Process	Fake rate		
	$bar{b}\gamma\gamma$	N/A	N/A		
	$car{c}\gamma\gamma$	$c \to b, \ \bar{c} \to \bar{b}$	$(P_{c \to b})^2$		
	$jj\gamma\gamma$	$c_s \to b, \ \bar{c_s} \to \bar{b}$	$(P_{c_s \to b})^2$		
Non-resonant	$bar{b}j\gamma$	$j ightarrow \gamma$	5×10^{-4}		
BG	$car{c}j\gamma$	$c \to b, \bar{c} \to \bar{b}, j \to \gamma$	$(P_{c \to b})^2 \cdot (5 \times 10^{-4})$		
	$bar{b}jj$	$j ightarrow \gamma, j ightarrow \gamma$	$(5 \times 10^{-4})^2$		
	$Z(ightarrow bar{b})\gamma\gamma$	N/A	N/A		
47	Leptonic decay	$e ightarrow \gamma, e ightarrow \gamma$	$(0.02)^2/0.02 \cdot 0.05/(0.05)^2$		
tt	Semi-leptonic decay	$e \to \gamma, j \to \gamma$	$(0.02) \cdot 5 \times 10^{-4} / (0.05) \cdot 5 \times 10^{-4}$		
$tar{t}\gamma$	Leptonic decay	$e ightarrow \gamma$	0.02/0.05		
	Semi-leptonic	$e \rightarrow \gamma$	0.02/0.05		

Event selection

Sequence	Event Selection Criteria at the HL-LHC
1	Di-photon trigger condition, ≥ 2 isolated photons with $P_T > 25$ GeV, $ \eta < 2.5$
2	≥ 2 isolated photons with $P_T > 30$ GeV, $ \eta < 1.37$ or $1.52 < \eta < 2.37$, $\Delta R_{j\gamma} > 0.4$
3	≥ 2 jets identified as b-jets with leading (subleading) $P_T > 40(30)$ GeV, $ \eta < 2.4$
4	Events are required to contain ≤ 5 jets with $P_T > 30$ GeV within $ \eta < 2.5$
5	No isolated leptons with $P_T > 25$ GeV, $ \eta < 2.5$
6	$0.4 < \Delta R_{b\bar{b}} < 2.0, 0.4 < \Delta R_{\gamma\gamma} < 2.0$
7	$122 < M_{\gamma\gamma}/{\rm GeV} < 128$ and $100 < M_{b\bar{b}}/{\rm GeV} < 150$
8	$P_T^{\gamma\gamma}>80~{\rm GeV},P_T^{b\bar{b}}>80~{\rm GeV}$

These conditions of cuts are very important to distinguish signal and background !!!!!

 $0.4 < \Delta R_{\gamma\gamma} < 2.0$

 $0.4 < \Delta R_{b \, \overline{b}} < 2.0$

 $P_{\tau}^{\gamma\gamma} > 80 \text{ GeV}$

400

450

p_{_{T}}^{bb}(GeV)

500

Final Results I : Expected Yields and Kinematic distributions of $M_{\gamma\gamma}$ (GeV) and $M_{b\bar{b}}$ (GeV)

Expected yields (3000 fb^{-1})	Total	Barrel-barrel	Other	Batio (O/B)				<u> </u>	1	-
Samples		Darier-barrer	(End-cap)		(1/3G	50	Sig	jnal	$ \lambda_{3h} = 1$ tth	-
$H(b\bar{b})H(\gamma\gamma),\lambda_{3H} = -4$	77.14	57.03	20.11	0.35	5/dM	40	• • • • •		— bbh	-
$H(b\overline{b})H(\gamma\gamma),\lambda_{3H}=0$	19.50	14.33	5.17	0.36	ğ				— bbγγ	-
$H(bar{b})H(\gamma\gamma),\lambda_{3H}=1$	11.42	8.53	2.89	0.34		30			— bbjj	-
$H(b\bar{b})H(\gamma\gamma),\lambda_{3H}=2$	6.82	5.14	1.68	0.33					— jjyy	-
$H(b\bar{b})H(\gamma\gamma),\lambda_{3H}=6$	11.03	7.91	3.12	0.39		20		i	— ccyy	-
$H(b\bar{b})H(\gamma\gamma),\lambda_{3H}=10$	57.46	41.94	15.52	0.37					-tt	-
$ggH(\gamma\gamma)$	6.60	4.50	2.10	0.47		10				
$tar{t}H(\gamma\gamma)$	13.21	9.82	3.39	0.35						
$ZH(\gamma\gamma)$	3.62	2.44	1.18	0.48		01	20 140 10	30 180 ;	200 220	240
$bar{b}H(\gamma\gamma)$	0.15	0.11	0.04	0.40						M _γ (GeV
$bar{b}\gamma\gamma$	18.86	11.15	7.71	0.69			-	-		
$car{c}\gamma\gamma$	7.53	4.79	2.74	0.57	ieV)			· · · [·		
$jj\gamma\gamma$	3.34	1.59	1.75	1.10	1/100	30			— tth	,
$bar{b}j\gamma$	18.77	10.40	8.37	0.80	ddM _{bb} (25		i	— bbh — aah	,
$car{c}j\gamma$	5.52	3.94	1.58	0.40	qα/			- i -	— bbyy	
$b\overline{b}jj$	5.54	3.81	1.73	0.45		20			— bbjj	
$Z(bar{b})\gamma\gamma$	0.90	0.54	0.36	0.67		15			— jjyy — bbiy	
$t\bar{t}~(\geq 1 \text{ leptons})$	4.98	3.04	1.94	0.64		=			— ccγγ — ttγ	
$t \bar{t} \gamma \ (\geq 1 \text{ leptons})$	3.61	2.29	1.32	0.58		10			ť	
Total Background	92.63	58.42	34.21	0.59		5				_
Significance Z	1.163	1.090	0.487	Combine	d significan	ce				
Combined significance		1.19	4	_	1,194	0 60	80 10 120) 140 160	180 200 2	220 240
										M _{bb} (Ge)

Essence of analysis results at the HL-LHC

Required luminosity for 95% confidence level sensitivity at the 14 TeV HL-LHC v.s λ_{3H} .

Signal HLTABLYOOS ne as Tree by for the Tabdroon Signal	the row of $t^{\overline{t}}$	<u>ollider</u>
Signal process Generator/Parton Shower $\sigma \cdot BR$ [fb]	Order	PDF used
	in QCD	
$gg \rightarrow HH \rightarrow b\bar{b}\gamma\gamma$ [16] MG5_aMC@NLO/PYTHIA8 4.62	NNLO	NNPDF2.3LO
	+NNLL	
Backgrounds		
Background(BG) Process Generator/Parton Shower $\sigma \cdot BR$ [fb]	Order	PDF used
	in QCD	
$ggH(ightarrow\gamma)~[16]$ powheg – box/pythias $1.82 imes10^3$	NNNLO	CT10
Single-Higgs $t\bar{t}H(\to\gamma\gamma)$ [16] PYTHIA8/PYTHIA8 7.29×10^{10}	NLO	_
associated BG $ZH(\rightarrow\gamma\gamma)$ [16] PYTHIA8/PYTHIA8 2.54×10^{12}	NNLO	
Documentation $b\bar{b}H(\rightarrow\gamma\gamma)$ [30] Pythias/Pythias 1.96×10^{10}	NNLO(5FS)	
Dackgrounds $b\bar{b}\gamma\gamma$ Mg5_amc@nlo/pythias 4.93×10^3	LO	CTEQ6L1
$c \bar{c} \gamma \gamma$ MG5_aMC@NL0/PYTHIA8 4.54×10^4	LO	-
$jj\gamma\gamma$ MG5_aMC@NL0/PYTHIA8 $5.38 imes10^5$	LO	
Non-resonant BG $b\bar{b}j\gamma$ MG5_aMC@NL0/PYTHIA8 1.44×10^7	LO	_
$car{c}j\gamma$ MG5_aMC@NL0/PYTHIA8 $4.20 imes10^7$	LO	
$b\bar{b}jj$ MG5_aMC@NLO/PYTHIA8 1.60×10^{10}	LO	-
$Z(\rightarrow b\bar{b})\gamma\gamma \qquad {\rm MG5_aMC@NLO/PYTHIA8} 9.53\times 10^1$	LO	
$t\bar{t}$ mg5_aMC@NLO/PYTHIA8 1.76×10^7	NLO	CT10
$(\geq 1 \text{ lepton}) t\bar{t}\gamma \text{MG5_aMC@NL0/PYTHIA8} 4.18 \times 10^4$	NLO	CTEQ6L1

Main fake processes and the corresponding rates

HL 100 TeV hadron collider

Background(BG)	Process	Fake Process	Fake rate			
	$bar{b}\gamma\gamma$	N/A	N/A			
	$car{c}\gamma\gamma$	$c \to b, \bar{c} \to \bar{b}$	$(0.1)^2$			
	$jj\gamma\gamma$	$c_s \to b, \ \bar{c}_s \to \bar{b}$	$(0.1)^2$			
Non-resonant	$bar{b}j\gamma$	$j ightarrow \gamma$	$1.35 imes 10^{-3}$			
BG	$car{c}j\gamma$	$c \to b, \bar{c} \to \bar{b}, j \to \gamma$	$(0.1)^2 \cdot (1.35 \times 10^{-3})$			
	$bar{b}jj$	$j \rightarrow \gamma, j \rightarrow \gamma$	$(1.35 \times 10^{-3})^2$			
	$Z(ightarrow bar{b})\gamma\gamma$	N/A	N/A			
μī	Leptonic decay	$e \to \gamma, e \to \gamma$	$(0.02)^2/0.02 \cdot 0.05/(0.05)^2$			
	Semi-leptonic decay	$e \to \gamma, j \to \gamma$	$(0.02) \cdot 1.35 \times 10^{-3} / (0.05) \cdot 1.35 \times 10^{-3}$			
47.	Leptonic decay	$e ightarrow \gamma$	0.02/0.05			
$tt\gamma$	Semi-leptonic	$e \to \gamma$	0.02/0.05			

Event selection at the 100 TeV Hadron collider

Sequence	Event Selection Criteria at the HL-100 TeV hadron collider
1	Di-photon trigger condition, ≥ 2 isolated photons with $P_T > 30$ GeV, $ \eta < 5$
2	≥ 2 isolated photons with $P_T > 40$ GeV, $ \eta < 3$, $\Delta R_{j\gamma} > 0.4$
3	≥ 2 jets identified as b-jets with leading (subleading) $P_T > 50(40)$ GeV, $ \eta < 3$
4	Events are required to contain ≤ 5 jets with $P_T > 40$ GeV within $ \eta < 5$
5	No isolated leptons with $P_T > 40$ GeV, $ \eta < 3$
6	$0.4 < \Delta R_{b\bar{b}} < 3.0, 0.4 < \Delta R_{\gamma\gamma} < 3.0$
7	$122.5 < M_{\gamma\gamma}/{\rm GeV} < 127.5$ and $90 < M_{b\bar{b}}/{\rm GeV} < 150$
8	$P_T^{\gamma\gamma}>100~{\rm GeV},P_T^{b\bar{b}}>100~{\rm GeV}$

We relaxed these two conditions to enhance the signal yields !

Final Results II : Expected Yields and Kinematic distributions of M_{YY} (GeV) and $M_{b\bar{b}}$ (GeV) at HL-100 TeV collider

	P		A(27 C							
	Expected yields (3000 fb^{-1})	Total	Barrel-barrel	Other	Ratio (O/B)		0	_	****				
	Samples			(End-cap)			GeV	5000		ianal Ianal	· · · II ·	$\frac{\lambda_{3h}}{-1}$	
	$H(b\overline{b})H(\gamma\gamma),\lambda_{3H}=-4$	5604.46	4257.36	1347.10	0.32		(1/2.5	Ē		ignal		zh bbh agh	-
	$H(b\overline{b})H(\gamma\gamma),\lambda_{3H}=0$	1513.56	1163.04	350.52	0.30		//WP/	4000		i i c		bbγγ zγγ	_
[$H(b\bar{b})H(\gamma\gamma),\lambda_{3H}=1$	941.37	723.86	217.51	0.30		qo		.	a di K			-
	$H(bar{b})H(\gamma\gamma),\lambda_{3H}=2$	557.36	431.45	125.91	0.29			3000 🗐 🚽		i Mili		— bbjγ — ccγγ — tty	-
	$H(b\overline{b})H(\gamma\gamma),\lambda_{3H}=6$	753.18	566.18	187.00	0.33							— tt	-
	$H(b\overline{b})H(\gamma\gamma),\lambda_{3H}=10$	3838.33	2924.25	914.08	0.31			2000					1
	$ggH(\gamma\gamma)$	890.47	742.97	147.50	0.20	•		ĒĒ	- n -	- 14 A			
	$tar{t}H(\gamma\gamma)$	868.73	659.33	209.40	0.32			1000	144	1.6.			
	$ZH(\gamma\gamma)$	168.86	122.91	45.95	0.37				-				
	$bar{b}H(\gamma\gamma)$	9.82	7.00	2.82	0.40			0 100 1:	20 140	160 180	200	220	240
	$bar{b}\gamma\gamma$	783.87	443.70	340.17	0.77							١	M _{γ/} (GeV)
	$car{c}\gamma\gamma$	222.88	111.44	111.44	1.00		aeV)	3000				$-\lambda_{n}=1$	<u>- 1111</u>
	$jj\gamma\gamma$	32.28	20.98	11.30	0.54		1/100	Ē	- i 🕳			— tth — zh	-
C]	$bar{b}j\gamma$	1982.88	1516.32	466.56	0.31) ^{dd} Mb	2500		i		bbh ggh	
	$car{c}j\gamma$	293.81	216.49	77.32	0.36		da/a	2000		Ī		— bbγγ — zγγ	_
C	$bar{b}jj$	3674.16	1924.56	1749.60	0.91			Ē_				— bbjj — ccjγ	=
	$Z(bar{b})\gamma\gamma$	54.87	35.72	19.15	0.54			1500				— jjγγ — bbjγ	
	$t\bar{t}~(\geq 1 \text{ leptons})$	59.32	38.32	21.00	0.55							$- cc\gamma\gamma$ $- tt\gamma$	3
	$t \bar{t} \gamma \ (\geq 1 \text{ leptons})$	105.68	62.53	43.15	0.69			1000				— tt	
	Total Background	9147.63	5902.27	3245.36	0.55			500					
	Significance Z	9.681	9.239	3.777	Com	bined sign	nifi	cance					
	Combined significance		9.98	1		= 9.98	1	0 60	80 100	120 140 16	0 180	200 220	0 240
					12		-						

The number of signal event N The 1- σ error regions v.s the input values of λ_{3H}^{in} v.s λ_{3H} with 3 ab^{-1} assuming **3** ab^{-1} (black) and **30** ab^{-1} (red)

HL-100 TeV hadron collider 1.6 2.4 $|\Delta\lambda_{3H}| \leq 0.3$ ы. Эн М^{3H} ۵.º 3H L=30 ab-1 L=3 ab⁻¹ 0.3 0.1 0.1 -0.1 0.1 -0. -0.20.2 -0.2 λ_{3H}^{in} λ_{3H}^{in} 59

 $\Delta \lambda_{3H} = \lambda_{3H}^{out} - \lambda_{3H}^{in} \text{ v.s } \lambda_{3H}^{in} \text{ along the } \lambda_{3H}^{out} = \lambda_{3H}^{in} \text{ line}$ with 3 ab^{-1} (left) and 30 ab^{-1} (right)

Conclusion I [HL-LHC]

- We find that even for the most promising channel $H(\rightarrow bb)H(\rightarrow \gamma\gamma)$ at the HL-LHC with a luminosity of 3000 fb^{-1} , the significance is still not high enough to establish the Higgs self-coupling at the SM value.
- Instead, we can only constrain the self-coupling to $-1.0 < \lambda_{3H} < 7.6$ at 95% confidence level after considering the uncertainties associated with the top-Yukawa coupling and the estimation of backgrounds.

Conclusion II [HL-100 TeV hadron collider]

- With a luminosity of 3 ab^{-1} , we find there exists a bulk region of 2.6 < λ_{3H} < 4.8 in which one can not pin down the trilinear coupling.
- At the SM value, we show that the coupling can be measured with about 20% accuracy.
- While assuming 30 ab^{-1} , the bulk region reduces to $3.1 < \lambda_{3H} < 4.3$ and the trilinear coupling can be measured with about 7% accuracy at the SM value.

Machine learning approaches to the Higgs boson self coupling

Contents

Why Higgs pair production so difficult ?

Why Higgs pair production so interesting ?

Machine Learning approaches to the Higgs boson self coupling

Summary Table

Conclusion

Why Higgs pair production so difficult ?

In the SM, hh rates are small : In the leading gluon fusion production mode, the cross section at 14 TeV is only 40 fb, further suppressed by each decay branching fractions.

Why Higgs pair production so difficult ?

· Xsec(gg -> hh) = 39.64 $^{+4.4}_{-6.0}$ (scale) ± 2.1 (*PDF*) ± 2.2 (α_s) fb @ [14 TeV, $m_h = 125$ GeV]

NNLO cross sections including top quark mass effects to NLO Phys. Rev. Lett. 117, 012001 [S.Borowka, et al.]

 \cdot O (10⁻³) smaller than the single Higgs production (SM)

For the reference, with Xsec ~ 33 fb at 13 TeV,
 2017 LHC @ 13 TeV with 40 fb^-1 → 1320 Events
 14 TeV with 40 fb^-1 → 1600 Events

Why Higgs pair production so interesting ?

Allows accessing crucial components of the Higgs sector !!!

can probe the Higgs self-coupling

can help to reconstruct the electroweak symmetry breaking potential

may reveal the doublet nature of the Higgs by means of the hhVV coupling

Search channel for Higgs pair production

Channel	BR(%)	Events with 3 ab^-1
bbbb	~ 33	40080 Huge hadronic BG
bbWW	~ 25	30000 Huge ttbar BG
bbττ	~ 7.3	9000
WWWW	~ 4.3	5200
bbYY	~ 0.27	5200
bbZZ(eemm)	~ 0.015	19

Machine Learning approaches to the Higgs boson self coupling

(1) BDT(Boosted Decision Tree) : bbYY

1. Phys.Rev. D96 (2017) no.3, 035022 (Alves, Alexandre et al.) arXiv:1704.07395 [hep-ph]

BDT + kinematic cuts \rightarrow 5 σ (4.6 σ) significance with 10 %(20%) systematics and 3 ab^-1

2 (Supervising) Deep Neural Networks (DNN) : bbWW + bbττ

1. "Supervising Deep Neural Networks with topological augmentation in search for di-Higgs production at the LHC (Won Sang Cho, next speaker)

5 classes by the number of leptonic taus

Optimass & its compatibility distance with dim. Of vars ~ 40

AUC of ROC = 0.991

Eff(sig) @(Background purity=0.01) = 0.84

Machine Learning approaches to the Higgs boson self coupling

③ DNN (ANN: a multi-layer feed-forward artificial neural network): bbbb 1. Eur. Phys. J. C (2016) 76:386 (Katharina Behr, Bortoletto et al.) arXiv:1512.08928 [hep-ph]

DNN + kinematic cuts $\rightarrow \frac{s}{\sqrt{B}} \sim 3 \sigma$ significance with 3 ab^-1

Machine Learning approaches to the Higgs boson self coupling

Background rejection versus Signal efficiency

Summary Table

Channel	Achievable Significance (σ)	Methods	Papers	Remarks	
bbbb	~ 3	Kinematic Cuts+ DNN	Eur. Phys. J. C (2016) 76:386	HL-LHC (3 ab^-1)	
	~ (3.1 ~ 5.7)	DNN	Arxiv: 1609.002541	100 TeV FCC (10 ab^-1)	
bbWW			Poont Dr. Wan Sang Chawark		
bbττ	DNN		Recht Dr. Wolf Sang Cho work		
WWWW					
bbYY	~ 5 (4.6)	Kinematic Cuts + BDT	Phys.Rev. D96 (2017) no.3, 035022	HL-LHC (3 ab^-1),	
	~ 2.1	Kinematic Cuts + BDT	Preriminary	With full BGs.	
bbZZ(eemm)					

Summary Table

Channel	Achievable Significance (σ)	Methods	Papers	Remarks	
bbbb	~ 3	Kinematic Cuts+ DNN	Eur. Phys. J. C (2016) 76:386	HL-LHC (3 ab^-1)	
	~ (3.1 ~ 5.7)	DNN	Arxiv: 1609.002541	100 TeV FCC (10 ab^-1)	
bbWW					
bbττ	DNN		Recht Dr. Won Sang Cho Work	HL-LHC (3 ab^-1)	
WWWW					
bbYY ~ 5 (4.6)		Kinematic Cuts + BDT	Phys.Rev. D96 (2017) no.3, 035022	HL-LHC (3 ab^-1),	
	~ 2.1	Kinematic Cuts + BDT	Preriminary	With full BGs.	
bbZZ(eemm)					

Summary Table

Channel	Achievable Significance (σ)	Methods	Papers	Remarks
bbbb	~ 3	Kinematic Cuts+ DNN	Eur. Phys. J. C (2016) 76:386	HL-LHC (3 ab^-1)
	~ (3.1 ~ 5.7)	DNN	Arxiv: 1609.002541	100 TeV FCC (10 ab^-1)
bbWW	D		Poent Dr. Wan Sang Chawark	
bbττ	DI	NIN	Recht Dr. won Sang Cho work	
WWWW				
bbYY	~ 5 (4.6)	Kinematic Cuts + BDT	Phys.Rev. D96 (2017) no.3, 035022	HL-LHC (3 ab^-1),
	~ 2.1	Kinematic Cuts + BDT	Preriminary	With full BGs.
bbZZ(eemm)				

Conclusion

- Higgs pair production can allow us to reconstruct the EWSB potential and to understand the nature of the EWSB mechanism !
- 2. The bbYY channel can offer the appropriate yields and clean(?) signal.
- 3. Various multivariate classification methods based on machine learning techniques are used to consider the enhancement of significance in measuring the Higgs self coupling.
- 4. We found that the BDT-related methods (+ cut-based analysis) can give the best results compared with other methods.
- 5. Presently, we are checking consistencies of our methods.

Conclusion

- 1. Higgs pair production can allow us to reconstruct the EWSB potential and to understand the nature of the EVSL mechanism !
- 2. The bbYY channel can offer the appropriate yields and clear (Sumar
- 3. Various multivariate classification methods based on the learning techniques are used to consider the enhancement of significance in measuring the Higgs self coupling.
- 4. We found that the BDT-related methods + curbased analysis) can give the best results compared with other methods.
- 5. Presently, we are checking of our methods.

BACKUP SLIDES

λ dependency with BDT

λ dependency with MLP

Higgs pair productions

Gluon Fusion

Top associated productions

Vector Boson Fusion

Higgs strahlung

for each facility.				FCC-ee			
Facility	HL-LHC	ILC	ILC(LumiUp)	CLIC	TLEP (4 IPs)	HE-LHC	VLHC
$\sqrt{s} \; (\text{GeV})$	14,000	250/500/1000	250/500/1000	350/1400/3000	240/350	33,000	100,000
$\int \mathcal{L} dt \ (\mathrm{fb}^{-1})$	3000/expt	250 + 500 + 1000	1150 + 1600 + 2500	500 + 1500 + 2000	10,000+2600	3000	3000
$\int dt \ (10^7 { m s})$	6	3+3+3	(ILC 3+3+3) + 3+3+3	3.1 + 4 + 3.3	5+5	6	6

Snowmass 1310.8361