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quasinormal “ringing”

initial wave pulse

Gravitational wave signal of a perturbed black hole 

or binary black holes merger ringdown
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Asymptotic solutions

discrete bound state spectrum

What is a quasinormal mode?
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No restrictions on the energy: continuous spectrum



Discrete spectra from scattering states (I)
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For example: square barrier potential
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Discrete spectra from scattering states (II)
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discrete energy (complex) eigenvalues= 0B

This is called the quasinormal spectrum representing 

decay modes



For example: Poschl-Teller potential
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The quasinormal spectrum can be solved exactly
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Black hole quasinormal modes

Black hole perturbation: From the 

Einstein equation
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The background metric is the 

Schwarzschild black hole metric
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Since the spacetime is spherically symmetric, 

one can expand the fields in terms of the 

tensor harmonics on the 2-sphere.
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where        are the spherical harmonics, and

and        are the metric and anti-symmetric 

tensor on the 2-sphere.
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For example, the Regge-Wheeler 

perturbation
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Gauge symmetric: general coordinate 

transformation
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where       is the gauge vector. 

The gauge vector can be chosen such 
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Putting the Regge-Wheeler ansatz into 

the perturbation equations, one obtain 

the Regge-Wheeler equation
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Note that we have used the tortoise 

coordinate
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Regge-Wheeler potential
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Since the spacetime is static,        is 

independent of time. One can take  

tie  −~

Then the Regge-Wheeler equation
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is Schroedinger equation-like and would 

have the corresponding quasinormal 

modes.



late time power-law tail

quasinormal “ringing”

initial wave pulse

Quasinormal modes and tails



Initial value problem with
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The solution can be expressed as

Our main task now is to analyze the 

Green’s function for the corresponding 

Regge-Wheeler potential
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Using the Fourier transform
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For             we have
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Then the Green’s function is given by 

is the Wronskian
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we need to close the contour in the 

lower half plane to obtain );',( txxG

For 

Examine the singularities in the lower 

half plane 



Poles of                    occur at the 

zeros of the Wronskian

A solution with outgoing boundary 

conditions at              : Quasinormal mode
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Suppose 

i) Quasinormal modes are the only 

singularities

ii) The contribution from the semi-circle 

at infinity vanishes

This would imply the completeness of 

the quasinormal modes. 



However, there are other singularities for 

the Regge-Wheeler potential

This singularity comes from the non-

analytic behavior of 

In particular, there is a cut on the negative 

imaginary axis which is relevant to the late-

time power-law tail of the perturbation
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The cut singularity is related to this 

asymptotic behavior of the potential



Treating the inverse-square part 

exactly, that is,
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Then               satisfies the integral 

equation
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First we consider a model power-law 

potential
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and after some manipulation one has
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Thus there is a branch cut which can 

be put on the negative imaginary axis
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For the Regge-Wheeler potential

one can obtain the result for this potential 

by differentiating with respect to 

 

)32(

3

3

)2(

),(
                

),( );',(

+−

=

=

+−











l

l

t
lC

tlCtxxG





















+
=

M

x

x

Mll
V

2
ln

4)1(
3





because we have

One obtain the famous power-law tail for 

the Schwarzschild black hole background
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intermediate time quasinormal 

modesearly time initial pulse

late time power-law tail



Computation of QNM frequencies

Quasinormal modes are solutions to the 

Regge-Wheeler equation
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Direct numerical evaluation (Chandrasekhar 

and Detweiler)



Problems with direct numerical evaluations: 
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Solvable potential (Ferrari and Mashhoon)

Approximate the black hole potential by

a solvable one, for example, the Poschl-

Teller potential
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The corresponding quasinormal frequencies are
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Matching the potentials near the maxima,

Height:

Curvature:
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Schwarzschild quasinormal frequencies 

(Ferrari and Mashhoon 1984)



Continued fraction method (Leaver)

The solution to the Regge-Wheeler equation

m

m

m

riii

r

r
aerrr 



=

−−







 −
−=

0

)1(2 1
)1()( 

which satisfies the boundary condition at the 

event horizon 

12 →= Mr



Substituting this ansatz into the Regge-Wheeler

equation 
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To satisfy the boundary condition at infinity

−
−

−

−
=

+

++
+

++
+

++

3

32
2

21
1

11

m

mm
m

mm
m

m

m

m

a

a














=0m

ma Convergence of the sum

 Continued fraction relation 



0

3

32
2

21
1

10
0

3

32
2

21
1

1

0

0

0

1

=

−
−

−

−

−
−

−

−
=−=






























a

a

Quasinormal frequency condition is given by



Schwarzschild quasinormal frequencies with 

(Leaver 1985)
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WKB approximation (Schutz and Will)
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Region II:

Parabolic approximation for the middle part

The Schrodinger equation becomes



The wavefunctions in region II can be 

expressed in terms of parabolic cylinder 

functions
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regions I, II, and III give the transmission and 

reflection probabilities



Quasinormal mode condition: 

out-going waves only
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Quasinormal mode condition to 3rd order in 

the WKB approximation (Schutz, Will, and 

Iyer)
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Schwarzschild quasinormal frequencies 

(Iyer 1987)



The WKB approximation is accurate for low-

lying modes, error of the order of a few percent. 

The approximation is systematic. The order of 

approximation has been given by Zonoplya

to the 6th order recently.



Extending to rotating black holes

Astrophysical black holes usually possess 

angular momentum: Kerr black holes
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Two Killing vector fields: 

Time translation related to energy 

conservation

Rotation symmetry related to angular 

momentum conservation

Hidden symmetry: 

Killing tensor gives another conserved 

quantity  



Teukolsky equation:
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The Teukolsky equation is separable
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Discussions 

1.The quasinormal mode frequencies can be 

evaluated quite accurately using semi-numerical 

methods, like the continued fraction and WKB. 

2.The study of black hole quasinormal modes has 

been termed the “Black Hole Spectroscopy”. 

3.The observations of gravitational waves provide 

the opportunity to examine the theory of general 

relativity in detail through the study of black hole 

spectroscopy.



4.The Kerr power or log tails have not been 

examined fully. More work needs to be done. 

However, this is less relevant to the current 

observations of gravitational waves

5.The hidden symmetry study can be extended 

to higher dimensional rotating Myers-Perry 

black holes


