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Prologue : Quantum Gravity

(Geometro-)

Dynamics of Quantum Spacetime

rather than

Quantum Dynamics of (Classical)

Spacetime



Prologue : Geometrodynamics

Spacetime Geometry

Noncommutative G. ⇔ Quantum Gravity

Non-Euclidean G. ⇔ Classical Gravity



Real Space central to Classical Mechanics :

— the ‘Why Particle ?’ question

• 3D Euclidean space is only the Newtonian model

• Newton’s Laws are only definitions

• Galilean Relativity is the premises

— the Physical Space as a representation

— also phase space, observable algebra, . . .

? mathematics : vector space, topological space,

algebraic (noncommutative) geometry, . . .



Relativity Symmetry :

• central to fundamental physics – examples . . .

• symmetry of reference frame transformations

• symmetry of physical space(-time) model

• symmetry of (free particle) configuration space

— which is the physical space

• symmetry of (free particle) phase space

? (center of mass for) any system behaves as a free particle



Coset Spaces as Homogeneous Spaces :

— Lie group and Lie algebra

• coset space = group/subgroup as a representation

• Lie group ⇒ homogeneous spaces, symplectic manifolds

• Einstein/Poincaré → Galilei/Newton (c → ∞)

• Minkowski spacetime = ISO(1, 3)/SO(1, 3)

{Lµ,ν , Pµ}/{Lµ,ν}, [Ki,Kj ] ∼
1

c2 Lij

• Newtonian space-time = G(0, 3)/ISO(0, 3), L0,i → Ki

• Newtonian phase space = G(0, 3)/[SO(0, 3) × {T}]

Ki = mXi
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• (3D) physical space : dxi = ωi
j
xj + x̄i

• (3 × 2 D) phase space : also dpi = ωi
j
pj + p̄i

— displacement in pi generated by Xi (boosts)



SO(2,4) Noncommutative Geometry :-
cf. Kowalski-Glikman & Smolin ;

Chryssomalakos & Okon ; O.K.

• spacetime position operators X̂µ = i

κc
(xµ∂4 − x4 ∂µ)

[X̂µ, X̂ν] =
i

κ2c2
Mµν

• energy-momentum operators P̂µ = i

`
(xµ∂5 − x5 ∂µ)

[P̂µ, P̂ν] = −
i

`2
Mµν

[X̂µ , P̂ν ] = i ηµν F̂ , [X̂µ , F̂ ] = −

i

κ2c2
P̂µ , [P̂µ , F̂ ] = −

i

`2
X̂µ

• i ∂µ � κc and i ∂4 = p4 = κc : X̂µ −→ xµ

• xµ � ` and x5 = −` (ρ = 1) : P̂µ −→ i ∂µ = pµ



Fundamental (Special) Quantum Relativitiy:

SO(2,4)

• contains noncommuting Xµ and Pµ

• contains Lorentz symmetry

• stable symmetry, no deformation

• G, h̄, c in structural constants

• contractions as approximations

SO(2,4) −→ ISO(1,4) −→ HR(1, 3)

HR(1, 3) −→ HR(3)+

(h̄ ↓ 0) ↓ ( 1

c2 → 0) ↓

Einstein(S.R.)+ −→ Newtonian

• deformation is ‘inverse’ of contraction



Mathematical Scheme :-

relativity symmetry G group C∗-algebra

unitary irrep. (on H) topo. cyclic irr. *-rep

– coherent states from G/H – α(p, x) with ?-product

P(H) as space(time) algebra of observables

Hamiltonian flows ‘Heisenberg’ flows

φ(p, x) ↔ (Wigner) ρ(p, x) ⇐= GNS construction

∞ Kähler zn NC X̂ = x?, P̂ = p?

G/H commutative : φ(p, x) → δ(p, x), X̂ = x, P̂ = p

‘Heisenberg’ → Poisson



Observables, Dynamics, Phase Space, all from Symmetry :

i.e. H(3)×o(SO(3)× T ) = G̃(3)

• algebraic formulation from observables

• Connes’ noncommutative geometry (A, H, D)

• C∗(H(3)) −→ A left regular rep.

α(pi, xi) −→ α(pi, xi)? = α(pi?, xi?)

— group C∗-algebra C∗(H(3)) ⇐= C∗(G̃(3))

— topological irreducible rep. from H(3) on H

• unitary flows ↔ automorphisms U?? α? Ū?

H(3)×o(SO(3)× T ) = G̃(3) — spin 0 rep.

•
d

ds
α = 1

ih̄
{α, Gs}? ⇐⇒

d

ds
α? = [α?, Gs?]



• Weyl-Wigner (WWGM) from coherent state basis

— C∗(H(3)) −→ H from Tr[ρo·]

— ρ ∼ φ ? φ̄ (ρo ∼ φo); Tr −→
∫

dµ (← group metric)

— α(pi, xi)? on H = {α? φo(p
i, xi); α ∈ L2(pi, xi)}

• C(pi?, xi?) : operators as nc coordinates (?)

• Geometry : (?) Dirac operator D ∼ (ds)−1 on H

typical example : sections of spin bundle on manifold

— (pi?, xi?) metric(?) Vs Kähler metric on “H” (⊂ A)

• A as C(X) — X : unit ball in H∗, compact Hausdorff

• A as C(H(3))∗ — space of irrep. , not Hausdorff



Relativity Contraction as Dequantization :

−→ Newtonian limit (Poisson algebra; KvN Hilbert space)

• H → HKvN ∼ (pi, xi) reduces to 1-D reps.

• α(pi, xi)? → α(pi, xi) ; C∗(H(3)) → C(pi, xi)

• Tomita rep. L2(pi, xi) of mixed states +

— ρ(pi, xi) as wavefunctions (self-dual real cone)

extra operators — G̃s = Gs? − ?Gs

−→ all Gs(p
i, xi) diagonal

but G̃sρ = {G̃s, ρ}? → Hamiltonian vector field

−→ correct limit under Heisenberg picture dynamics



Relativity for Simple Quantum Mechanics :

• need [Xi, Pj ] = i(h̄) δijI

— I as central charge, commutes with all

• Heisenberg-Weyl ⊂ extended Galileo

• (configuration) space coset : G̃(3)/[ISO(3) × {T}]
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? θ as coordinates ?!



Quantum Phase Space from Coherent States :
∣

∣pi, xi
〉

≡ e−iθU(pi, xi, θ)|0, 0〉

— U(pi,xi,θ)≡ei(piX̂i−xiP̂i+θÎ) as unitary rep. of HW group

• X̂i translates pi and P̂i translates xi

• overcomplete basis −→ (abstract) Hilbert space H

• wavefunctions φ(pi, xi) : — not delta function

— Gaussian centered on (pi, xi), minimal uncertainty

— xi and pi are only expectation values

— |0, 0〉 explicit — ground state of SHO

— the ‘classical states’ described in QM



Coset to Coherent States :

• point on coset space (pi, xi, θ) ↔ eiθ
∣

∣pi, xi
〉

— transformations of coset −→ unitary rep. on H

• works also for (configuration) space
∣

∣xi
〉

≡ e−iθU ′(xi, θ)|0〉

— U ′
(xi,θ)≡ei(−x

i
P̂i+θÎ) from subgroup generated by {Pi, I}

— results on coset ⇒
∣

∣xi
〉

as eigenstate of X̂i

— the Hilbert space as physical space for QM



Classical Limit — h̄ → 0 approximation :

• classical symmetry as approximation

— symmetry (algebra) contraction, rep. contracts

• on cosets I decouples : [Xi, Pj] → 0

— dθ = θ̄, dxi and dpi θ-independent

• Hilbert space → sum of 1-D subspaces

— i.e. only coherent states, no superpositions

— but set of coherent states ↔ coset space



Xc
i = 1

k
Xi and P c

i = 1

k
Pi with k → ∞ ( 1

k2
∼ h̄)

[Xc
i , P c

j ] = i

k2
δijI → 0

— group parameters (also cosets) : pi
c = kpi and xi

c = kxi
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for the coherent states : p̃c
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Quantum Model of the Physical Space

Quantum Mechanics is Particle Dynamics on the Quantum Space

Newtonian Space is only a model of our physical space, the model behind Newtonian mechanics. Our quantum
relativity approach gives a quantum model of the physical space as behind quantum mechanics which allows as

intuitive a description for quantum theory as the classical theory.

A Quantum Space behind Simple Quantum Mechanics
C.S. Chew, O.C.W. Kong*, J. Payne.
Adv. High Energy Phys. 2017 (2017) 4395918

Quantum
Galilean
Relativity 
Symmetry

Quantum
Space 
Coset

Quantum Phase 
Space Coset

Quantum 
Hilbert 
Space Hq

Quantum (Phase) Space :
Projective Hilbert space P(Hq)

Classical 
(Galilean)
Relativity 
Symmetry

Newtonian Space 
(Coset) =Projective 
Hilbert space P(Hs)

Newtonian Phase 
Space (Coset)
=Projective Hilbert 
space P(Hp)

Hilbert Space 
Hs

Hilbert Space Hp

Contraction of the symmetry 
and its representations:



Quantum Mechanics

can and should be seen as

Particle Dynamics on the Quantum Space

rather than

Quantized Dynamics on the Newtonian space



Phase Space as Physical Spacetime :-

• Quantum : NC coordinates or ∞-real numbers

• metric : dx2 + dp2 — proper units (Planck ?)

familiar — x � 1 and p � 1

‘spacetime’ & energy-momentum

−→ SPACETIME

( Einstein : space & time → ‘spacetime’ )



Another Look at the ∞-D Space :

— quantum phase space is ∞-D symplectic manifold

• with an orthonormal basis

|φ〉 =
∑

(qn + ipn)|n〉 =
∑

qn|n〉 +
∑

pn|(i)n〉

— (qn, pn) gives a set of 2n real coordinates

• Schrödinger equation ih̄ d

dt
|φ〉 = Ĥ|φ〉 is equivalent to

d

dt
qn =

∂

∂pn

H(pn , qn) ,
d

dt
pn = −

∂

∂qn

H(pn , qn)

with H(pn , qn) = 2

h̄

〈

φ|Ĥ |φ
〉

• qn gives a set of ∞ coordinates for the physical space ??

• BUT rep. irreducible – unlike classical case



Geometry — metric and curvature :

— story of projective Hilbert space (CP∞)

• a Kähler manifold with hol. sect. curvature of 2

h̄

• symplectic Vs (FS) metric — ω = g(JX, Y ); J2 = −1

• g → dispersion structure for uncertainty

• Kählerian function as observables

— Hamiltonian flows that preserve Kähler structure

• cosDFS = | 〈ψ|φ〉 | → coherent states : ds2 = dp2 + dx2

• caution : H → sections of U(1) bundle



The Physical World is Quantum !

we (still) describe Quantum Mechanics

with Classical Concepts



Intuitive Concepts are not Classical !

– Quantum Concepts no less Intuitive

– the Classical ones only more familiar

the main culprit : ‘Quine’s convenient

fiction’ – real numbers



NEW PICTURE OF QUANTUM PHYSICS :

• Newtonian space (3D Euclidean space) model is

the classical approximation of the quantum space

model, as the contraction limit of the quantum

relativity symmetry

• the quantum physical space can be described as

∞-D Kähler manifold or a 6 ‘dimensional’

noncommutative geometry

• a quantum particle has a location given by a

point in the quantum physical space, coordinates

of which can be determined (in principle) with

arbitrary precision



• fixing a state fixed values of all observables

without uncertainty

• value of an observable should be seen as an

infinite set of real numbers, or a noncommutative

number, a piece of quantum information about

the system

• uncertainties as in the Heisenberg uncertainty

principle apply only to the best single real

number value description of an observable

• Born probability is only a statement about

results of von Neumann (eigenvalue-answered)

measurement, a consequence of decoherence

induced by the measuring process



More Concluding Remarks :

• understanding the spacetime — key issue in physics

• need to go beyond classical models

— Lie group for relativity symmetry amazingly powerful

• quantum geometry = noncommutative geometry

starting from the simplest and most solid — Q.M.

• ? quantum field theory says about spacetime

— one system, quantum fields as degrees of freedom

? quantum measurement deals with quantum information

— a change of perspective similiar to Copernicus’ ?



THANK Y OU !

well done Otto !


	未命名



