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Energy scales and relevant degrees of freedom

Atoms:
Electromagnetic 
Quantum mechanics

Nuclei: 
Nuclear interaction
Test ground for 
different theorical tools

Quarks: 
Strong interaction
QCD/standard 
model



Energy scales and relevant degrees of freedom

Human height 

~ 1-2 m

Distance from Kalamazoo to 
Chicago

~ 105 m
~ 200 km

The milky 
way

~ fm
~ 10-15 m
�=

ℏ�
�

Weinberg’s third law of 
Progress in theoretical 
Physics: 
“You may use any degrees of 
freedom you like to describe a 
physical system, but if you use 
the wrong ones, you'll be sorry!”

~ 1020 m
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DFT

Collective 
models

Standard 
model

Energy scales 
From keV to GeV~106 
At different degrees of freedom, 
we have different quantum 
many-body methods

Low energy 
nuclear physics

Energy scales and relevant degrees of freedom

Freedom is not free!

Lattice 
QCD
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Quantum Hadrodynamics

Energy scales and relevant degrees of freedom

Relativistic mean-field + pairing

RRPA
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Independent Particle Approximation

Many body systems Independent particles

Common feature of ab-initio: find the 
fully correlated nuclear wave-function

Mean-field theory: the nucleus as a set 
of independent protons and neutrons 
moving in an effective potential



Density function theory

Hohenberg-Hohn theorem(1964):
1998 Nobel price in Chemistry
The exact energy of a quantum mechanical many body system is a 
functional of the local density �(�). 

This functional is universal. It does not depend on the system, only on 
the interaction. 
Kohn-Sham theory:
In order to reproduce shell structure Kohn and Sham introduced a 
single particle potential Veff(r), which is defined by the condition, that 
after the solution of the single particle eigenvalue problem



Density function theory

The mean-field approximation

• The wavefunction is restricted by a single Slater determinant

• Nucleon wave-functions Ψ(�) obey the Schrödinger equation, 
where the potential V(r) is the effective mean-field Veff(r)
• Basic degree of freedom: the (one-body) density of particles (r)
Reduce 3N-dimensional problem to a 3-dimensional one



Mean field 
potential

• Starting points:
• A nuclear interaction v(r1,r2) (known)
• A Slater determinant for the nucleus 

(to be determined)

• Goal: find the Slater determinant, 
(equivalently, the density )

• Method: Minimize the energy 
defined as the expectation value of 
the Hamiltonian on the Slater 
determinant

• Resulting equations are non-linear: 
V depends on  which depends on 
the i(r) which depend on V

Density function theory



Covariant Energy Density Functionals

Dirac Hamiltonian:

With static self-energy:

= +

Mean-field approximation

RMF
propagator

free
propagator



Covariant Energy Density Functionals

RHB Hamiltonian:

+ Superfluid pairing correlations in open-shell nuclei

RHB Self-energy:

= +
RHB

propagator
free

propagator



Ways to improve present EDFs

Beyond phenomenological mean field and extension

• Density Matrix Expansions

• Multi-Reference EDFs

• Generator Coordinate Method

• Time-dependent DFT 

• Random Phase Approximation

• Particle Vibration Coupling

     



Beyond the mean-field: quasiparticles coupled to vibrations 



In general, the self-energy can be written as sums of the stationary local and energy 
dependent nonlocal terms:              

The Dyson equation for nucleon
= +

nucleon
propagator

free
propagator

The self-energy      can approximately be            or               

static dynamic

RMF:

= +
RHB:

= +

Beyond the mean-field: quasiparticles coupled to vibrations 



Allows a non perturbative treatment of the NN interaction 

QVC vertex 

Quasiparticle-Vibration Coupling (QVC) in the nucleonic self-energy

Beyond the mean-field: quasiparticles coupled to vibrations 

Vibration(phonon)

=  ∞ series of 
1p-1h excitations 



Quasiparticle propagator: Fragmentation of single (quasi) particle states:

Introduces new poles

With fractional occupation numbers

Beyond the mean-field: quasiparticles coupled to vibrations 

Energy dependent term
Dominant state



Response of the nucleus to an external field :

Excited states: nuclear response theory

Transition strength:
External field F:

Response function(2-body propagator) 
Solution of the Bethe-Salpeter equation

Effective interaction induced by the 
nuclear medium

Static interaction + pairing Energy-dependent phonon exchange



Relativistic Quasiparticle 
Random Phase Approximation 
(RQRPA)

Excited states: nuclear response theory

Single-particle states
Many-body states 
1(q)p-1(q)h     



Relativistic Quasiparticle 
Random Phase Approximation 
(RQRPA)

Excited states: nuclear response theory

Single-particle states
Many-body states 
1(q)p-1(q)h     1 phonon configurations

Quasiparticle-Vibration Coupling amplitude:

  Spreading width



Nuclear Vibrational motions

The quanta of vibrational energy 
are called phonons.
Quadrupole oscillations are the 
lowest order nuclear vibrational 
mode. 
A quadrupole phonon carries 2 
units of angular momentum and 
has even parity



r-process and β decay

In 2017, the historic discovery of a binary neutron star merger event(GW170817) provide the first 
strong evidence for an astrophysical site of r-process element production.

The origin of the heavy elements via r-process nucleosynthesis has been one of the major open 
questions in physics for decades and β decay play an impotant role.

From Lippuner & Roberts, et al 15 



(Quasi)particle-vibration coupling in spherical case

Dominant states and spectroscopic factors in 120Sn

Elena Litvinova PRC 85, 021303(R) (2012) 



Deformed nuclei

Allow density to break rotational invariance of original 
interaction  Spontaneous symmetry breaking
Nuclei become deformed and are characterized by 
several collective coordinates' qi representing the 
nuclear shape

Private discussion with A. V. 
Afanasjev



• The  traditional method:

Diagonalization the QRPA matrix 

with

the same effective interaction determines the RHB quasiparticle spectrum and the 
residual interaction 
Tremendous computational costs
• Tedious calculation of residual interactions 
• Huge matrix dimension for deformed systems. 

Quasiparticle Random Phase Approximation for deformed nuclei



Finite Amplitude Method for deformed nuclei

Residual interaction can be estimated by the finite difference 
method:

Starting from initial amplitudes X(0) and Y(0), we can use an iterative 
method to solve the following linear-response equations.

finite difference method for residual interaction  avoid two-body matrix element 
calculation
iterative method  avoid huge matrix diagonalization T. Nakatsukasa, I., Yabana, PRC76 (2007) 024318.

A. Bjelčić, T. Nikšić CPC 253 (2020) 107184 



Numerical scheme

• Input:
• DD-PC1
• Separable pairing force

RHB[1]

FAM-QRPA[2]

• Fragmentation of 
quasiparticle energies 

• Spectroscopic factors

Dyson 
equation[3,4]

[1] T. Nikšić D. Vretenar, P.Ring  PRC 78 034318
[2] P. Avogadro T. Nakatsukasa  PRC  84 014314
[3] E. Litvinova and Y Z               PRC 104, 044303
[4] Y. Z, E. Litvinova, et al           PRC 105, 044326
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Calculate quasiparticle phonon coupling vertex for different β2

38Si



Single particle spectrum in 208Pb

The single-particle energy                 above (below) the RHB Fermi energy if their RHB 
occupancies are smaller (greater)  than 0.5



Deformed QVC: heavy 249Cf & 251Cf 

Different channels couple to the 
RHB states with considerable 
strength

Compare them to the band-
head levels in 251Cf and 249Cf 
from experiment data



Deformed QVC: neutron rich 38Si

At β2 = 0, the degeneracy of the quasiparticle states reproduced, and the occupancies maximized

Additional oscillations of the dominant fragments' states due to the evolution of the low-energy collective 
phonons



Deformed QVC: neutron rich 38Si



Deformed QVC: neutron rich 38Si

Potential energy surface minimum  β2 = 0.31

Remarkable fragmentations

• Deformation 
• Pairing 

Lead to a few competing 
fragments
Major fragments is moving toward 
the Fermi energy 



Summary

Beyond mean-field  in the particle-vibration coupling scheme:
Provide a formal of extension of EDF to include  many-body correlation 
Degrees of freedom:
• Quasiparticle states
• phonons
Implemented for open-shell nuclei with axial deformations
For the medium-mass and heavy nuclei 
• a significant fragmentation of the quasiparticle states around the Fermi surface
• an increase of the level densities in both neutron and proton subsystems
Improves agreement with experimental data compared to the mean-field approximation
Perspectives:
• Introduce the energy-dependent potential in the response function.

It should lead to a fragmentation of the giant resonance spectrum due to complex 
configurations such as 2p-2h excitations and to a considerable increase of the 
width.

• Start from chiral interaction, see the PVC effects.
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Problem: Spurious states in FAM

Implementation of the method proposed to separate the spurious response related to the 
breaking of the translation symmetry from the physical response. In practice there is always 
some mixing mostly due to the finite size of the oscillator basis used in the calculation. 
However, because the spurious states are due to the finite size of the harmonic oscillator 
basis, we can change the parameter of the harmonic oscillator. The physical states will 
remain stable, and the spurious states will heavily rely on harmonic oscillator parameters.



Phonon Calculation

Induced Hamiltonian 

Derivation of Dirac mean-field

Derivation of pairing field



Beyond the mean-field 

From EDF, we can get nuclear binding energy, radius, deformation etc.
Plus RPA, we can get giant resonance information
However, still have limitations

• Single-particle states and their spectroscopic factors

• Width of giant resonance and other excited states
 
EDF potential is not energy-dependent
Consider the energy-dependent potential



Particle Vibration Coupling

 ℎ� denotes the Dirac Hamiltonian with the energy- independent mean 
field 

The equation of the one-nucleon motion has the form

We can get  Dirac basis, which diagonalizes the energy-independent 
part of the Dirac equation 

Define the energy-dependent part 



Particle Vibration Coupling

Model assumptions: 
In the present work we choose a rather simple particle-phonon 
coupling model to describe the energy dependence of  . Within this 
model Σ� is a convolution of the particle-phonon coupling amplitude 
Σ� and the exact single-particle Green’s function 

where the amplitude Γ has the following spectral expansion: 

and the mean field Green’s function is 


