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Gravitational wave signal of a perturbed black hole
or binary black holes merger ringdown
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What is a guasinormal mode?

Harmonic oscillator potential V (x) =%a)2x2

Asymptotic solutions
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B =0 = discrete energy eigenvalues



Scattering states: incident wave from the left
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No restrictions on the energy:. continuous spectrum



Discrete spectra from scattering states (1)
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i 2nd order differential eq. r :
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C =0= discrete energy (real) eigenvalues

This is called the total transmission spectrum



For example: square barrier potential
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Discrete total transmission spectrum (E, >V,)



Discrete spectra from scattering states (ll)
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Ae ™ ¢— —> Ce

. 2nd order differential eq. .
Ae ™™ . Be™™ +Ce

ikx

B =0 = discrete energy (complex) eigenvalues

This is called the quasinormal spectrum representing
decay modes
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For example: Poschl-Teller potential

V (X) = sech®x

_) eikx




The quasinormal spectrum can be solved exactly
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Black hole quasinormal modes

Black hole perturbation: From the
Einstein equation

R,, =0
where the metric is given by

g,uv = g,uv T h,uv



The background metric is the
Schwarzschild black hole metric

-1
ds® = —(1—2—det2 +(1—2—Mj dr? +r2dQ?
r r

To firstorderin h,,,

=V, Vh, +V Vh -V Vh*-VVh =0



Since the spacetime is spherically symmetric,
one can expand the fields in terms of the
tensor harmonics on the 2-sphere.

[Va(l) )Im :Ylm;a , (Va(Z) )Im — gabYIm;b

[Ta(t? )Im :Ylm;ab ! (Ta(bZ) )Im :Ylm Y ab
(Ta(t?) )Im :% gaCYIm;c

C
b T gb YIm;ca]

where Y, are the spherical harmonics, and
Y. and &, are the metric and anti-symmetric
tensor on the 2-sphere.



For example, the Regge-Wheeler
perturbation
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0 0 hy(r,t)V,2(6,9)

h =0 h(r,t)vV.2 (9, ¢)

yY
*x

*  x h2 (r’ t)TalgS) (91 ¢)
\ J

* O

Note that h, is symmetric.



Gauge symmetric: general coordinate
transformation

h'W = hW +V n,+V.n,
where 77, Is the gauge vector.

The gauge vector can be chosen such
that

h,(r,t)=0



Putting the Regge-Wheeler ansatz into
the perturbation equations, one obtain
the Regge-Wheeler equation

o O*
8t? - ax? Vews =0

where

¢ = 1(1—2—M) h(r,t)

I I



Note that we have used the tortoise
coordinate

X=r+2M In(L— j
2M

where outside the horizon

2M <r<oo<<—o0< X<



Regge-Wheeler potential
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Since the spacetime is static, V,, IS
Independent of time. One can take

¢ — e—ia)t
Then the Regge-Wheeler equation

82
- 8—)(? +Vew$ = 0°¢
IS Schroedinger equation-like and would

have the corresponding quasinormal
modes.



Quasinormal modes and talls
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Initial value problem with
#(x,0) =u(x) ; 8t¢(x,t) |t:0: V(X)

Then using the retarded Green'’s function
0°G B 0°G
ot>  ox’°

+Vo G =0 (1)o(x—X")

with G(x,x";t)=0, t<O0



The solution can be expressed as

P(X,1)
_ jdx' lu(x)8,G(x, x'";t) +v(x)G(x, x';t)]

Our main task now Is to analyze the
Green’s function for the corresponding
Regge-Wheeler potential



Using the Fourier transform
G(x,x";t)= f da)e‘i“’té(x,x';a))

where é(X,X';a)) is analytic in the
upper half @-plane because

G(x,x;t)=0, t<0



CE(X, X'; m) satisfies
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—a)ZG—gfl
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+VRW§ =o(x—X")

For X< X' we have
o f
OX°

~’f - +V,, f =0

f(X,w) >e'” , x> —o©

That Is, wave goes into the horizon



For X > X' we have

0°g

—a)zg —W-FVRWQ =0

g(X,m) > e'”* , X > o

Wave goes out to infinity



Then the Green’s function is given by

T (x,0)9(X', @) X < X'
< W ()
G(Xx,X"; @) =+ f(X',Cf))Cg(X’w) X > X'
W (@)
where

W(w)=g(X,®) f'(X,w) —g'(X,®) f (X, w)

IS the Wronskian



For t >0,

®
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we need to close the contour In the
lower half plane to obtain G(x, x';t)

Examine the singularities in the lower
half plane



Poles of G(X,X';®) occur at the
zeros of the Wronskian

W:gf'—g'f:O:>]c =3
L

= focg

A solution with outgoing boundary
conditions at X =zoo: Quasinormal mode



Suppose

1) Quasinormal modes are the only
singularities

1) The contribution from the semi-circle
at infinity vanishes

This would imply the completeness of
the quasinormal modes.



However, there are other singularities for
the Regge-Wheeler potential

In particular, there is a cut on the negative
Imaginary axis which is relevant to the late-
time power-law tall of the perturbation

This singularity comes from the non-
analytic behavior of 9(X,®)



Consider
0°g

_ng _y"'Vvag =0

and as X > o

v,, <100 10+Dam |n(ij+--.

X° X 2M

The cut singularity Is related to this
asymptotic behavior of the potential



Treating the inverse-square part
exactly, that is,

0°g"® I(I+1) g

=0
OX? NG

_ a)Zg(O)

g (x,w) > " |, Xx > ©

We have

g (0) (X, C()) _ ei7r(|+l)/2(a)x)hl(l) (C()X)



Then 9(X,®) satisfies the integral
equation

9(x, @)
= g9 (x, @)+ [ dXM (%, X; @)V (x)g(X', )

where

70 — V(X)_|(|+1)

IS the subtracted potential



and

M (X, X'; @)

—_ IE wXX' [ h? (0x")h? (@x) —h® (@x)h? (CUX')]

IS the zeroth order Green’s function



First we consider a model power-law
potential

Then to the first Born approximation

g(x, @)
=99 (x,@) + [ dXM (X, x;0)V (x') g (X', )



and after some manipulation one has

g(x,@) = C(l,a)(@X,)

Thus there is a branch cut which can
be put on the negative imaginary axis

The contours on both sides of the cut
give a nonzero contribution

G(x,x:t)=C(l,x)t " t 5w



For the Regge-Wheeler potential

7 _10+1)4Mm In( X )

x> oM

one can obtain the result for this potential
by differentiating with respect to &

G(x,x";t) = ;[C(I,a)t(z”“)l
a

a=3

_oC(l,a)
oo

t—(2|+3)

a=3



because we have
C(l,3)=0

One obtain the famous power-law tail for
the Schwarzschild black hole background

o(x,t) = G(x, x";t)

~ t—(2|+3)

for {t —> o0



late time power-law tall
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Computation of QNM frequencies

Quasinormal modes are solutions to the
Regge-Wheeler equation

azw
OX*

_COZW_ +Vewt =0
(X, w) > e"* | X — +o

The corresponding frequencies are In
general complex



Direct numerical evaluation (Chandrasekhar
and Detweiller)

2mo

r A R

/ Zerilli’s potential Price’s potential

2 0.74734 4 0.177921 2.5087 4 1.68711
0.69687 + 0.54938i 2.6258i

3 1.19889+0.185411 4.1604 +2.22101
1.164024-0.562311 1.3802 4 3.77901
0.85257 4-0.745461

4 | 1.61835+0.18832i1 5.8840+ 2.6647i
1.59313 4 0.568771 2.9090+4.69671

1.12019+ 0.846581 5.27711



Problems with direct numerical evaluations:

W= wy + 10,
w, <0 for stability as e ~e™" -0, t—>o0
However,

(X, ) —> e ~ e x5 400

which is the dominant solution. It will easily be
contaminated by the sub-dominant solution. This
will lead to instabilities in numerical schemes.



Solvable potential (Ferrari and Mashhoon)

Approximate the black hole potential by
a solvable one, for example, the Poschl-
Teller potential

VO
cosh’a(x—Xx,)

Ver (X) =



The corresponding quasinormal frequencies are

2 1/2 1
a
EPT :i(VO—Tj —|a(n+2j

n=012,...



Note that for the Poschl-Teller potential

V. (X) 2 4V,e ™ as x — +oo

while for the Schwarzschild potential

V (X) ~ I(Ing) as X — o
X

X|/2M

ze“ dS X — —0



Matching the potentials near the maxima,

Height:  V, =V (X

m ax)

2
Curvature: @’ =- L | d VEX)
Vo dx® )

max



Schwarzschild quasinormal frequencies
(Ferrari and Mashhoon 1984)

Scalar modes

Electromagnetic modes

— | e, I

ol B o D e R e D L D e D B e O = O | oM

0.230 + 0.230{
0.597 4+ 0.201:
0.397 4+ 0.6047
0.975 4 0.196
0.975 + 0.5871i
0.975 + 0.979
1.356 + 0.194;
1.356 + 0.583;
1.356 + 0.971i
1.356 + 1.359i
1.739 + 0.194/
1.739 + 0.581i
1.739 + 0.968
1.739 4+ 1.355/
1.739 + 1.742i
2,123 4+ 0.193i
2.123 + 0.580i
2.123 + 0.966i
2.723 + 1.352i
2123 + 1.738i

Sy

e e ——

Gravitational modes

o e

0.509 4 0.193¢
0.509 + 0.577§
0.923 + 0.193{
0.923 + 0.577i
0.923 4+ 0.962i
1.319 4+ 0.193¢
1.319 4 0.577i
1.319 4 0.962

L711 + 0.193§
L7111 + 0.577i
1L.711 4 0.96241
1711 + 1.347i

2.099 4+ 0.1934
2.099 4 05774
2,099 4 09627
2.099 4+ 1.347§
2099 + 1.732(

0.757 + 0.1814
0.757 + 0.543i

1.205 + 0187
1.205 + 0.560{
1.705 + 0.934

1.623 + 0.189
1.623 + 0.567i
1.623 4 0.946i
1.623 + 1.3241

2.028 + 0.1904
2.028 + 0.571i
2.028 + 0.951/
2.028 + 1.332/
2.078 + 1.7124

———




Continued fraction method (Leaver)

The solution to the Regge-W heeler eguation

\P(r) (r 1) i |2a) |co(r—1)Za (r 1)

which satisfies the boundary condition at the
event horizon

r=2M —1



Substituting this ansatz into the Regge-W heeler
eguation

a,a, + f,a, =0

a.a ,+p.a +y.a =0 m=12...
where

o, =m’—(iw—-2)m-2iw+1

B =-2m°+(Biw—-2)Mm-8w° —4iw
+1(1+1)-3

v =m’—diom-4w° -4



To satisfy the boundary condition at infinity

—> Convergence of the sum Zam

m=0
—> Continued fraction relation
am+1 _ _7/m+1
a X1V meo
m ﬂm+l o . .

IB . am+27/m+3
m+2

Boos =




Quasinormal frequency condition is given by

ﬁ:_ﬂo: — )
d, Q) B, — aﬁ;;}/
182_ =
ﬂg_”'
Uy)1
= B, — =0
Fo B - g
: a,)3
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183_...



Schwarzschild quasinormal frequencies with
(Leaver 1985)

1=2 1=3

n W, w,

1 (0.747343, —0.177925) (1.198887, —0.185406)
2 (0.693422, —0.547830) (1.165288, —0.562596)
3 (0.602107, —0.956554) (1.103370, —0.958 186)
4 (0.503010, —1.410296) (1.023924, —1.380674)
5 (0.415029, —1.893690) (0.940348, —1.831299)
6 (0.338599, —2.391216) (0.862773, —2.304303)
7 (0.266505, —2.895822) (0.795319, —2.791824)
8 (0.185617, —3.407676) (0.737985, — 3.287689)
9 (0.000000, —3.998000) (0.689237, —3.788066)
10 (0.126527, —4.605289) (0.647 366, —4.290798)
11 (0.153107, —5.121653) (0.610922, —4.794709)
12 (0.165196, —5.630885) (0.578768, —5.299159)
20 (0.175608, —9.660879) (0.404157, —9.333121)
30 (0.165814, —14.677118) (0.257431, —14.363580)
40 (0.156 368, —19.684873) (0.075298, —19.415545)
41 (0.154912, —20.188298) (—0.000259, —20.015653)
42 (0.156392, —20.685530) (0.017662, —20.566075)
50 (0.151216, —24.693716) (0.134153, —24.119329)

(

0.148484, —29.696417) (0.163614, —29.135345)



WKB approximation (Schutz and Will)
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Regions | and IlI:
Standard W KB wavefunctions

A e [ drEr-V -E]
+ e ri
(EZ Ry )1/4
A e 'E" —ijrl dr[VE?-V —E]
+ 7 e
[E7-v)

Y, =

where

—i[dr
A =R+Ee I

i [dr[VE2-V —E]
A = Ee"

VE?-V -E]



—iEr, i ardE2 v
Be |Ir2dr[\/E V —E]

¥, = (E2 v )1/4 €

where

5T \/Ee—if:dr'[\/Ez—V—E]



Region II:
Parabolic approximation for the middle part

1 [ |
EV (FO)(I‘* o ro)2
The Schrodinger equation becomes

2
a"¥ +[(E2 —vo)—%vo“(r* —ro)z}y =0

V(r,) zV(ro) T

dr?

d°y

= +(z2 +§2)\P =0

—

where

2= -1); E2=(E2=V,)/IJA; A=-V,"/2



The wavefunctions in region Il can be
expressed In terms of parabolic cylinder
functions D, (z)

¥, =aD | 2

(\/Eeiyzmz)
+BD | ( V267 )

2 2



Asymptotic matchings the wavefunctions in
regions |, I, and Il give the transmission and
reflection probabilities

IT|?=1-|R|
B 1
(1+e®)




Quasinormal mode condition:
out-going waves only

ITPIRF— o

=& =-i(2n+1)7,n=012,...
= 7(E*=V,) /N1 =-i(2n+1)x

—E?=V, —i(n+%)(— v, )



Quasinormal mode condition to 3rd order In
the WKB approximation (Schutz, Will, and

lyer)

E’=V,- i(n +%j(_ 2von)uz
+(- ZVJTIZA—i(” +%j(— 2, )

(4) e\ 2
A= 1" _ E Vo : (1_'_0[2)_ 1 VO" (7-|—60a2)
(_ 2V, 8\ V, \4 288\ V,



V,

k

VA

4
] (77+188a7)- 3;4[

||3

](51+100a2)

r*:r*(ro)

V V,
(4) )2 "\ / (5)
[VO.,)(67+68052)+ L\ YoYs " 149 2842)
2304( V; 288| v/
VO(G)

Vo




Schwarzschild quasinormal frequencies

(lyer 1987)

TABLE II1. Normal modes for gravitational perturbations (§= —3).

T

Ol eaver

TwKE

0.3737-0.0889¢

0.3484—0.27471

0.3737—-0.0890i

0.3467—0.2739{

0.3732-0.0892f
(—=0.13%)—0.22%)
0.3460—0.2749{
[—0.20%)0 —0.36%)

0.5994—-0.0927i

0.5820—0.2812f

0.8092—-0.0941/

0.7965—0.2844f

0.5061—0.4232f

LA T & rasn

0.2515—0.70514

0.5994—0.0927(

0.5826—0.2813

0.5517—-0.4791

0.5120—0.6903(

0.4702—-0.91564

0.4314—1.152¢

0.8092—0.0942;

0.7966—0.2843/

07727 =0. 4799

0.7398 —0. 6839/

0.7015—-0.8982i

A= %0Th
(06091 1.5%)
0.2475—0.6730{
{—1.6%9:)14.69%)
0.5993—0.0927{
{—0.029:M0.09)
0.5824—0_2814i
(—0.03%:0 —0.0495)
05532047671
10.27FN0.50%%)
0.5157-0.6774(
0.729%:0(1.9%)
0.4711-0.8815:/
10,199 03.7%)
0.4189—1.088{
[—2.95)(5.6%)
0.8091—0.0942

1 —0.01%00.0%9:)
0.7965—0, 2844/
(—0.019:0 —0.049)
0.7736—0.4790i
(0. 1286)0.1996)
0.7433—-0.6783i
10,475 10.829%)
0.7072—0. 88134
(0. 8156)01.9%)




The WKB approximation is accurate for low-
lying modes, error of the order of a few percent.

The approximation is systematic. The order of
approximation has been given by Zonoplya
to the 6th order recently.



Extending to rotating black holes

Astrophysical black holes usually possess
angular momentum: Kerr black holes

2
ds? = — 2 (dt—asin?0 dg)? +Ldr + pido”
P
sin‘@
2

o,

+ [(r* +a°)de—adt]’

A=r*—-2Mr+a° ; p°=r’+a‘cos’é



Two Killing vector fields:

Time translation related to energy
conservation

Rotation symmetry related to angular
momentum conservation

Hidden symmetry:

Killing tensor gives another conserved
guantity



Teukolsky equation:

- (r2+a2)2—a25in29 82\1’_4aMr o 4
A ot’ A Otog
I\/I(rz—az)}allf

+ 4| r +1acos@ —
A ot

2 2
+A2£(A16—\Pj+ _1 g (siné’ﬁ—qjj+ _12 _8 8‘121
or or sin@ 06 06 sin‘d A )og
_4{a(r_M)+"?0259}@\11—(4cot29+2)\11:0
A sin“@ | 0¢



The Teukolsky equation is separable

¥ =e''e™R(r)S(6)

,
Azd(Alde{K +ar—M)K —8ia)r—/1}R:O

dr dr A
_1 d sin6’d—S
sing do do
s o m? 4mcosé ,
+| a“w°Cc0s°0 ————+4awc0sfd + ————4cot' ¢ +E+4 |S=0
sin“@ sin“@

K=(r*+a’)w—am ; 1=E-2+a°0w°-2amw



Discussions

1. The quasinormal mode frequencies can be
evaluated quite accurately using semi-numerical
methods, like the continued fraction and WKB.

2. The study of black hole quasinormal modes has
been termed the “Black Hole Spectroscopy”.

3. The observations of gravitational waves provide
the opportunity to examine the theory of general
relativity in detail through the study of black hole
spectroscopy.



4.The Kerr power or log tails have not been
examined fully. More work needs to be done.

However, this is less relevant to the current

observations of gravitational waves

5. The hidden symmetry study can be extended
to higher dimensional rotating Myers-Perry
black holes




