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How can a black hole emit information
via quantum extremal surfaces?



Hawking saddle replica wormhole

The interpretation is very subtle because
this is a path—integral about not states but density matrices.



How can we embed this picture into the
orthodox path—integral formulation?



Let us follow the Euclidean path—integral approach.

II. EUCLIDEAN QUANTUM GRAVITY

Black hole formation and evaporation can be thought of as a scattering process. One sends in particles and radiation
from infinity and measures what comes back out to infinity. All measurements are made at infinity, where fields are
weak and one never probes the strong field region in the middle. So one can’t be sure a black hole forms, no matter
how certain it might be in classical theory. I shall show that this possibility allows information to be preserved and
to be returned to infinity.

I adopt the Euclidean approach [5], the only sane way to do quantum gravity nonperturbatively. One might think
one should calculate the time evolution of the initial state by doing a path integral over all positive definite metrics
that go between two surfaces that are a distance T" apart at infinity. One would then Wick rotate the time interval
T to the Lorentzian.

(Hawking, 2005)
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Hartle and Hertog, 2015
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Even Hawking radiation can
be interpreted as instantons of

a free scalar field.
(Chen, Sasaki and DY, 2018)




After some computations, finally we can recover Hawking's result.

[ x e"2B ~ o=8TMSM  {f SM « M

We further observe that there exist plenty of instantons with sM/M < 1.
In the limit 8M = M, we obtain the trivial geometry,

where one can guarantee the existence of instantons.



Now, can we explain the Page curve
using the Euclidean path—integral approach?



Indeed, the computations of the Page curve are justified
by the following two steps.



First, there are at least two histories that contribute to
the entanglement entropy,
where one (say, h,) 1s information—losing while
the other Gay, n,) is information—preserving.



First, there are at least two histories that contribute to
the entanglement entropy,
where one (say, hy) is information—losing while
the other Gay, h,) is information—preserving,.

5=p5 +p,5,;



Second, the probability of the information—preserving history is
dominant at the late time.

Then, one can reproduce the Page curve that we wanted.
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h, is information—losing,
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A and B denote tunneling:
they can happen at any time.
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h,s are all information—preserving.
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To summarize,
if we assume (1) multi—history condition
and (2) late—time dominance condition,
one can explain the Page curve.



Can it be realized?



There exists a tunneling channel toward a trivial geometry
thanks to the plenty of instantons.



For the first history, we assume that the entanglement entropy
monotonically increases.



tunneling

et BT T T T T

However, since there is no interior for the second history,
the entanglement entropy (between black hole and radiation) 1S Zero.



P1.P2

The probability to tunnel to a trivial geometry is
dominated at the (very) late time (after some computations).
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Therefore, one can mimic a Page curve,
while this is nothing to the with the quantum extremal surtaces,
but only relying on the Euclidean path integral.
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One interesting point is that this allows a moment
when the Boltzmann entropy is greater than its areal entropy.
This might be a small remnant or a monster.



[s this sufficient?

Isn't it strange,
it the information loss paradox is resolved
without resolving a singularity?



The Wheeler—DeWitt equation

quantuw Hamiltonian constvaint

wave function of §ield space

Let us study the quantum gravitational wave function

inside a black hole.
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One way to present a metric inside a black hole

t
X(t) = logtan >

1
Y(t) = logzsin t

A classical solution inside a Schwarzschild black hole.
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One way to present a metric inside a black hole

ik ik
0X2 0vY2

- 4r2e2Y | WX, Y] = 0

The Wheeler—-DeWitt equation presented by X and Y.

This was also known previously,
e.g., er—qc/9411070, hep—th/0107250, etc.




P[X,Y] = joof(k) e X[, 2r,eV)dk

2Ae= 7 K"/

[(—ik)rkk

fk) =

We will impose the boundary condition such that
the wave function as a (Gaussian) peak at the event horizon,
because it is reasonable to assume that
the solution is classical at the horizon.




This steepest—descent coincides well with the classical trajectory.

Y = —log(e® + e™%)



Annihilation to nothing,




Also, a possible realization of the DeWitt boundary condition.




No Future in Black Holes

Malcolm J. Perry*
School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 JNS, UK'
(Dated: June 18, 2021)

The black hole information paradox has been with us for some time. We outline the nature of
the paradox. We then propose a resolution based on an examination of the properties of quantum
gravity under circumstances that give rise to a classical singularity. We show that the gravita-
tional wavefunction vanishes as one gets close to the classical singularity. This results in a future
boundary condition inside the black hole that allows for quantum information to be recovered in
the evaporation process.

This might be more generic than we expected.



Can we extend to dynamical cases?
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Hajicek—Kiefer model:
quantized thin—shell collapse model
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Correct interpretation

ntum bounce



Paradigms of LQG black holes (1):
Ashtekar—Bojowald
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Paradigms of LQG black holes (2):
Haggard—Rovelli
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Paradigms of LQG black holes (3):
Ashtekar—Olmedo—Singh
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Annihilation—to—Nothing interpretation
for gravitational collapsing cases.
This provides new interpretation for LQG black holes,



Time—reversal symmetry was the
guiding principle.
Indeed, this is related to the
DeWitt boundary condition.



What is the correct physical meaning of the
DeWitt boundary condition?
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W[h2,0ut]| > [W]hs]

Now let us see both of inside and outside.
[f we only focus outside, then it is semi—classical and
the probability of each slice will not vary.
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W [h2,0ut]| = [V]hs]]
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However, if we evaluate the probability of outside and inside together,
it will approach to zero.
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W [h2,0ut]| = [¥[hs]]
Ulhyae Uhs] — ()

This process is definitely non—unitary and
we will lost information.



Let us see the entire wave function.



In the path integral, there exists a tunneling channel such that
there is no formation of a black hole,
even though the probability is very low (Chen, Sasaki and DY, 1806.03766).
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pilha] ~ 1 polha] ~ ™

From the beginning, the first history is dominant
in terms of probability.



pilha] ~ 1 po[ha] ~ e
— pl[hvac U hB] = ()
However, as the time slice evolves,

the probability of the first history will decay to zero.
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pilha] ~ 1 p2[ha] ~ ™
— pl[hvac U hB] =(

If the sum of the probabilities should be preserved, then
the probability of the second history should be dominated later.

—  p2|hB] ~ 1
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So, in the late time, the wave function is dominated by
the trivial geometry which has no loss of information.



The quantum boundary condition
supports the late time dominance!

We need more study to check consistency.



Thank you very much



