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(Geometro-)
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Noncommutative G. & Quantum Gravity

Non-Euclidean G. & Classical Gravity




Real Space central to Classical Mechanics :

— the ‘Why Particle 7’ question

e 3D Euclidean space is only the Newtonian model
e Newton’s Laws are only definitions

e Galilean Relativity is the premises

— the Physical Space as a representation

— also phase space, observable algebra, ...

* mathematics : vector space, topological space,
algebraic (noncommutative) geometry, ...




Relativity Symmetry :

e central to fundamental physics — examples ...
e symmetry of reference frame transformations

e symmetry of physical space(-time) model

e symmetry of (free particle) configuration space
— which is the physical space

e symmetry of (free particle) phase space

* (center of mass for) any system behaves as a free particle




Coset Spaces as Homogeneous Spaces :

— Lie group and Lie algebra

e coset space = group/subgroup as a representation

e Lie group = homogeneous spaces, symplectic manifolds

¢ Einstein/Poincaré — Galilei/Newton (¢ — o)
e Minkowski spacetime = I50(1,3)/50(1,3)
{Lpw, But/{Lpv} (K, K] ~ C%Lij
e Newtonian space-time = G(0,3)/150(0,3), L,; — K,

e Newtonian phase space = G(0,3)/[S0O(0,3) x {T'}]
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e (3D) physical space : dz* = w":ja:j 4z

e (3 X 2 D) phase space : also dp* = w";.pj 4 P
— displacement in p* generated by X; (boosts)




SO(2,4) Noncommutative Geometry :-

cf. Kowalski-Glikman & Smolin ;
Chryssomalakos & Okon ; O.K.

e spacetime position operators = — (p0, — T, 0,)
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Fundamental (Special) Quantum Relativitiy:
SO(2,4)
contains noncommuting X, and P,
contains Lorentz symmetry
stable symmetry, no deformation
G, h, c in structural constants

contractions as approximations

SO(2,4) — ISO(1,4) — Hg(1,3)

H.(1,3) — H(3)+

(7 1 0) l = —0) l
Einstein(S.R.)+ ——  Newtonian

e deformation is ‘inverse’ of contraction




Mathematical Scheme :-

relativity symmetry G group C*-algebra

unitary irrep. (on H) topo. cyclic irr. *-rep
— coherent states from G/H — a(p,x) with x-product
P(H) as space(time) algebra of observables
Hamiltonian flows ‘Heisenberg’ flows
¢(p, x) «— (Wigner) p(p,x) <=  GNS construction
oo Kahler z, NC X = a*, P = Dk

G/H commutative :

‘Heisenberg’ — Poisson




Observables, , Phase Space, all from Symmetry :

i.e. H (3) = G(3)

e algebraic formulation from observables

e Connes’ noncommutative geometry (A, H, D)
e C*(H(3)) —m A left regular rep.
a(p,x*) — a(p’, z")* = a(p, z%)
— group C*-algebra C*(H (3)) <
— topological irreducible rep. from H(3) on H

e unitary flows «—
H(3) = G(3) — spin 0 rep.

= %{a, k <= = [ax, ]




e Weyl-Wigner (WWGM) from coherent state basis
— C*(H(3)) — H from Tr|[p,-]

—p~d*kd (po~ ¢o); Tr — [du (+ group metric)
— a(p’, )% on ‘H = {ax* ¢,(p*, *);a € L?(p*, z*)}

e C(p*,x%) : operators as nc coordinates (?)

e Geometry : (?) Dirac operator D ~ (ds)~ ! on H

typical example : sections of spin bundle on manifold

— (p%, %) metric(?) Vs Kihler metric on “H” (C A)

e Aas C(X)— X : unit ball in H*, compact Hausdorff
e Aas C(H(3))* — space of irrep. , not Hausdorff




Relativity Contraction as Dequantization :

—— Newtonian limit (Poisson algebra; KvIN Hilbert space)

o H — Hxwv ~ (pt,2*) reduces to 1-D reps.

o a(p’,z’)k — a(pt,x*) 3 C*(H(3)) — C(p*,z")

e Tomita rep. L?(p*, ') of mixed states +
— p(pt, =*) as wavefunctions (self-dual real cone)
extra operators — G, = Gx — %G,

— all G4(p%, *) diagonal

but ésp — {és, p}« — Hamiltonian vector field

—— correct limit under Heisenberg picture dynamics




Relativity for Simple Quantum Mechanics :

e need [Xza PJ] = Z(h) (5ng
— 1 as central charge, commutes with all

e Heisenberg-Weyl C extended Galileo

e (configuration) space coset : G(3)/[ISO(3) x {T}]

w;.wj + T*
ﬁjacj -+ 6

0

% 0 as coordinates 7!




Quantum Phase Space from Coherent States :

‘pia $z> = e_wU(pia wia 6)[0,0)

— U(pizi) = W XaPito) a9 ynitary rep. of HW group

° X'z translates p* and Pz translates x*

e overcomplete basis — (abstract) Hilbert space H
e wavefunctions ¢(p*, x*) : — not delta function

— Gaussian centered on (p*, z'), minimal uncertainty
— x* and p* are only expectation values

— |0, 0) explicit — ground state of SHO

— the ‘classical states’ described in QM




Coset to Coherent States :

® point on coset space (pi, fL‘i, 9) — €i9‘pia $Z>

— transformations of coset — unitary rep. on H

e works also for (configuration) space
') = e U (2%, 6)]0)

— U'(z'0) = &P+ from subgroup generated by {P;, I'}

— results on coset = ‘azz> as eigenstate of Xz

— the Hilbert space as physical space for QM




Classical Limit — h — 0 approximation :

e classical symmetry as approximation

— symmetry (algebra) contraction, rep. contracts

e on cosets I decouples : [X;, P;] — 0

— do = 6, dz® and dp® 0-independent

e Hilbert space — sum of 1-D subspaces
— 1.e. only coherent states, no superpositions

— but set of coherent states «— coset space




X¢=+X; and Pf =

c=1 P; with k — oo (35 ~ h)
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— group parameters (also cosets) : pi = kp® and :132 = kx*
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— only dO = 0, dzb, = w;mﬁ + &, dpt = wgpﬁ + p. (Newtonian)




for the coherent states : p§ = Vhp; and i = Vha;
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exp[] e > =0 — X’f and Pic diagonal on ‘ﬁf, :Ef>

— eigenstates of all observables (rep. reducible)

;) — |Z$) also eigenstates of all observables




Quantum Model of the Physical Space

Quantum )
Hilbert Contraction of the symmetry

Space and its representations:
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Quantum :
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Quantum Mechanics is Particle Dynamics on the Quantum Space

Newtonian Space is only a model of our physical space, the model behind Newtonian mechanics. Our quantum
relativity approach gives a quantum model of the physical space as behind quantum mechanics which allows as

intuitive a description for quantum theory as the classical theory.

A Quantum Space behind Simple Quantum Mechanics
C.S. Chew, O.CW. Kong*, J. Payne.
Adv. High Energy Phys. 2017 (2017) 4395918




Quantum Mechanics

can and should be seen as

Particle Dynamics on the Quantum Space

rather than

Quantized Dynamics on the Newtonian space




Phase Space as Physical Spacetime :-

e Quantum : NC coordinates or oco-real numbers

e metric : dx? + dp? — proper units (Planck 7)

familiar — x> 1 and p K 1

‘spacetime’ & energy-momentum
— SPACETIME
( Einstein : space & time — ‘spacetime’ )




Another Look at the co-D Space :

— quantum phase space is co-D symplectic manifold

e with an orthonormal basis
@) = 2_(gn + ipPn)|n) = > qnln) + > pnl(i)n)

— (qn, pn) gives a set of 2n real coordinates

e Schrodinger equation ih%hb) —H |p) is equivalent to

d o d 0,

L an = -2 H(pn,qn S pn = ——— H(pn, gn
274 T (Pnsqn) » 7P Ban (Prs @n)

with H(pn,qn) = 2 (¢|H|9)
® g, gives a set of co coordinates for the physical space 77

e BUT rep. irreducible — unlike classical case




Geometry — metric and curvature :

— story of projective Hilbert space (CP°°)

e a Kahler manifold with hol. sect. curvature of %

e symplectic Vs (FS) metric — w = g(JX,Y); J? = —1
e g — dispersion structure for uncertainty

e Kahlerian function as observables

— Hamiltonian flows that preserve Kahler structure

e cosD,s = | (1|¢) | — coherent states : ds? = dp? + dz?

e caution : H — sections of U (1) bundle




The Physical World is Quantum !

we (still) describe Quantum Mechanics

with Classical Concepts




Intuitive Concepts are not Classical !
— Quantum Concepts no less Intuitive

— the Classical ones only more famaliar

the main culprit : ‘Quine’s convenient

fiction’ — real numbers




NEW PICTURE OF QUANTUM PHYSICS :

e Newtonian space (3D Euclidean space) model is

the classical approximation of the quantum space
model, as the contraction limit of the quantum
relativity symmetry

e the quantum physical space can be described as
oo-D Kahler manifold or a 6 ‘dimensional’

noncommutative geometry

e a quantum particle has a location given by a
point in the quantum physical space, coordinates
of which can be determined (in principle) with

arbitrary precision




e fixing a state fixed values of all observables

without uncertainty

e value of an observable should be seen as an
infinite set of real numbers, or a noncommutative
number, a piece of quantum information about
the system

e uncertainties as in the Heisenberg uncertainty
principle apply only to the best single real
number value description of an observable

e Born probability 2s only a statement about

results of von Neumann (eigenvalue-answered)

measurement, a consequence of decoherence
induced by the measuring process




More Concluding Remarks :

e understanding the spacetime — key issue in physics
® need to go beyond classical models

— Lie group for relativity symmetry amazingly powerful

e quantum geometry — noncommutative geometry

starting from the simplest and most solid — Q.M.

e 7 quantum field theory says about spacetime

— one system, quantum fields as degrees of freedom

* quantum measurement deals with quantum information

— a change of perspective similiar to Copernicus’ ?
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