Gravitational wave signal for quark matter with realistic phase transition

Yuki Fujimoto

(INT, U Washington)

Reference:

Y. Fujimoto, K. Fukushima, K. Hotokezaka, K. Kyutoku, arXiv:2205.03882

May 6, 2022, Seminar @ Academica Sinica

Motivation & Outline of this talk

- O) Introduction: Dense quark matter in neutron stars (NSs)? How to detect it?
- 1) QCD-based equation of state (EoS) with a realistic hadron-to-quark phase transition (PT)
 - \circ Prerequisite for the QCD-based EoS
 - Parametrization & possible scenarios for PTs

- 2) Detecting quark matter by gravitational waves (GWs)

- GW signals and detectability
- Some issues: thermal index, electromagnetic counterpart

Quark liberation at high densities

Quark liberation at high densities

4

Structure of static NSs

Pressure (nuclear force = strong interaction)

Hydrostatic equilibrium (pressure = gravity)

Tolman (1939) Oppenheimer,Volkoff (1939)

 $\frac{dP(r)}{dr} = -G\frac{m(r)\varepsilon(r)}{r^2} \times \left(1 + \frac{P}{\varepsilon}\right)\left(1 + \frac{4\pi r^3 P}{m}\right)\left(1 - \frac{2Gm}{r}\right)^{-1} \leftarrow \text{TOV equation}$

$$m(r) = \int_0^r dr 4\pi r^2 \varepsilon(r)$$

Unknown variables: P(r), m(r) and $\varepsilon(r)$

One condition missing!

General relativistic correction

Structure of static NSs

Pressure (nuclear force = strong interaction)

Hydrostatic equilibrium (pressure = gravity)

Tolman (1939) Oppenheimer,Volkoff (1939)

 $\frac{dP(r)}{dr} = -G\frac{m(r)\varepsilon(r)}{r^2} \times \left(1 + \frac{P}{\varepsilon}\right)\left(1 + \frac{4\pi r^3 P}{m}\right)\left(1 - \frac{2Gm}{r}\right)^{-1} \leftarrow \text{TOV equation}$

 $m(r) = \int_0^r dr 4\pi r^2 \varepsilon(r)$

Unknown variables: P(r), m(r) and $\varepsilon(r)$

One condition missing!

General relativistic correction

Equation of State (EoS) $P = P(\varepsilon)$

Structure of static NSs

Two solar mass pulsar: Demorest et al. (2010); Antoniadis et al. (2013); Cromartie et al. (2019)

Maximum mass corresponding to any EoS should exceed $2M_{\odot}$ If maximum-mass condition is not fulfilled, then EoS is rejected

Gravitational waves (GWs) from binary NSs

Ligo-Virgo Collaboration (2018)

More information obtained from NSs in dynamical event **Constraints on the EoS by GWs from binary NS mergers:**

If there is quark matter inside NS, there should be imprints in the EoS \rightarrow Probe it with GWs

Gravitational waves from binary NSs

GW signals in numerical relativity simulations:

postmerger phase contains more information on the EoS 1.0inspiral postmerge 0.5 0.0

Dietrich, Hinderer, Samajdar ('20)

Gravitational waves from binary NSs

Expected sensitivity in future detectors

Motivation & Outline of this talk

 O) Introduction: Dense quark matter in neutron stars (NSs)? How to detect it?

1) QCD-based equation of state (EoS) with a realistic hadron-to-quark phase transition (PT)

- \circ Prerequisite for the QCD-based EoS
- Parametrization & possible scenarios for PTs

- 2) Detecting quark matter by gravitational waves (GWs)

- GW signals and detectability
- Some issues: thermal index, electromagnetic counterpart

Modern view on the EoS

Annala, Gorda, Kurkela, Nättilä, Vuorinen (2019)

ab initio QCD calculations: Chiral EFT & perturbative QCD

Support from NS observation

Fujimoto, Fukushima, Murase (2019, 2021)

Speed of sound $c_s^2 = \partial P / \partial \varepsilon$ (slope of the EoS) from deep learning analysis of NS data

Prerequisite for the <u>QCD</u>-based EoS

pQCD: Freedman, McLerran (1976); Baluni (197 Kurkela, Romatschke, Vuorinen, Fraga,... (2009-) Fujimoto, Fukushima (2020)

XEFT:

Prerequisite for the QCD-based EoS

Parametrizing the intermediate region

Crossover-type parametrization:

Allowed region of parameters

Parametrizing the intermediate region

1st-order PT can be treated likewise:

Four possibilities: (1) Crossover


```
(2) Weak 1st-order PT
```


1st-order PT effect is small; similar to the crossover case

(3) 1st-order PT at very high densities

Quark matter undetectable!

1st-order PT is at too high densities, so no contribution from quark matter within the realistic neutron-star densities

(3) 1st-order PT at very high densities

Quark matter undetectable!

1st-order PT is at too high densities, so no contribution from quark matter within the realistic neutron-star densities

(4) Other possibility of 1st-order PT

Most, Papenfort, Dexheimer, Hanauske, Schramm, Stoecker, Rezzolla (2018) 23

Categories of realistic PT pattern

24

Categories of realistic PT pattern

LSimulating this case is enough for the current purpose (3) Strong 1st-order @ high ρ (4) Strong 1st-order @ low ρ

25

Related preceding works

Most, Papenfort, Dexheimer, Hanauske, Schramm, Stoecker, Rezzolla (2018); Bauswein, Bastian, Blaschke, Chatziioannou, Clark, Fischer, Oertel (2018)

1st-order PT model EoSs, not based on pQCD, but predicts soft EoS at high densities \rightarrow can be categorized into (4)

Huang,Baiotti,Kojo,Takami,Sotani,Togashi,Hatsuda,Nagataki,Fan (2022); Kedia,Kim,Suh,Mathews (2022)

Related preceding works

27

Motivation & Outline of this talk

- O) Introduction: Dense quark matter in neutron stars (NSs)? How to detect it?
- 1) QCD-based equation of state (EoS) with a realistic hadron-to-quark phase transition (PT)
 - \circ Prerequisite for the QCD-based EoS
 - Parametrization & possible scenarios for PTs
- 2) Detecting quark matter by gravitational waves (GWs)
 - GW signals and detectability
 - Some issues: thermal index, electromagnetic counterpart

GW signals from quark matter

 10^{-3}

 10^{-1}

 10^{0}

Energy Density [GeV/fm³]

Fujimoto, Fukushima, Hotokezaka, Kyutoku (2022)

Thermal effect

In the simulation, thermal part of EoS is parametrized as free gas

$$P = P_{\text{cold}} + P_{\text{thermal}}$$

$$\varepsilon = \varepsilon_{\text{cold}} + \varepsilon_{\text{thermal}}$$

$$P_{\text{thermal}} \approx \rho \varepsilon_{\text{thermal}} (\Gamma_{\text{th}} - 1)$$

$$\text{thermal index}$$
Our choice: $\Gamma_{\text{th}} = 1.75$
Bauswein et al. (2018),...

Thermal effect & maximum density

$$T_{\rm th} = 1.75$$
 ₃₁

Consistency with kilonova AT2017gfo

Remnant mass outside the apparent horizon of the BH

AT2017gfo, electromagnetic counterpart of GW170817, requires ejection of $\approx 0.05 M_{\odot}$ for its observed luminosity

Summary

Detectability of quark matter by gravitational waves from binary neutron star mergers is discussed

- The QCD-based EoS:

- Based on the QCD calculations, PTs can be categorized into four possibilities (Crossover or 1st-order)
- Related preceding works also fit into these categories

- Central results:

- Crossover and hadronic EoSs show qualitative difference;
 Crossover to quark matter drives the collapse to black holes,
 while the hadronic EoS does not.
- Uncertainty in thermal effect is to be explored more.
- Electromagnetic counterparts (kilonova) can be useful check