

Real Space central to Classical Mechanics :

— the 'Why Particle ?' question

- 3D Euclidean space is *only* the Newtonian *model*
- Newton's Laws are only definitions
- Galilean Relativity is the premises
- the Physical Space as a representation
- also phase space, observable algebra, \ldots
- * mathematics : vector space, topological space, algebraic (noncommutative) geometry, ...

Relativity Symmetry :

- central to fundamental physics examples ...
- symmetry of reference frame transformations
- symmetry of physical space(-time) model
- symmetry of (free particle) configuration space
- which is the physical space
- symmetry of (free particle) phase space
- * (center of mass for) any system behaves as a free particle

Coset Spaces as Homogeneous Spaces :

— Lie group and Lie algebra

- coset space = group/subgroup as a representation
- Lie group \Rightarrow homogeneous spaces, symplectic manifolds
- Einstein/Poincaré \rightarrow Galilei/Newton $(c \rightarrow \infty)$
- Minkowski spacetime = ISO(1,3)/SO(1,3) $\{L_{\mu,\nu}, P_{\mu}\}/\{L_{\mu,\nu}\}, \qquad [K_i, K_j] \sim \frac{1}{c^2}L_{ij}$
- Newtonian space-time = G(0,3)/ISO(0,3), $L_{0,i} \rightarrow K_i$
- Newtonian phase space = $G(0,3)/[SO(0,3) \times \{T\}]$ $K_i = mX_i$

$$\begin{pmatrix} t'\\ x'^{i}\\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & B\\ V^{i} & R^{i}_{j} & A^{i}\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} t\\ x^{j}\\ 1 \end{pmatrix} = \begin{pmatrix} t+B\\ V^{i}t + R^{i}_{j}x^{j} + A^{i}\\ 1 \end{pmatrix}$$
$$\begin{pmatrix} dt\\ dx^{i}\\ 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & b\\ v^{i} & \omega^{i}_{j} & a^{i}\\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} t\\ x^{j}\\ 1 \end{pmatrix} = \begin{pmatrix} b\\ v^{i}t + \omega^{i}_{j}x^{j} + a^{i}\\ 0 \end{pmatrix}$$

• (3D) physical space : $dx^i = \omega^i_{\ j} x^j + \bar{x}^i$

• $(3 \times 2 \text{ D})$ phase space : also $dp^i = \omega^i_{\ j} p^j + \bar{p}^i$ — displacement in p^i generated by X_i (boosts)

SO(2,4) Noncommutative Geometry :-

- cf. Kowalski-Glikman & Smolin ; Chryssomalakos & Okon ; O.K.
- spacetime position operators $\hat{X}_{\mu} = \frac{i}{\kappa c} \left(x_{\mu} \partial_4 - x_4 \partial_{\mu} \right)$ $[\hat{X}_{\mu}, \hat{X}_{\nu}] = \frac{i}{\kappa^2 c^2} M_{\mu\nu}$ energy-momentum operators $\hat{P}_{\mu} = \frac{i}{\ell} \left(x_{\mu} \partial_5 - x_5 \partial_{\mu} \right)$ $[\hat{P}_{\mu},\hat{P}_{
 u}]=-rac{i}{
 ho_2}M_{\mu
 u}$ $[\hat{X}_{\mu},\hat{P}_{
 u}]=i\,\eta_{\mu
 u}\,\hat{F}\,,\qquad [\hat{X}_{\mu},\hat{F}]=-rac{i}{\kappa^2\,c^2}\hat{P}_{\mu}\,,\qquad [\hat{P}_{\mu},\hat{F}]=-rac{i}{
 ho^2}\hat{X}_{\mu}$ $ullet \ i\,\partial_\mu \ll rac{\kappa c}{\kappa c} ext{ and } i\,\partial_4 = p_4 = rac{\kappa c}{\kappa c}:$ $\hat{X}_{\mu} \longrightarrow x_{\mu}$ • $x_{\mu} \ll \ell$ and $x_5 = -\ell \ (\rho = 1)$: $\hat{P}_{\mu} \longrightarrow i \,\partial_{\mu} = p_{\mu}$

Fundamental (Special) Quantum Relativitiy: SO(2,4)

- contains noncommuting X_{μ} and P_{μ}
- contains Lorentz symmetry
- stable symmetry, no deformation
- G, \hbar, c in structural constants
- contractions as approximations

 $SO(2,4) \longrightarrow ISO(1,4) \longrightarrow H_{\scriptscriptstyle R}(1,3)$

$$egin{array}{lll} H_{\!\scriptscriptstyle R}(1,3) & \longrightarrow & H_{\!\scriptscriptstyle R}(3)+ \ & ({\hbar \downarrow 0}) & \downarrow & ({1\over c^2}
ightarrow 0) & \downarrow \ & {
m Einstein}({
m S.R.})+ & \longrightarrow & {
m Newtonian} \end{array}$$

• deformation is 'inverse' of contraction

Mathematical Scheme :-

relativity symmetry G	group C^* -algebra
unitary irrep. (on \mathcal{H})	topo. cyclic irr. *-rep
– coherent states from G/H	$- lpha(p,x) ext{ with } \star ext{-product}$
$\mathcal{P}(\mathcal{H}) ext{ as space(time)}$	algebra of observables
Hamiltonian flows	'Heisenberg' flows
$\phi(p,x) \leftrightarrow (ext{Wigner}) \ ho(p,x) \Leftarrow$	= GNS construction
∞ Kähler z_n	$\operatorname{NC}\hat{X}=x\star,\hat{P}=p\star$

G/H commutative : $\phi(p, x) \to \delta(p, x), \ \hat{X} = x, \ \hat{P} = p$ 'Heisenberg' \to Poisson **Observables, Dynamics, Phase Space, all from Symmetry :**

i.e.
$$H(3) \rtimes (SO(3) \times T) = \tilde{G}(3)$$

- algebraic formulation from observables
- Connes' noncommutative geometry $(\mathcal{A}, \mathcal{H}, \mathcal{D})$
- $C^*(H(3)) \longrightarrow \mathcal{A}$ left regular rep. $\alpha(p^i, x^i) \longrightarrow \alpha(p^i, x^i) \star = \alpha(p^i \star, x^i \star)$ — group C^* -algebra $C^*(H(3)) \iff C^*(\tilde{G}(3))$ — topological irreducible rep. from H(3) on \mathcal{H}
- unitary flows \leftrightarrow automorphisms $U_{\star} \star \alpha \star \overline{U}_{\star}$ $H(3) \rtimes (SO(3) \times T) = \tilde{G}(3) - \text{spin 0 rep.}$

•
$$\frac{d}{ds}\alpha = \frac{1}{i\hbar} \{\alpha, G_s\}_{\star} \iff \frac{d}{ds}\alpha \star = [\alpha \star, G_s \star]$$

- Weyl-Wigner (WWGM) from coherent state basis $- C^*(H(3)) \longrightarrow \mathcal{H} \text{ from } \operatorname{Tr}[\rho_o \cdot] \\
 - \rho \sim \phi \star \overline{\phi} \quad (\rho_o \sim \phi_o); \operatorname{Tr} \longrightarrow \int d\mu \ (\leftarrow \text{ group metric}) \\
 - \alpha(p^i, x^i) \star \text{ on } \mathcal{H} = \{\alpha \star \phi_o(p^i, x^i); \alpha \in L^2(p^i, x^i)\}$
- $C(p^{i_{\star}}, x^{i_{\star}})$: operators as nc coordinates (?)
- Geometry : (?) Dirac operator *D* ~ (*ds*)⁻¹ on *H* typical example : sections of spin bundle on manifold
 (*pⁱ*★, *xⁱ*★) metric(?) Vs Kähler metric on "*H*" (⊂ *A*)
- \mathcal{A} as C(X) X: unit ball in \mathcal{H}^* , compact Hausdorff
- \mathcal{A} as $C(H(3))^*$ space of irrep., not Hausdorff

Relativity Contraction as Dequantization :

 \longrightarrow Newtonian limit (Poisson algebra; KvN Hilbert space)

- $\mathcal{H} \to \mathcal{H}_{KvN} \sim (p^i, x^i)$ reduces to 1-D reps. $\alpha(p^i, x^i) \star \to \alpha(p^i, x^i)$; $C^*(H(3)) \to C(p^i, x^i)$
- Tomita rep. $L^2(p^i, x^i)$ of mixed states + $-\rho(p^i, x^i)$ as wavefunctions (self-dual real cone) extra operators — $\tilde{G}_s = G_s \star - \star G_s$ \longrightarrow all $G_s(p^i, x^i)$ diagonal but $\tilde{G}_s \rho = {\tilde{G}_s, \rho}_{\star} \to \text{Hamiltonian vector field}$ \rightarrow correct limit under Heisenberg picture dynamics

Relativity for Simple Quantum Mechanics :

• need $[X_i, P_j] = i(\hbar) \, \delta_{ij} I$

-I as central charge, commutes with all

- Heisenberg-Weyl \subset extended Galileo
- (configuration) space coset : $\widetilde{G}(3)/[ISO(3) \times \{T\}]$

$$\left(egin{array}{c} dx^i \ d heta \ 0 \end{array}
ight) = \left(egin{array}{cc} \omega^i_j & 0 & ar{x}^i \ ar{p}_j & 0 & ar{ heta} \ 0 & 0 & 0 \end{array}
ight) \left(egin{array}{c} x^j \ heta \ heta \ 1 \end{array}
ight) = \left(egin{array}{c} \omega^i_j x^j + ar{x}^i \ ar{p}_j x^j + ar{ heta} \ ar{p}_j x^j + ar{ heta} \ 0 \end{array}
ight)$$

 $\star \theta$ as coordinates ?!

Quantum Phase Space from Coherent States : $|p^i,x^i
angle\equiv e^{-i heta}U(p^i,x^i, heta)|0,0
angle$ $- U(p_i^i x_i^i \theta) \equiv e^{i(p^i \hat{X}_i - x^i \hat{P}_i + \theta \hat{I})}$ as unitary rep. of HW group • \hat{X}_i translates p^i and \hat{P}_i translates x^i • overcomplete basis \longrightarrow (abstract) Hilbert space \mathcal{H} • wavefunctions $\phi(p^i, x^i)$: — not delta function — Gaussian centered on (p^i, x^i) , minimal uncertainty $-x^i$ and p^i are only expectation values $|0,0\rangle$ explicit — ground state of SHO

— the 'classical states' described in QM

Coset to Coherent States :

- ullet point on coset space $(p^i, x^i, heta) \leftrightarrow e^{i heta} ig| p^i, x^i ig
 angle$
- transformations of coset unitary rep. on \mathcal{H}
- works also for (configuration) space

$$ig|x^iig
angle\equiv e^{-i heta}U'(x^i, heta)ig|0
angle$$

 $- U'(x, \theta) \equiv e^{i(-x^i \hat{P}_i + \theta \hat{I})}$ from subgroup generated by $\{P_i, I\}$

- results on coset $\Rightarrow \left| x^{i}
ight
angle$ as eigenstate of \hat{X}_{i}

— the Hilbert space as physical space for QM

Classical Limit — $\hbar \to 0$ approximation : • classical symmetry as approximation — symmetry (algebra) contraction, rep. contracts • on cosets I decouples : $[X_i, P_j] \to 0$ — $d\theta = \bar{\theta}, \quad dx^i$ and $dp^i \theta$ -independent

- Hilbert space \rightarrow sum of 1-D subspaces
- -*i.e.* only coherent states, no superpositions
 - but set of coherent states \leftrightarrow coset space

$$\begin{split} X_i^c &= \frac{1}{k} X_i \text{ and } P_i^c = \frac{1}{k} P_i \text{ with } k \to \infty \left(\frac{1}{k^2} \sim \hbar \right) \\ &[X_i^c, P_j^c] = \frac{i}{k^2} \delta_{ij} I \to 0 \\ \hline \text{group parameters (also cosets)} : p_c^i = k p^i \text{ and } x_c^i = k x^i \\ &\begin{pmatrix} dp_c^i \\ dx_c^i \\ d\theta \\ 0 \end{pmatrix} = \begin{pmatrix} \omega_j^i & 0 & 0 & \bar{p}_c^i \\ 0 & \omega_j^i & 0 & \bar{x}_c^i \\ -\frac{1}{2k^2} \bar{x}_{cj} & \frac{1}{2k^2} \bar{p}_{cj} & 0 & \bar{\theta} \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} p_c^j \\ x_c^i \\ \theta \\ 1 \end{pmatrix} \\ & \begin{pmatrix} dx_c^i \\ d\theta \\ 0 \end{pmatrix} = \begin{pmatrix} \omega_j^i & 0 & \bar{x}_c^i \\ \frac{1}{k^2} \bar{p}_{cj} & 0 & \bar{\theta} \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_c^j \\ \theta \\ 1 \end{pmatrix} \\ \hline \text{-only } d\theta = \bar{\theta}, \, dx_c^i = \omega_j^i x_c^j + \bar{x}_c^i, \, dp_c^i = \omega_j^i p_c^j + \bar{p}_c^i \text{ (Newtonian)} \end{split}$$

for the coherent states : $\tilde{p}_i^c = \sqrt{\hbar} p_i$ and $\tilde{x}_i^c = \sqrt{\hbar} x_i$

$$egin{array}{lll} \left\langle ilde{p}_i^{\prime c}, ilde{x}_i^{c} \left| \left. \hat{x}_i^{c} \left| \left. ilde{p}_i^{c}, ilde{x}_i^{c}
ight
angle
ight
angle &=& rac{(ilde{x}_i^{\prime c} + ilde{x}_i^{c}) - i(ilde{p}_i^{\prime c} - ilde{p}_i^{c})}{2} \left\langle ilde{p}_i^{\prime c}, ilde{x}_i^{\prime c} \left| ilde{p}_i^{c}, ilde{x}_i^{c}
ight
angle
ight
angle &=& rac{(ilde{x}_i^{\prime c} + ilde{x}_i^{c}) - i(ilde{p}_i^{\prime c} - ilde{p}_i^{c})}{2} \left\langle ilde{p}_i^{\prime c}, ilde{x}_i^{\prime c} \left| ilde{p}_i^{c}, ilde{x}_i^{c}
ight
angle
ight
angle &=& rac{(ilde{p}_i^{\prime c} + ilde{p}_i^{c}) + i(ilde{x}_i^{\prime c} - ilde{x}_i^{c})}{2} \left\langle ilde{p}_i^{\prime c}, ilde{x}_i^{\prime c} \left| ilde{p}_i^{c}, ilde{x}_i^{c}
ight
angle
ight
angle
ight
angle &=& rac{(ilde{p}_i^{\prime c} + ilde{p}_i^{c}) + i(ilde{x}_i^{\prime c} - ilde{x}_i^{c})}{2} \left\langle ilde{p}_i^{\prime c}, ilde{x}_i^{\prime c} \left| ilde{p}_i^{c}, ilde{x}_i^{c}
ight
angle
ight
angle$$

$$ig\langle ilde{p}_i^{\prime c}, ilde{x}_i^{\prime c} | ilde{p}_i^c, ilde{x}_i^c ig
angle = \exp igg[i rac{ ilde{x}_i^{\prime c} ilde{p}_i^c - ilde{p}_i^{\prime c} ilde{x}_i^c}{2\hbar} igg] \exp igg[-rac{(ilde{x}^{\prime c} - ilde{x}^c)^2 + (ilde{p}^{\prime c} - ilde{p}^c)^2}{4\hbar} igg] \ igg\langle ilde{p}_i^c, ilde{x}_i^c | ilde{p}_i^c, ilde{x}_i^c igg
angle = 1$$

$$\begin{split} &\exp\left[\cdot\right] \to e^{-\infty} = 0 \quad \implies \hat{X}_i^c \text{ and } \hat{P}_i^c \text{ diagonal on } \left|\tilde{p}_i^c, \tilde{x}_i^c\right\rangle \\ &- \text{ eigenstates of all observables (rep. reducible)} \end{split}$$

 $\ket{x_i}
ightarrow \ket{ ilde{x}_i^c}$ also eigenstates of all observables

Quantum Model of the Physical Space

Quantum Mechanics is Particle Dynamics on the Quantum Space

Newtonian Space is only a model of our physical space, the model behind Newtonian mechanics. Our quantum relativity approach gives a quantum model of the physical space as behind quantum mechanics which allows as intuitive a description for quantum theory as the classical theory.

A Quantum Space behind Simple Quantum Mechanics C.S. Chew, O.C.W. Kong*, J. Payne. Adv. High Energy Phys. 2017 (2017) 4395918 **Quantum Mechanics**

can and should be seen as

Particle Dynamics on the Quantum Space

rather than

Quantized Dynamics on the Newtonian space

- Quantum : NC coordinates or ∞ -real numbers
- metric : $dx^2 + dp^2$ proper units (Planck ?) familiar — $x \gg 1$ and $p \ll 1$

 $\begin{array}{c} \text{`spacetime' \& energy-momentum} \\ \longrightarrow \text{SPACETIME} \\ \text{(Einstein : space \& time} \rightarrow \text{`spacetime'}) \end{array}$

Another Look at the ∞ -D Space :

- quantum phase space is ∞ -D symplectic manifold

Geometry — metric and curvature :

— story of projective Hilbert space (CP^{∞})

- a Kähler manifold with hol. sect. curvature of $\frac{2}{\hbar}$
- symplectic Vs (FS) metric $\omega = g(JX, Y); J^2 = -1$
- $g \rightarrow$ dispersion structure for uncertainty
- Kählerian function as observables
- Hamiltonian flows that preserve Kähler structure
- $\bullet \ cosD_{
 m \scriptscriptstyle FS} = |\langle \psi | \phi
 angle | o {
 m coherent states}: \ ds^2 = dp^2 + dx^2$
- caution : $\mathcal{H} \rightarrow$ sections of U(1) bundle

The Physical World is *Quantum* ! we (still) describe Quantum Mechanics with *Classical Concepts* Intuitive Concepts are not Classical !

- Quantum Concepts no less Intuitive
- the Classical ones only more familiar

the main culprit : 'Quine's *convenient fiction*' – real numbers

NEW PICTURE OF QUANTUM PHYSICS :

• Newtonian space (3D Euclidean space) model is the classical approximation of the quantum space model, as the contraction limit of the quantum relativity symmetry

• the quantum physical space can be described as ∞ -D Kähler manifold or a 6 'dimensional' noncommutative geometry

• a quantum particle has a location given by a point in the quantum physical space, coordinates of which can be determined (in principle) with arbitrary precision • fixing a state fixed values of all observables without uncertainty

• value of an observable should be seen as an infinite set of real numbers, or a noncommutative number, a piece of quantum information about the system

• uncertainties as in the Heisenberg uncertainty principle *apply only* to the best single real number value description of an observable

• Born probability *is only* a statement about results of von Neumann (eigenvalue-answered) measurement, a consequence of decoherence induced by the measuring process

- understanding the spacetime key issue in physics
- need to go beyond classical models
- Lie group for relativity symmetry amazingly powerful
- quantum geometry = noncommutative geometry starting from the simplest and most solid — Q.M.
- ? quantum field theory says about spacetime
 one system, quantum fields as degrees of freedom

★ quantum measurement deals with quantum information
— a change of perspective similiar to Copernicus' ?

THANK YOU!