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I

Abstract

The differential cross section of φ(1020) meson photoproduction from deuterium target has
been studied and compared with the results from hydrogen target in the energy range from the
production threshold to Eγ = 2.4 GeV. The experiment was performed using linearly-polarized
photon beam at SPring-8/LEPS facility. By fitting the missing mass spectra assuming deuteron
as target, the contribution of coherent and incoherent interactions are disentangled. The differ-
ential cross section of LD2 coherent interaction has a large exponential slope and the intercept
at t = tmin increases with photon energy. The differential cross section of LD2 incoherent events
shows a strong isotopic effect. The structure of non-monotonically increasing are observed in
LD2 incoherent and LH2 events, indicating the existence of new dynamics that may involve a
multigluon exchange beyond standard Pomeron exchange process.
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Chapter 1

Introduction

In this chapter, the physics motivation for the study for φ(1020) meson photoproduction is
discussed. The historical background of the intermediate-energy nuclear physics is mentioned.
The vector meson photoproduction and some theoretical approaches to it are discussed. The
specialty of φ-meson photoproduction from deuteron is explained.

1.1 Fundamental

“What is matter made of?” Human being has long been asking this question. It is believed
that behind all the multitudinous phenomena, there lies rules which can be described by basic
constituents and ultimate ways they interact with each other. Efforts on searching and inves-
tigating the fundamental building blocks of matter and the interactions among these building
blocks have therefore been made. Not only because of curiosity, but understanding this an-
cient puzzle would surely shed light on those exciting and challenging problems of the modern
science.

Since the question needs to be answered on the most fundamental level, which is to say, on
the smallest scale of size, another question arose: how to perform experiments that are capable
to measure the desired information about the fundamental property of nature?

The famous scattering experiment performed by Rutherford in 1911 gave a good example.
By firing a beam of α-particles into a thin sheet of gold foil and the fact that most of the
α-particles passed through but a few of them been deflected or bounced back at large angles,
Rutherford concluded that the atoms are consisted of positively charged tiny massive cores
surrounded by negatively charged light electrons and therefore overruled the atom model as a
diffuse sphere as suggested by J.J. Thomson.

In the same way, scientists used particles as the probes just like what Rutherford did. And
the spatial resolution of these kinds of probes is related and limited to the wave-like nature of
the particles used, which is similar to the case in optics. By the formulation of Louis-Victor de
Broglie, this wave-like nature can be written as:

λ = h/p (1.1)

where λ is the wave length, h is Plank’s constant, and p is the particle momentum. As can be
seen in the formula, with the higher momentum (that is, higher energy) of the particles used,
the shorter wave length and the better resolution can be achieved.

There are three main sources to acquire demanded particles: cosmic rays, nuclear reactors,
and particle accelerators. Cosmic rays are free and their energy can be extremely high, but
the rate of the desired events from them is too low and they are uncontrollable. The nuclear

1
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reactors provide particles by the disintegration of radioactive nucleus, while the energy scale of
the produced particles is limited. The advent of particle accelerators provided convenient and
controllable ways to produce particles and interactions, and can reach energies as high as TeV
(1012 eV) nowadays.

1.2 The Standard Model and the strong interaction

Classical mechanics describes well the world of everyday life. But for objects traveling at
speeds comparable to the speed of light, special relativity is needed to make modification, and
for objects that are as small as the size of atoms, classical rules are replaced by quantum
mechanics. When it comes to objects that are both fast and small, which are usually the case
for elementary particles, we need a theory that incorporates relativity and quantum mechanics.

Table 1.1: The fundamental fermions

Particle Flavour Q/|e|

quarks
u c t

d s b

+2/3

−1/3

leptons
e µ τ

νe νµ ντ

-1

0

The most widely accepted theory of this approach is the quantum field theory (QFT, actually
it’s a collection of related theories). Under the framework of QFT and with the accumulated ex-
perimental evidence, the Standard Model which incorporates quantum electrodynamics (QED),
the Glashow-Weinberg-Salam theory of electroweak process, and quantum chromodynamics
(QCD) has been constructed. The Standard Model is believed not to be the final answer–it
still have some limitations and, for example, the gravitational interaction is not included in it
because of the experimental difficulty due to the feeble magnitude of gravity. The Standard
Model provides at least a full deck of cards to play with, and it is also believed that future
developments shall be the extensions of the Standard Model, not contradiction.

The Standard Model consists of two major parts: the spin-1/2 fermions, and the integer-spin
bosons as are listed in Table 1.1, and Table 1.2. As described in the model, all matter is built
from the fermions: six quarks and six leptons. For example, the familiar nucleons, proton and
neutron, are consist of the quarks uud and udd. These fermion constituents interact with
each other by constantly exchanging specific boson mediators: the electromagnetic interaction
between electrically charged particles is carried out by the exchanging of photons between them
as an example.

The quarks possess color charges (red, green, and blue) and this degree of freedom is the
necessity to take part in strong interaction just like the electric charge is needed for electro-
magnetic interaction. Although the quarks are convinced to be the fundamental constituents

Table 1.2: The boson mediators

Interaction Mediator Spin/parity

strong gluon, G 1−

electromagnetic photon, γ 1−

weak W±, Z0 1−, 1+
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Table 1.3: Example of hadrons

Hadron Particle Electric charge Mass (MeV/c2) Spin/parity

Baryons

p (uud)

p̄ ( ¯uud)

n (udd)

λ (uds)

Λ(1520) (uds)

Ω(sss)

1

-1

0

0

0

-1

938.3

938.3

939.6

1115.7

1519.5

1672.5

1

2

+

1

2

+

1

2

+

1

2

+

3

2

−

3

2

+

Mesons

π+ (ud̄)

π− (dū)

π0 ((uū− dd̄)/
√
2)

η ((uū+ dd̄)/
√
2)

ρ ((uū− dd̄)/
√
2)

ω ((uū+ dd̄)/
√
2)

φ (ss̄)

ηc (cc̄)

1

-1

0

0

0

0

0

0

139.6

139.6

135.0

547.5

768.5

781.9

1019.4

2979.8

0−

0−

0−

0−

1−

1−

1−

0−

of matter, they have not been observed directly. This phenomenon is referred to the property
called color confinement–the naturally existing strongly interacting particles must be formed
by quarks as a color singlet. The composites of quarks are therefore actually experimentally
observed strong-interaction participants and are referred to as hadrons. The hadrons can be
further classified in two groups: the baryons, fermions of three quarks composite, and the
mesons, bosons of quark-antiquark pair. Some baryons and mesons are listed in Table 1.3 for
example.

How the particles strongly interact with each other is to be given by QCD. QCD treats
strong interaction in terms of quark and gluon degrees of freedom. In the extremely high energy
regime, the asymptotic freedom of QCD allows to solve it perturbatively and QCD is well tested.
Nevertheless, this perturbative QCD (pQCD) approach is not applicable in the relatively low
energy region. Even though the QCD Lagrangian is know, it is difficult to solve analytically
because of it’s extreme nonlinearity. The only method which allows model-independent QCD
calculation to be made from first principles, so-called Lattice QCD, has only recently produced
promising results and is still limited by computer performance and other technical issues.

A more practical approach to the problems of physics of strong interactions is to make
modifications like replacing quark and gluon degrees of freedom by nucleons and mesons, to
construct models that emphasize the most important aspects of QCD, and to test them by
confronting them with the experimental data. Therefore, experiments that test various QCD
inspired models are essential in improving our knowledge of QCD in the non-perturbative
regime.

1.3 Vector meson photoproduction

The photoproduction of light vector meson is of special interest for many reasons. It brings
information on the dynamics of particle exchange, structure of baryon resonances, properties
of V NN ∗ interactions, and possible manifestation of the so-called “missing resonances”. The
study of vector-meson photoproduction is an important subject of the experimental programs at
photon and electron facilities such as Thomas Jefferson National Accelerator Facility, GRAAL
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at Grenoble, ELSA-SAPHIR at Bonn, and LEPS at SPring-8.

1.3.1 Vector meson dominance model

With all the fundamental particles known, the photon provides unique opportunities for us
to investigate the dynamics of the strong interaction between hadrons. Previous experimental
results have shown that except for the difference in the magnitude of the cross sections, the
real photon-hadron elastic and inelastic reactions behave very similarly to the corresponding
hadron-hadron reactions [1]. But unlike the hadrons, the electromagnetic properties of the
photon have been fully described by quantum electrodynamics. Thus, photon provides a clean
initial state to deal with strong interaction.

Photon, as the force carrier of electromagnetic interaction, can itself turn into electron-
positron pair via quantum fluctuation. When the energy of the photon goes up to GeV level,
it would possess the ability to fluctuate into a quark and a anti-quark pair. Base on this
concept of photon-hadron analogy, the vector meson dominance (VMD) model of photon-
hadron interaction is formulated.

As illustrated in Fig. 1.1, the basic vector meson dominance model assumes that photons,
real or virtual, interact with hadrons by first changing into neutral vector mesons having the
same quantum number with photon (JPC = 1−−), such as ρ (uū − dd̄/

√
2), ω (uū + dd̄/

√
2),

φ (ss̄), etc. Sure, this model doesn’t provide special insight into the strong interaction; it
transfers the photon-hadron-interaction study into a hadron-hadron one. But VMD is rather
useful because a fairly specific scheme is provided in this model.

incoming photon

incoming hadron

photon to 

meson coupling
vector meson

outgoing hadrons

Figure 1.1: The vector meson dominance model for photon-hadron interactions.

Vector-meson photoproduction with small four-momentum transfer squared has originally
been described within this VMD model. In this diffractive scattering case, mechanism respon-
sible for the particle interaction should be under non-perturbative regime of QCD. Various
interaction mechanisms are subsequently discussed.

1.3.2 Production mechanism

Diffractive hadron-hadron scattering can be described within Regge theory. Regge theory which
is formulated in the nineteen-sixties is a pre-QCD approach based on general analyticity and
crossing properties of scattering amplitudes [2, 3]. And it is found subsequently that QCD
perturbation theory can be organized following the general concepts of Regge theory.

In Regge theory, the exchange of particles in the t-channel is summed coherently to give
the exchange of so-called “Regge trajectories”. Diffractive scattering is characterized by the
exchange of the “Pomeron” trajectory which corresponds to the rightmost singularity in the
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complex angular momentum plane and has the quantum numbers of the vacuum. But Regge
theory cannot predict if the Pomeron is a single Regge pole along, consists of two Regge poles,
and so on.

Although being unobserved, Pomeron trajectory may be identified with a glueball trajectory
since the first particle state on the trajectory appears at m2 ' 4 GeV2 with quantum number
JPC = 2++. Pomeron exchange describes extremely well hadron-hadron interaction in non-
perturbative region at high energy. At large momentum transfer, this regime of Pomerons
interacting with nucleons must be replaced by gluons interacting with quarks [4]. Attempts on
developing an understanding of Pomeron exchange in terms of the quark and gluon degrees of
freedom of QCD are also been made, such as discussed in [5].

According to Regge phenomenology, only the exchanging particles that have vacuum quan-
tum numbers would give no vanishing contribution to total cross section with increasing energy.
The Pomeron-exchange therefore dominates in the high energy region and give good descrip-
tion for this reason. At low energies however, other contributions such as π-, η-meson exchange
would arise and may become detectable.

1.4 φ-meson photoproduction near production threshold

Diffractive photoproduction of φ(1020)-meson near threshold plays a special role in studying
the particle exchanging channels of hadronic interaction.

Due to the ss̄ valence quark content of φ, the common baryon- and meson-exchange am-
plitudes in the s- and t-channels are first-orderly suppressed by the Okubo-Zweig-Iizuka (OZI)
rule. As a consequence, primarily through Pomeron exchange does the scattering take place.
Therefore, φ photoproduction is commonly utilized as a tool to study the Pomeron exchange
dynamics.

At the low-energies of few GeVs, the contribution from Pomeron exchange drops because
of the positive power-law scaling of center-of-mass energy property of Pomeron exchange. On
the contrary, conventional pseudo-scalar π-, η-meson exchange channel of negative power-law
scaling of center-of-mass energy squared can still make significant contribution even they are
OZI suppressed.

Figure 1.2: Energy dependence of ρ- (top) and φ-meson (bottom) photoproduction cross sections [5].

Fig. 1.2 taken from [5] shows the total cross section of ρ (top) and φ (bottom) photoproduc-
tion as a function of the center-of-mass energy W. The predictions from the Pomeron exchange
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are represented by solid curves and the dashed curves are the predictions from meson-exchange.
It can be seen that at the Pomeron-exchange-dominating high energies, the cross section in-
creases slowly with increasing energy, and this behavior is shown for both ρ and φ photo
production. In contrast to this similar trend at high energies, the cross section near threshold
behaves differently; In ρ photoproduction, the cross section rises due to dominate contribu-
tion from meson exchange. The cross section, however, is not significantly enhanced in the φ
photoproduction, which is a consequence of the suppression of meson-exchange contribution.

This suppression of dominating meson-exchange near threshold energy gives opportunity to
study the property of additional “exotic” trajectories that may be manifested in this low energy
region which is not able to be visible in ρ and ω production.

Possible candidates for these trajectories are discussed in many theoretical works, such as
scalar meson [6], f ′

2 tensor meson [7], daughter Pomeron (P2) inspired by the JPC = 0++

glueball predicted by the lattice QCD calculation and dual Ginsburg-Landau model [8, 9], direct
ss̄ knock-out of the strangeness sea in a nucleon [10], or other exotic channels. These exotic
channels make contributions at forward production angles dominantly and decrease rapidly
with the increase of incident photon energy. Since the contribution from the Pomeron exchange
does not depend strongly on photon energy as predicted in Regge theory, the presence of new
mechanics which may not seen at high energies can be uniquely studied. For that relative
contributions from these additional channels cannot be well defined within the Regge theory
and need to be determined from experimental data. In Fig. 1.3 [11] for example, prediction
considering contribution from standard Pomeron (P1), daughter Pomeron (P2), π and η, and
φ radiation is illustrated.

Figure 1.3: Differential cross section for γ p→ φ p reaction at θ = 0 as a function of W (left) and θ at Eγ =2
GeV (right) [11].

1.4.1 Liquid deuterium target

The φ-meson photoproduction with liquid hydrogen (LH2 ) target are investigated in previous
experiments such as [12, 13, 14, 15]. Rather than the simple mechanism of photon interacting
only with proton by using LH2 target, the liquid deuterium (LD2) provided the chance to
retrieve more information of the particle-exchange processes.

The deuteron consists of only a proton and a neutron and this configuration makes itself
the simplest of all the nucleon bound states, and the nuclear structure and medium effects are
therefore to be best controlled. The π0 and η photoproduction from the deuteron are studied
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previously in [16] and [17]. Now with the virtue of φ photoproduction discussed in section 1.4,
the particle-exchange dynamics can be investigated more directly.

1.4.2 Incoherent and coherent interaction

There are two kinds of schemes for interaction with deuteron. One is the quasi-elastic scattering
or incoherent scattering in which reaction the deuteron breaks up to be a proton and a
neutron in the final state (γ + d→ φ+ pn). The other one that the deuteron remains intact is
the coherent scattering (γ + d→ φ+ d).

The isovector π- and isoscalar η-meson exchange are primary components of meson-exchange
channel. Since the deuteron is an isoscalar nucleon, t-channel isovector exchange would be elim-
inated from possible reaction diagrams in the coherent φ photoproduction on deuteron due to
isospin conservation, which means that the π exchange contribution is excluded in the reaction
process. Therefore, by comparing cross sections between the coherent φ production on deuteron
and φ production on proton, the isovector exchange contribution in the φ photoproduction will
be identified and it will also allow the extraction of the contribution from the isoscalar part of
the production process.

Moreover, π- and η-exchange are both unnatural-parity processes while π-exchange contri-
bution is relatively dominate among them, which can be seen in Fig. 1.3. The coherent φ
photoproduction among which π-exchanged is removed is expected to be through processes of
mostly positive-parity exchange, e.g. Pomeron exchange, as can be seen in 1.4 taken from [18].
In this case, the differential cross section at zero degree which is well described by standard
Pomeron trajectory at high energies can be utilized as a benchmark of positive-parity exchange
processes. Taking the form factor of deuteron into account, any deviation from the standard
Pomeron contribution would reveal the existence of any other process of natural-parity ex-
change, e.g. the glueball-inspired daughter Pomeron trajectory P2.

Figure 1.4: Differential cross sections for γ + p→ φ+ p and γ + d→ φ+ d reactions [18].

As shown in Fig. 1.4 taken from [18], although the coherent process would give significant
contribution, the incoherent interaction γ+d→ φ+pn is considered to be dominant still in the
φ photoproduction from deuterons. For the incoherent φ production interaction, the isotopic
effect of nucleons can be investigated by comparing with results from existing proton target
experiments [11].

In this thesis, the measurement of differential cross section of φ-meson photoproduction from
liquid deuterium and liquid hydrogen targets is presented. Before this work, there was only one
measurement of φ photoproduction from deuterons at Eγ = 6.4 - 9.0 GeV and no separation of
coherent interaction from incoherent interaction was made [19]. This analysis is done not only
to examine the previous non-monotonic increase of differential cross section with increasing
photon energy from LEPS experiment shown in Fig. 1.5 [12], but hopefully to provide more
insight into the issue of possible exotic particle-exchange channels. Certainly, measurement of
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γ

σ
µ

Figure 1.5: Energy dependence of dσ/dtt=−|t|min
[12].

the cross sections alone can not tell the answer explicitly while spin observables are demanded
to provide more information to determine the contribution from different channels such as
discussed in [6, 9, 10, 18]. And this can surely be achieved by utilizing the highly polarized
photons produced at SPring-8/LEPS facility and the subsequent study on φ decay asymmetry
Σφ, but this is beyond the coverage of this dissertation.

This thesis is organized as follows. In chapter 2, the LEPS experiment is introduced. The
definitions, methods, and techniques used in the data analysis is discussed in chapter 3 followed
by the results and discussion shown in chapter 4. Finally a summary is given in chapter 5.



Chapter 2

Experimental apparatus

The data for was taken at the laser-electron photon facility (LEPS) at SPring-8, Japan. At
SPring-8 BL33LEP beamline (LEPS facility), the linearly-polarized photons were produced
by Backward-Compton scattering and then conducted to irradiate the liquid hydrogen (LH2)
and the liquid deuterium (LD2) target. The experimental apparatus of the measurement is
described in this chapter.

2.1 SPring-8

In October 1984, the Institute of Physical and Chemical Research (RIKEN) in Japan planned
the framework of the large synchrotron radiation (SR) facility for developing materials. Later
in October, 1988 Japan Atomic Energy Research Institute (JAERI) and Riken established a
collaborative team for the synchrotron radiation facility research and development. Until Octo-
ber 1997, SPring-8, an acronym of Super Photon ring-8 GeV facility, was finally constructed
and began to be utilized for research works.

Figure 2.1: Main facilities of SPring-8.

Having the highest electron energy, the largest circumference, and the advanced insertion
devices, the SPring-8 facility is the most powerful third-generation synchrotron radiation facility
with 62 beamlines now. The main facilities of SPring-8 are shown in Fig 2.1. The electron beam
is generated by a thermionic gun made of barium-impregnated tungsten and then be boosted
by the 140 m linear accelerator (linac) up to 1 GeV. After that, the beam is transported to the

9
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booster synchrotron of 396 m circumference to be further accelerated to 8 GeV. Finally, the
beam is injected into the circular storage ring with energy maintained at 8 GeV.

2.2 Backward-Compton scattering

In 1963, Milburn, Arutyunain, and Tumanian proposed that photons produced by collisions of
laser photons with high-energy electrons in the direction of the electrons would reach the same
energy scale as the electron. This process is generally referred to as the Backward-Compton
scattering (BCS) and the high-energy photons subsequently obtained are called laser-electron
photons.

Ee

Ee’

θ 2

θ 1

E l

E γ

Scattered
electron

Laser
photon

Electron beam

Laser-electron photon

Figure 2.2: Backward Compton scattering process.

Fig 2.2 shows the BCS process. In Fig 2.2, the energy of the energy of the laser photon and
the electron are El and Ee, θ1 denotes the angle between the electron and the incident laser
photon, and θ2 denotes the angle between the electron and the scattered photon. The energy
of the scattered photon is:

Eγ =
El(1− β · cos θ1)

1− β · cos θ2 + El[1− cos(θ2 − θ1)]/Ee

(2.1)

From BCS, photons with energy up to a few GeV are therefore able to be produced by shooting
a few eV photons to 8 GeV electrons.

Figure 2.3: Polarization of laser electron photon.

The linear polarization of the photon beam can be easily achieved with polarized laser light.
The BCS possesses the ability to preserve the polarization of incident photons, therefore if the
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incident laser lights are to be 100 % polarized near the Compton edge, the backward-Compton-
scattered photons are highly polarized at the maximum energy. The energy dependence of the
polarization is shown in Fig. 2.3. As can be seen, the polarization drops as the photon energy
decreases. However, the polarization state of interest can be obtained by changing the energy
of laser photons and by handling the direction of the laser polarization.

2.3 Beamline

The Laser-electron photon facility was built at the beamline BL33LEP as shown in Fig. 2.4.
The first LEPS beam was produced in 1999 and the first physics run started in 2000 for the
quark nuclear physics studies afterwords.

(a) SPring-8
SR ring

(b) Laser Hutch

(c) Experimental
Hutch

Collision

8 GeV electron

Laser

Inverse Compton

γ-ray

Recoil electron

Tagging

8 GeV electron

Recoil electron

Tagging 
 system

Laser

BCS photon

Bending magnet

Straight section

Figure 2.4: LEPS beamline.

The LEPS beamline has a 7.8 m-long straight section of the storage ring between two bending
magnets. Polarized laser photons are injected from a laser hutch toward the straight section
where BCS of the laser photons from the 8 GeV electron beam occurs. The produced BCS
photons can reach the maximum energy of 2.4 GeV and are then transfered through the beam
pipe to the experimental hutch 60 m downstream of the straight section where a target and a
spectrometer are located.
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2.4 The laser system

An Argon-ion laser is used as the photon source. The laser operated with a multi-line mode
has the wave lengths ranging from 333.6 to 363.8 nm, which is in the ultraviolet region. The
laser beam is almost 100 % polarized due to the property of the laser resonator. The intensity
of the laser beam is about 2.5× 106 photons per second and the typical power is about 5 W.

The emitted laser beam is enlarged by a beam expander and then directed to the storage
ring by optical mirrors. The direction of the linear polarization of the laser beam is tuned to
be either vertical or horizontal by using a half-wavelength plate. The polarization of the laser
light is measured by a Glan-laser prism polarimeter and a photo diode placed at the end of the
straight section to determine the polarization angle and degree.

2.5 The tagger

The energy of the BCS photons is determined by measuring the energy of the recoil electrons,
which is Ee′ in Fig 2.2. According to the energy conservation, Eγ is obtained by Eγ = Ee −
Ee′ + El.

Electron

SSD

2.2 mm

5.0 mm

8.6 mm
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Figure 2.5: The tagging counter.

The recoiled electrons deviate the route of the circulating electrons in the storage ring because
of energy loss in BCS. And this deviation is directly related to the corresponding energy of the
electrons. The recoiled electrons are thus detected by the tagging system (tagger) located at
the exit of the bending magnet of the storage ring next to the straight section. The schematic
view of the tagging counter is shown in Fig 2.5.

The tagging counter consists of two layers of plastic scintillator hodoscopes and two silicon
strip detectors (SSD). There are 10 segments of plastic scintillators which are 10 mm high, 8.6
mm wide, and 5 mm thick each, stacked with an overlap of 2.2 mm in one layer of the plastic
scintillator hodoscope. The hodoscopes provide timing signals of the recoiled electrons and
are used to reject accidental events. SSD consists of 512 readout strips with a 0.1 mm pitch.



2.6. THE CHARGED PARTICLE SPECTROMETER 13

Precise hit position of a recoiled electron is measured by the SSD strip and the photon energy
is obtained.

With the tagging counter, the photon energy coverage is from 1.5 to 2.4 GeV.

2.6 The charged particle spectrometer

A 160 mm-long liquid hydrogen and a 160 mm-long liquid deuterium target were used in the
experiment. They were placed in copper cells with a trapezoid shape which was designed not to
cause influence on the acceptance of the charged particle spectrometer. The entrance and exit
windows of the target cell were made of Aramid foils with thickness of 0.05 mm. The target
cell was located right upstream of the charged particle spectrometer as shown in Fig 2.6.

Figure 2.6: The LEPS charged particle spectrometer.

The charged particle spectrometer designed to detect charged hadrons produced at forward
angles consisted of an upstream veto counter, a start (trigger) counter (SC), a silica-aerogel
Čerenkov counter (AC), a silicon vertex detector (SVTX), a dipole magnet, three multiwire
drift chambers (DC1, DC2, and DC3), and a time-of-flight (TOF) wall. The dipole magnet
provided the magnetic field of maximum 0.7 T at its center for momentum measurement. The
dipole-magnet aperture was 55 cm high and 135 cm wide. The length of the pole along the
beam direction was 60 cm. The angular coverage of the spectrometer was about ±0.2 rad and
±0.4 rad in the vertical and horizontal directions.

The upstream veto counter just before the target was a plastic scintillation counter with a
thickness of 5 mm, 200 mm high, and 190 mm wide. This veto counter was placed to eliminate
the charged particles produced upstream, such as by photons interacting with residual gas in
the vacuum beam pipe.
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The SC located right behind the target is a 5 mm thick plastic scintillator. It provides
the start timing of the trigger of data acquisition system. The silica-aerogel Čerenkov counter
located downstream of the start counter had a 60-mm silica-aerogel radiator with a refractive
index 1.03 to veto the main e+e− pair production background. The Čerenkov threshold mo-
mentum for electron, pion, and kaon were 0.002 GeV, 0.57 GeV, and 2.0 GeV respectively. The
efficiency of the Čerenkov counter to reject the was higher than 99.9 %.

The silicon vertex detector and three drift chambers were the tracking detectors. SVTX
located behind AC was a silicon strip detector with 0.12 mm strip pitch. Half of the strip was
placed in vertical direction and the other half in horizontal direction to measure the vertex
positions in each direction. By the SVTX, precise vertex positions were obtained.

The drift chambers placed upstream of the dipole magnet (DC1) consisted of 6 layers. Three
of the layers are for the vertical direction (x-direction), two are for the +45

�

and one for the
-45

�

direction with respect to the vertical direction. The wire spacing of DC1 sense wires was
12 mm. The other two drift chambers, DC2 and DC3, were located downstream of the magnet
and had 5 layers: two vertical, two at +30

�

, and one at -30
�

. The spacing of the sense wires
was 20 mm for both DC2 and DC3. The field wires were arranged in a hexagonal shape for all
three drift chambers. The active area is 30 cm high × 60 cm wide for DC1 and 80 cm high ×
200 cm wide for DC2 and DC3. The efficiency of each layer was about 99 % and the position
resolution is about 200 µm.

The TOF wall is positioned downstream of the DC3. It consists of an array of 40 plastic scin-
tillators. Each scintillator counter as 12 cm wide, 4 cm thick, and 200 cm high and is arranged
to have a 1 cm overlap with each other. The stop signal for the time-of-flight measurement is
provided by the TOF counters and the typical time resolution of the TOF counters was 120 ps.
The time-of-flight of the charged particle is thus determined by the start timing signal obtained
from the RF signal of the accelerator or from SC, and the stop signal from TOF counters.



Chapter 3

Basic definitions and data analysis

In this chapter, the basics definitions used in the analysis are introduced. The analysis of the
LD2 coherent reaction γ+d→ φ+d and LD2 incoherent reaction γ+d→ φ+pn are presented
with LH2 reaction γ + p→ φ+ p as a contrast.

3.1 Basic definitions

3.1.1 Invariant mass and missing mass

Invariant mass and missing mass are both frequently used physical quantities to identify par-
ticles based on energy-momentum conservation. Assume a two body reaction as:

pinitial1 + pinitial2 → pfinal + pmissing → pdaughter1 + pdaughter2 + ...+ pdaughterN + pmissing.

The reaction of the two initial particles pinitial1 and pinitial2 produces pfinal and pmissing. The
particle pfinal further decays into N secondary particles pdaughter1, pdaughter2, ..., and pdaughterN,
as shown in Fig. 3.1. These secondary particles are detected by the detector while the so-called
“missing” particle pmissing is not.

p

initial 1

initial 2 missing

final

daughter 1

daughter 2

daughter N

p

p
p

p

p
p

daughter 3p

Figure 3.1: Two body reaction followed with the decay.

Define the four-momentum of each particle as capital P and let Pinitial = Pinitial1 + Pinitial2
denotes the total four-momentum in the initial state. By energy-momentum conservation, the
relation between these four-momentums goes:

Pinitial = Pfinal + Pmissing,

Pfinal = Pdaughter1 + Pdaughter2 + ...+ PdaughterN.

15
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The invariant mass Minv of the particle pfinal and missing mass Mmis of the particle pmissing
then are evaluated as:

Minv =
√

(Pfinal)2 =
√

(Pdaughter1 + Pdaughter2 + ...+ PdaughterN)2, (3.1)

Mmis =
√

(Pinitial − Pfinal)2. (3.2)

As can be seen in the equation above, when the mother particle is difficult to detect (electri-
cally neutral, life time too short,etc.), invariant mass can be helpful to reconstruct the mass of
the mother particle by the detectable decay produced daughters. And missing mass is a tool to
identify the undetected particle when a reaction takes place by all the other particles relating
to the reaction. Certainly, the missing mass approach can be applied to situation of more than
one missing particle.

It is noted that unlike the invariant mass which can be evaluated solely by the four-
momentum information of particles produced after the reaction, the missing mass needs both
the four-momentum of the particles before and after the reaction. In the case of the reaction
with deuteron γ+d→ φ+X, the incident photon interacts with the individual nucleon and the
deuteron may break up in incoherent interaction or remain as a whole in coherent interaction.
That is, as represented as the formulation above, if Pinitial1 is the four-momentum of the photon
Pγ , Pinitial2 can be the four-momentum of the nucleon PN or the deuteron Pd.

Neglect the mass difference between the proton and the neutron and assume the kinematic
behavior of these two nucleons are equivalent when bound as a deuteron, the missing mass
evaluated with incoherent mechanics (nucleon target assumed) is denoted as MMp and the
missing mass evaluated with coherent mechanics (deuteron target assumed) is referred to as
MMd hereafter.

3.1.2 Mandelstam variables

The Mandelstam variables are Lorentz-invariant variables used to describe the kinematics of
particle reactions, in the usual case, of two particles going to two particles. The cross-section
may be succinctly expressed in terms of these variables.

Definition of Mandelstam variables s, t, and u

For the reaction of a incident photon and a initial hadron producing a φ-meson and a final
hadron, γ + h → φ + h′, define the four-momentum of the incident photon, φ, initial hadron,
and final hadron as k, q, P ,and P ′ as is shown in Fig. 3.2

Figure 3.2: γ + h→ φ+ h′ process.

The conservation of four-momentum gives:

k + P = q + P ′.
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The Mandelstam variables then can be written as follows:

s = (k + P )2 = (q + P ′)2, (3.3)

t = (k − q)2 = (P ′ − P )2, (3.4)

u = (k − P ′)2 = (q − P )2. (3.5)

From which it follows that:

s+ t+ u =
4

∑

i=1

m2
i . (3.6)

The sum of the Mandelstam variables is equal to the sum of the mass square of the particles
involved.

From the definitions above, it follows that s is equivalent to the square of the centre-of-mass
energy squared of the reaction, t corresponds to the four-momentum transfer squared, and u
the crossed four-momentum transfered.

Figure 3.3: Different reaction channels.

These three Mandelstam variables are also used in terms s-channel, t-channel, and u-channel.
These channels represent different Feynman diagrams or different possible scattering events and
are defined as whether the four-momentum squared of the intermediate particle being exchanged
in the interaction equals s, t, or u. The three different channels are shown in Fig. 3.3

More about the t variable

More details of the t of the γ + p → φ + X mechanism need to be discussed because of its
specialty in the evaluation of dσ/dt of incoherent and coherent reaction. First, as is shown
in the left plot of Fig. 3.4, define the four-momentum of the incident photon and the initial
hadron in the lab.system in explicit form as:

k = (Eγ, 0, 0, Eγ),

P = (Eh, 0, 0, 0),

where the velocity of light c is set to one (which is also the case in the following analysis), the
direction of the incident photon is assumed to be aligned to the z direction, and the momentum
of the initial hadron is presumed to be negligible. The s variable evaluated by the variables in
the lab. system is thus evaluated as:

s = (k + P )2 = ((Eγ +mh)
2 − Eγ)

2. (3.7)

In the centre-of-mass system (c.m.s.), the four-momentum of these four particles are ex-
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Figure 3.4: γ + h→ φ+ h′ process in lab. system and in c.m.s.

pressed with an asterisk added as is shown in the right plot of Fig. 3.4:

k∗ = (E∗
γ ,p

∗
γ) = (

√

m2
γ + |p∗

γ|2,p∗
γ),

P ∗ = (E∗
h,p

∗
h) = (

√

m2
h + |p∗

h|2,p∗
h),

q∗ = (E∗
φ,p

∗
φ) = (

√

m2
φ + |p∗

φ|2,p∗
φ),

P ′∗ = (E∗
h′ ,p

∗
h′) = (

√

m2
h′ + |p∗

h′ |2,p∗
h′),

and note that in c.m.s., p∗
γ = −p∗

h and p∗
φ = −p∗

h′ . The s variable evaluated in c.m.s. using k∗

and P ∗ is therefore:

s = (k∗ + P ∗)2 = (
√

m2
γ + |p∗

γ|2 +
√

m2
h + |p∗

γ|2)2.

The magnitude of the momentum of the photon can then be deduced:

|p∗
γ| =

√

s2 +m4
γ +m4

h − 2sm2
γ − 2sm2

h − 2m2
γm

2
h

2
√
s

. (3.8)

And the magnitude of the momentum of the φ-meson can be obtained in the same way:

|p∗
φ| =

√

s2 +m4
φ +m4

h′ − 2sm2
φ − 2sm2

h′ − 2m2
φm

2
h′

2
√
s

. (3.9)

The t variable in c.m.s. is:

t = (k∗ − q∗)2 = (E∗
γ − E∗

φ)
2 − (p∗

γ − p∗
φ)

2

= (
m2

γ −m2
h −m2

φ +m2
h′

2
√
s

)2 − (p∗
γ − p∗

φ)
2, (3.10)

The value of |t| thus have minimum when p∗
γ and p

∗
φ are parallel, maximum when p∗

γ and p
∗
φ are

anti-parallel. This minimum and maximum value are denoted as |t|min and |t|max separately.
By Eq. 3.10, these two values can be written as:

|t|min = −(
m2

γ −m2
h −m2

φ +m2
h′

2
√
s

)2 + (|p∗
γ| − |p∗

φ|)2, (3.11)

|t|max = −(
m2

γ −m2
h −m2

φ +m2
h′

2
√
s

)2 + (|p∗
γ|+ |p∗

φ|)2. (3.12)

Putting Eq. 3.7, 3.8, 3.9, 3.11, and 3.12 all together, using the Lorentz-invariant property of
s in the lab. system and c.m.s., it is shown that the value of |t|min and |t|max are coupled with
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the masses of the particles involved in the reaction and the photon energy in the lab. system,
Eγ. For the incoherent-reaction case γ + d → φ + pn, the mass of the hadron mh and mh′

should be taken as the mass of proton mp (neglect the mass difference of proton and neutron),
and for the coherent-interaction caseγ+ d→ φ+ d, mh and mh′ should be taken as the mass of
deuteronmd. The minimum and maximum value of |t| of these two kinds of reaction mechanism
is denoted as −|t|pmin, −|t|pmax, −|t|dmin, and −|t|dmax.

With the masses of the particles involved in the interaction determined, the only parameter
left is Eγ. Take incoherent interaction as an example, with a specific Eγ, the allowed phase
space of t is defined by −|t|pmin and −|t|pmax as is shown in Fig. 3.5. As can be seen in Fig. 3.5,
the phase space of t shrinks as Eγ goes down and exhibits a singularity around Eγ = 1.57 GeV.
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Figure 3.5: Phase space of t as a function of Eγ .

The value of −|t|pmin and −|t|dmin as a function of Eγ is shown in Fig. 3.6 as solid line and
dash line separately. The figure indicates that the value of −|t|dmin is greater than −|t|pmin and
the difference of −|t|pmin and −|t|dmin rise up as Eγ goes down. This inconsistency is of rather
importance in evaluating dσ/dt as will be discussed in the subsequent analysis.

3.1.3 Production threshold of φ

The energy threshold of Eγ to produce φ is evaluated as follows. Using the reaction γ+h→ φ+h′

and the conservation of four-momentum, in the case that Eγ is just at the production threshold,
it follows that:

(Eγ−threshold +mh)
2 − (Eγ−threshold)

2 = (mφ +mh)
2.

The threshold value of Eγ is then:

Eγ−threshold = mφ +
m2

φ

2mh

. (3.13)

Just like the situation in evaluating |t|min, the mh can be mp or md. Eγ−threshold is then about
1.573 GeV for incoherent case and 1.296 GeV for coherent case. But 1.296 GeV of the coherent
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Figure 3.6: −|t|pmin and −|t|dmin as a function of Eγ .

case is not in the accepted Eγ range in the experiment, the production threshold in this analysis
is therefore refer to 1.573 GeV only. As can be found here that this threshold energy 1.573 GeV
of incoherent process corresponds to the phase space singularity of t mentioned in the previous
subsection.

3.2 Monte Carlo simulation

The Mote Carlo simulation is the computer-based simulation used to reconstruct the experi-
mental actualities.

The Monte Carlo simulator for the LEPS spectrometer, g3leps is developed based on the
CERN program library, GEANT. With the necessary information implemented, the g3leps
simulates the generation of the φ photoproduction events, the subsequent process during the
passing of the particles through the experimental apparatus such as particle decay or multiple
scattering. The responses of the detectors like the measured resolution and the efficiency of the
detectors are also described.

The Monte Carlo event generator generates possible physical events. The φ-meson event
generator is utilized to generate φ photon production of incoherent reaction on deuteron
γ+d→ φ+pn, coherent reaction on deuteron γ+d→ φ+d, and on proton γ+p→ φ+p with
φ→ K+K−. The event generation is not model-independent and dynamical information of φ-
meson generation should be pre-defined before generation with user-defined parameterization.
The disentangling of convoluted coherent and incoherent events and the acceptance of different
reaction mechanism are studied by this Monte Carlo simulator. For the study of the back-
grounds, various background-event generation is also done by using other background-event
generators.

The Monte Carlo simulation plays an important role in this analysis because the disentan-
gling of coherent and incoherent events strongly depends on it. Different tests and attempts
on reliable Monte Carlo simulation are therefore made as will be discussed in the following
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sections. And in the following analysis, identical analysis treatment is performed on both the
data from Monte Carlo simulation and the real data to ensure the fairness of the reproducibility
of Monte Carlo simulation.

3.3 Event selections

The data samples used in the analysis are:

� LH2 target runs:
r23690 (2002.05.23) - r24058 (2002.07.09)
r25453 (2003.02.27) - r25968 (2003.04.14)

� LD2 target runs:
r24095 (2002.10.18) - r24841 (2002.12.18)
r25015 (2003.01.30) - r25447 (2003.02.21)
r26001 (2003.04.20) - r26338 (2003.06.02)

This raw experimental data is first pre-analyzed by the LEPSana offline analysis program. The
LEPSana performs necessary calibrations on the raw data and then output the refined data
in Ntuple format which can then be accessed by the Physics Analysis Workstation (PAW)
system [20] to be further analyzed.

This study focus on the reaction, γ+d→ φ+X , followed by the φ-meson decay, φ→ K+K−,
with the branching ratio (49.1±0.6) [21]. The presence of K+K− mesons are therefore used to
identify the photoproduction of φ mesons. There are four kinds of event topology based on the
detected particles: K+K− mode, K+p mode, K−p mode, K+K−p mode. In the K+p and the
K−p mode, there is significant background involvement from hyperon decays such as:

γ + p→ K+ + Λ→ K+ + p+ π−,

γ + p→ K+ + Σ0 → K+ + Λ+ γ → K+ + p+ π− + γ.

And the K+K−p mode is relatively poor in statistics due to the low probability of the exclusive
measurement of all three particles. The most important of all, the coherent interaction would
be excluded in other three modes and it is therefore that K+K− mode is used for this analysis.
The definitions of the selection cuts are described in this section.

3.3.1 The track selection cut

To ensure that it is K+K− mode to be studied, the tracks of K+K− has to be confirmed and
the events with p track contained has to be excluded. The cuts to select “correct” and “good”
tracks is explained as follows.

Decay-in-flight cut

The cuts used to reject decay-in-flight tracks are:

� TOF hit: ithtofhit > 0
The TOF counter must have more than a hit registered.

� Difference between reconstructed track and measured track at TOF counter:
| ytof − tofdiff | < 80, | itof − tofid | < 2
The difference between the reconstructed and the measured y position is required to be
within 80 mm and the difference of the TOF slat number must less than 2.
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� Number of outliers: noutl < 7
The outliers are the hits of tracking chambers that deviate from the expected trajectories
more than the resolution. The outliers are removed from the tracking and the number of
the outliers to be less than 7 is required for the track to be accepted.

� χ2 probability: probchi2 > 0.02
The χ2 probability of the reconstructed track must greater than 0.02.

K+K− identification

The particle identification (PID) is done by the standard procedure as is used in [22], [23].
Using the information of the time of flight and momentum, the mass distribution is obtained.
Fig. 3.7 shows distribution of mass square versus momentum for LD2 data set for example. Band
structure consisted of different particles are shown. By setting cut points on this distribution
of mass square versus momentum, the tracks of different particles are identified and separated
out. The two-track events with identified K+ and K− tracks are accepted.
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Figure 3.7: Scatter plot of mass square and momentum of LD2 .

3.3.2 The vertex cut

The life time τ of φ-meson is extremely short, which means that once the φ-meson is produced,
it decays into K+K− in no time. Therefore the distribution of the position of the reconstructed
vertex points of the K+K− tracks should be around the target cell to ensure the K+K− mesons
come from the reactions at the target, not at the start counter or the target holder. The cuts,
-1070 mm < z-coordinate < -920 mm, -15 mm < x-coordinate < 15 mm, and -15 mm < y-
coordinate < 15 mm are then applied. Fig. 3.8 shows the vertex cut in different coordinates of
LD2 target events as an illustration.
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Figure 3.8: Cuts on position of vertex.

3.3.3 The tagger hit cut and Eγ selection

The incident photon energy is obtained by analyzing the tagger signals and the number of valid
tagger hits is registered as ntag. It is found that there are events that contain non-valid tagger
hits (ntag = 0) as is shown in Fig. 3.9
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Figure 3.9: Number of valid tagger hits of LD2 target events (left) and LH2 target events (right).

Usually, the number of tagger hits is required to be non-zero in order to determine the
incident photon energy. As can be seen in Fig. 3.9, there are events with ntag > 1. The
additional tagger hits may come from electronic noises originate from Bremsstrahlung light
emitted by electrons in the storage ring or off-timing accidental hits by electrons scattered by
the interaction with the laser photon. To deal with these ntag > 1 events, a treatment based
on energy-momentum conservation is applied to select one of the tagger hits.

Take the notation of the four-momentum defined in section 3.1.2 to label the four-momentum
of the particles. By the relation of energy-momentum conservation, the predicted photon energy
Epred
γ is evaluated as:

Epred
γ =

2E ·mp −m2
φ

2(mp − Eφ + pφz)
. (3.14)

The measured value Eγ that has the closest value to Epred
γ is selected to be the energy of the
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incident photon.
It need to be mentioned that Eq. 3.14 is derived by assuming γ+ p→ φ+ p interaction, and

thus the applicability of Epred
γ with LD2 events is questionable. Further, this method is con-

voluted with the momentum of φ-meson, and therefore would involve the resolution of particle
momentum [24]. In this analysis, the incident photon energy is determined with ambiguity.
The number of tagger hits is therefore required to be one, that is natg = 1

3.3.4 Missing mass and K+K− invariant mass cut

The missing mass and K+K− invariant mass cut are used to make preliminary elimination
of possible background events. Firstly, to require that the observed K+K− originate from φ-
meson resonance, cut on invariant mass is applied. For LD2 and LH2 events data, invariant
mass Minv of identified K+K− is shown in Fig 3.10.
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Figure 3.10: Cut on invariant mass.
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Figure 3.11: Cut on MMp .

As can be seen in Fig 3.10, a prominent peak around φ mass (1.019 GeV) is observed in
both LD2 and LH2 events. To select possible φ events, the cut on invariant mass is set to be
1.009 GeV < Minv < 1.029 GeV, which is illustrated by dash lines in the plot.
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Secondly, cut on missing mass is made to require that the events come from the demanded
reaction such as γ+d→ φ+pn or γ+p→ φ+p. Here, it is MMp to be cut, as shown in Fig 3.11.
For the LH2 events, the MMp distribution shows a clear peak around the mass of proton, 0.938
GeV. The cut is therefore set to be 0.908 GeV < MMp < 0.968 GeV on LH2 MMp . For the
LD2 events on the other hand, peak is also observed but the width of the peak is significantly
wider than that of the LH2 events. This broadening effect can be understood to be caused
mainly by the Fermi motion discussed in subsection 3.7.1 and the additional contribution from
coherent interaction in the LD2 events. The cut on LD2 MMp is set to be 0.858 GeV < MMp <
1.018 GeV and note that this cut is applied only for the incoherent events disentanglement,
but not for coherent events. This is because that the coherent contribution is much lower than
the dominating incoherent one and this cut would probably make the statistics of the coherent
events too poor to be disentangled. Further, as can be seen in Fig. 3.12, strong correlation
between MMd and MMp is shown, and therefore the cut on MMp would not affect the ability of
disentanglement by MMd . The detail about the disentanglement procedure will be discussed
in section 3.4.
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Figure 3.12: Scatter plots of MMd and MMp .

LD2

ENTRIES           18163

K+K- invariant mass (GeV/c2)

M
M

p 
(G

eV
/c

2 )

0.8

0.825

0.85

0.875

0.9

0.925

0.95

0.975

1

1.025

1.05

1 1.02 1.04 1.06 1.08 1.1

LH2

ENTRIES            6071

K+K- invariant mass (GeV/c2)

M
M

p 
(G

eV
/c

2 )

0.8

0.825

0.85

0.875

0.9

0.925

0.95

0.975

1

1.025

1.05

1 1.02 1.04 1.06 1.08 1.1

Figure 3.13: Box-cut on K+K− invariant mass and MMp .
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The cuts on invariant mass and missing mass for LD2 and LH2 target events are shown in
all by the box-cut in Fig. 3.13.

3.4 Disentanglement by MMd

From the definition of coherent and incoherent interaction, one obvious way to distinguish
events of coherent interaction from those of incoherent one is to exclusively measure the final
state particles to see if the deuteron breaks up into nucleons or not. However, this approach
is not appropriate because the LEPS detector at very forward angle would result in extremely
poor statistics for the simultaneously detecting mode.

In this analysis, the disentanglement of the coherent interaction contribution and incoherent
interaction one is achieved by missing-mass analysis which is somewhat similar to the procedure
utilizing missing energy spectra in [16].
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Figure 3.14: MMd distribution.

The MMd spectra of LD2 event data and LH2 one are shown in Fig. 3.14. By comparing
the LD2 MMd spectra with the one of LH2 which reside at the higher MMd region, a clear
peak is seen in the region MMd < 0.1.9 GeV with the peak around the deuteron mass, 1.8756
GeV. This additional structure manifest the presence of the coherent interaction in LD2 target
events.

Another evidence of the contribution from coherent interaction is shown in Fig. 3.15, where
the scatter plots of photon energy versus MMd and MMp are shown with the lines indicating
the proton mass and the deuteron mass. From the plots of LH2 target events, it can be seen
that the MMp distribution gathers around proton mass with different Eγ and a clear band is
formed. On the other hand, the LH2 MMd is smeared out and no significant concentration is
observed. The reason for this is that reaction mechanism of LH2 is correctly evaluated with
MMp , not MMd . Correspondingly, the “right” way to describe the missing mass of coherent
interaction is MMd , and the concentration of coherent MMd contributes towards the two-peaks
distribution of LD2 MMd spectra which is not shown in LD2 MMp spectra in Fig. 3.11.

For reasons discussed above, the disentanglement can be done by fit the LD2 MMd spectra
with Monte-Carlo-simulated coherent and incoherent events. Certainly, the disentanglement
should not depend on whether it is MMd or MMp to be fitted if the Monte Carlo simulation is
reliable. The examination on this is presented in Appendix B.1.
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Figure 3.15: Scatter plots of Eγ versus MMd (top) and MMp (bottom).

To know the dependence of differential cross section on Eγ and t , the yield of events as a
function of Eγ and t need to be extracted. That is, the disentanglement need to be performed
in each Eγ and t bin.

Table 3.1: The denotation of Eγ bins

Eγ bin Eγ (GeV)

E1 1.573 - 1.673

E2 1.673 - 1.773

E3 1.773 - 1.873

E4 1.873 - 1.973

E5 1.973 - 2.073

E6 2.073 - 2.173

E7 2.173 - 2.273

E8 2.273 - 2.373

E9 2.373 - 2.473

As defined in Table 3.1, nine Eγ bins of 0.1 GeV step starting from the production threshold
are chosen to be the convention of Eγ binning, and this convention of Eγ binning is frequently
used in the following analysis. As to the t binning, more details need to be discussed.

In subsection 3.1.2, it is shown that the upper bound of the allowed phase space of t is
defined by −|t|min which is a function of photon energy. To evaluate the unbiased t distribution
in different Eγ , this offset must be removed and the t binning is therefore replace by t̃ defined
as:

t̃ = t+ |t|min. (3.15)
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Further, the −|t|min values for coherent and incoherent events, −|t|dmin and −|t|pmin, are differ-
ent. The fitting of MMd therefore needs to be separately done in t̃ bins evaluated with −|t|dmin
in Eq. 3.15 for coherent-event disentanglement, and with −|t|pmin for incoherent-event disentan-
glement. In the following, t̃ is referred to as the one corrected with corresponding −|t|min for
different interaction processes.

The t variable is the four-momentum transfer, and the magnitude of t can be interpreted as
the “violence” of the scattering; With large |t|, the collision takes place more violently. Since
the deuteron is a loosely bound nucleus, the coherent interaction in which deuteron is not
broken up should be more likely to reside in the low |t| region, or in the |t̃| equivalently. This
näıve conjecture is support by the t̃ distribution shown in Fig. 3.16.
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Figure 3.16: LD2 t̃ distribution (solid) fitted with LH2 one (dash) in log-scale (top) and linear scale with x-axis
zoom-in (bottom).

In Fig.3.16 the solid lines are LD2 t̃ distribution and are fitted by t̃ distribution of LH2 events
in the region −1.0 < t̃ < −0.3 in which the incoherent interaction dominates. The fitting results
of LH2 t̃ distribution are represented by dash lines. From the top plot evaluated in log scale,
the fitting of the high |t̃| tail is acceptable and the χ2/ndf is 2.226. But significant excess
of LD2 t̃ distribution is observed in the low |t̃| region from the zoom-in plot in the bottom.
This excess therefore provides evidence of the presence of coherent events. Since the coherent
interaction takes place mostly with low |t̃|, the disentanglement would only be carried out in
the low |t̃| region.

As discussed above, disentanglement utilizes the Monte-Carlo-generated coherent and inco-
herent events. The Monte Carlo simulation therefore needs to be repeatedly tested to produce
convincing results.

3.5 Examination on particle momentum evaluation

In this and the subsequent sections, various checks to examine the validity of this analysis
framework are performed. First, examination on the evaluation of the particle momentum is
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made for both real data and Monte-Carlo case.
Particles loss energy during their passage and the rate they loss their energy depends on the

material they travel through. The determination of particle momentum is dependent on this
energy loss and it is therefore necessary to check calibration such as energy-loss correction is
properly implemented.

The invariant mass and missing mass are utilized because they need proper momentum
evaluation to be correctly deduced. By making various invariant mass and missing mass dis-
tribution, looking over the peak values of these different mass distribution, see if they are
consistent with the accredited ones provide in [21], the examination is made.
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Figure 3.17: Invariant mass K+K− of φ.

In Fig. 3.17, K+K− invariant mass of φ-meson from both Monte-Carlo data and LD2 real
data are made and fitting of the distribution is made. The purpose of the fitting is to get the
peak value, so a näıve fitting function consisting of a Breit-Wigner distribution which is used
to describe the cross-section of resonant nuclear scattering:

BW (x) =
A

2π
· Γ

(x−m0)2 + (Γ/2)2
, (3.16)

plus a first-order polynomial is chosen simply for making reasonable fitting but for solid physical
reason. As is shown, the fitting parameters P1 to P5 are A, m0, Γ, and the coefficients of the
polynomial. The value of the peak m0 of Monte-Carlo data is 1.019 GeV and the peak of the
LD2 real data is 1.020 GeV. Both of these two values are acceptable as being compared to the
accredited mass value of φ, 1.019 GeV.

Fig. 3.18 shows the MMp value of the Monte Carlo Simulated LH2 data and real LH2 data.
The näıve fitting function is chosen to be a Gaussian distribution:

G(x) =
A

σ
√
2π
· exp[−1

2
(
x− µ

σ
)2], (3.17)

plus a first-order polynomial and P1 to P5 denotes A, µ, σ, and the coefficients of the poly-
nomial. Still both of the peak values µ are 0.939 GeV which are acceptable as the accredited
value of the mass of proton is 0.938 GeV.

An additional check on the invariant massK−p of LD2 real data to get the Λ(1520) resonance
distribution as is shown in Fig. 3.19. By fitting the distribution with a Breit-Wigner distribution
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Figure 3.18: MMp on LH2 target.
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Figure 3.19: Invariant mass K−p of Λ(1520).

plus a third-order polynomial, the extracted peak value P2 is 1.520 GeV, just the same as the
accredited value of the mass of Λ(1520).

Supplementary survey on the stability of the momentum resolution is given in Appendix A.
using PID related approach and the stability of the momentum resolution appeared stable
during the runs of the data sample used.

3.6 Smearing of photon energy

The photon energy Eγ is determined by the procedure discussed in the previous subsection 3.3.3.
The measured photon energy is not precisely be the actual photon energy due to inevitable
experimental inaccuracy and thus definite resolution of photon energy is expected.

In Monte Carlo simulation, however, the photon energy EMC
γ is known because EMC

γ is given
by the event generator. To imitate the the effect of the experimental indeterminacy of photon
energy Eγ , a smearing procedure is performed on the Monte-Carlo-generated photon energy
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EMC
γ .

The smearing of EMC
γ is done by randomly modulating the EMC

γ value to be EMC
γ−smeared in

the range of (EMC
γ ± 5σ), with a Gaussian probability distribution P smear

gauss defined as:

P smear
gauss = exp[−1

2
· (
EMC
γ−smeared − EMC

γ

2σ
)2]

The σ value is then the adjustable degree of the smearing, in other words, the user-defined
resolution of EMC

γ .
It should be noted that the resolution of Eγ is coupled with the momentum resolution due

to Eq. 3.14 as is reported in [24]. With the stable momentum resolution as is checked in
Appendix A, it is attempted to set a stable smearing to give the appropriate simulation. Three
kinds of σ values is chosen:

� σ10MeV = 10 MeV

� σ15MeV = 15 MeV

� σcomposite = 8 MeV(72%) + 21 MeV(28%)

The first option comes from previous results of LEPS measurements and are reported for
example in [25, 26]. The third option which may appear confusing at the first glance comes
from the fitting of the MMp distribution of the real data because the MMp distribution would
be better fitted with two Gaussian of different widths [27]. This option is somewhat close to
the one setting the σ to be 8× 0.72 + 21× 0.28 = 11.64 MeV directly.

The MMp of LH2 data is utilized to make the examination because MMp is evaluated with
incident photon energy and because of its simplicity of reaction mechanics. A simple conjecture
is that the different smearing way would exhibit their effect in the width of MMp distribution–
the severer the smearing applied, the wider of the MMp distribution is obtained.

The MMp distribution from LH2 real data and from Monte Carlo simulation with the three
ways of EMC

γ smearing are separately generated in nine different Eγ bins defined in Table 3.1.
The MMp -distribution histograms of real data are then fitted with the ones from Monte Carlo.
The results of the fitting are give in Fig. 3.20, Fig. 3.21, and Fig. 3.22 with the real data
depicted in solid line and data from Monte Carlo depicted in dash line.

It is found that in the E9 bin, all the three kinds of smearing ways give poor fitting and the
whole shape of the MMp distribution from Monte Carlo is shifted toward higher value. The
reason is that the smearing of the photon energy is made after the event is generated, and
the reaction takes place with the unsmeared EMC

γ . The E9 bin is the highest energy bin and

there are events with EMC
γ near the boundary of the generated EMC

γ distribution. To coerce

the EMC
γ value of these events to take arbitrary variation would cause some of the smeared

photon energy cross the boundary. This overestimate effect of can’t be equally compensated
by the underestimate one because there are no events with EMC

γ higher than the boundary.
This over-estimation effect is not found in MMp distribution of real data because the resolution
of Eγ wouldn’t have preference to overestimate or underestimate, it is only the inability to
ascertain what the real Eγ is.

Fig. 3.23 gives a clearer illustration to show the overestimation effect of Monte-Carlo gener-
ated MMp distribution. In the plot, the MMp distribution in E9 bin is further divided in to five
smaller bins ranging from 2.373 GeV to 2.423 GeV with 0.01 GeV step size. With the increase
of the energy bin, shifting of the MMp distribution occurs significantly.

From Fig. 3.20 to Fig. 3.22, the fitting of σ10MeV and σcomposite smearing give better over-all
χ2/ndf values than the σ15MeV one.
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Figure 3.20: Fitting of LH2 MMp of σ10MeV .
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Figure 3.21: Fitting of LH2 MMp of σ15MeV .
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Figure 3.22: Fitting of LH2 MMp of σcomposite.
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Figure 3.23: Monte Carlo generated LH2 MMp of σ10MeV in E9 bin.
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Another check is performed by fitting the MMp in each Eγ bin with Gaussian distribution
defined as Eq. 3.17. The peak value µ and the width σ of the Gaussian is given by the fitting.
The µ and σ values of the three different smearing are then compared with the ones from the
real data as shown in Fig. 3.23.

Eγ bin

Eγ bin

Eγ bin

Eγ bin

Eγ bin

Eγ bin

Figure 3.24: Values of peak and width of the LH2 MMp distribution.

Fig.3.24 (a), (b), and (c) show the result of smearing of σ10MeV , σ15MeV , and σcomposite
separately. The upper half of each plot is the mean value µ with the proton mass 0.938 lined
up and the lower half is the width σ. With the values of real data denoted as closed circles
and values from Monte-Carlo data denoted as open circles, the three different ways of smearing
give reasonable coincidence for µ values. But the σcomposite smearing matches σ values of real
data better than the other two ways of smearing.

From the two examinations above, σcomposite gives the best description of the shape of
LH2 MMp of real data. The option σcomposite is therefore chosen as the way of smearing of
photon energy.

The breakdown of the smearing in E9 bin observed here should be regarded as a warning of
the necessity to give up the physical result of this photon-energy bin.
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3.7 Bound nucleons

The Monte Carlo simulation of coherent events is relatively simpler because incoherent inter-
action of deuteron involves the interaction with bound proton and neutron kinematically. The
kinematic property of the bound nucleons is therefore necessary to be taken into account to
make proper Monte Carlo simulation. Two features of the bound nucleons, Fermi motion and
off-shell effect, are discussed and the treatment of Monte Carlo simulation of them is explained
in this section.

3.7.1 Fermi motion

The nucleus is not a object with static nucleons inside. For example, by comparing the energy
spectrum of electrons elastically scattered off free nucleons and bound nucleons, it is observed
that broader peak appears when the nucleon is bound [28]. This broadening of the maximum
gives a manifestation that the nucleon bound inside the nucleon moves around quasi-freely
inside the nucleus. This motion is call the Fermi motion and it would bring a change in the
kinematics compared to scattering off a nucleon at rest.

The typical momentum value of Fermi motion of nucleons bound in a deuteron is around
100 MeV/c. The momentum distribution of nucleons inside the deuteron target of Monte Carlo
simulation is implemented using the PARIS N-N potential [29].

3.7.2 Off-shell effect

The nucleon in nucleus is not free but in a status constantly interacting with other nucleons.
This in-medium effect would cause the property of the nucleon to deviate the regulations of
classical mechanics and is referred to as off-shell effect.

The off-shell property of nucleon has been investigated but no solid theoretical formulation
has been established. The treatment to the effect for now simply bases on model construction
and phenomenological parameterization [30, 31].

For the proton and neutron bound inside the deuteron, their mass is not on their mass
shell and their distance to the mass shell is related to the binding energy which is 2.225 MeV
for ground state deuteron. This mass off-shell effect would cause the MMd distribution of
incoherent events to be slightly shifted.

Deuteron

N*

N*

Target

Spectator

Figure 3.25: Photon interact with one target nucleon.

But note that the disentanglement depends on the MMd distribution of incoherent and
coherent Monte Carlo simulation. The separation between the two peaks of LD2 MMd distri-
bution shown in Fig. 3.14 is only around 35 MeV, and therefore the disentanglement is indeed
sensitive to the MMd distribution to the scale of a few MeV. Difference in the shifting of the
MMd distribution of different off-shell-effect-implemented incoherent Monte Carlo simulation
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would make significant variation between extracted yield of coherent and incoherent events.
For this reason, the off-shell effect should be carefully handled.

Fig. 3.25 shows the graphical illustration of incoherent reaction with off-shell nucleons de-
noted as N*, the nucleon struck by the incident photon referred to as target nucleon, and the
other nucleon referred to as spectator nucleon. Eight types of off-shell schemes are tried out
as [32]:

� Scheme 1:
Set-(a): The target nucleon is assigned to take fully the off-shell effect and the spectator
nucleon be on-shell. The target nucleon returns on-shell after interacting with the photon.
Set-(b): The same with set (a) except that the target nucleon remains off-shell after
interacting with the photon.

� Scheme 2:
Set-(a): The target and the spectator nucleon set to be equally off-shell. The target
nucleon returns on-shell after interacting with the photon.
Set-(b): The same with set (a) except that the target nucleon remains off-shell after
interacting with the photon.

� Scheme 3:
Set-(a): The target and the spectator nucleon are both on-shell and modify the incident
photon energy in order to conserve the total energy. The target nucleon returns on-shell
after interacting with the photon.
Set-(b): The same with set (a) except that the target nucleon remains off-shell after
interacting with the photon.

� Scheme 4:
Set-(a): The target and the spectator nucleon set to be equally off-shell and an additional
-5 MeV potential is imposed on the target nucleon. The target nucleon returns on-shell
after interacting with the photon.
Set-(b): The same with set (a) except that the target nucleon remains off-shell after
interacting with the photon.

To determine the most appropriate off-shell scheme, the MMd of real LD2 data is fitted in
each conventional Eγ bin with the Monte-Carlo-generated incoherent events in the high mass
region of MMd ≥ 1.9 GeV which is shown in section 3.4 to contain mostly the incoherent
events. The fitting incoherent events are then subtracted from the MMd of real LD2 data and
the residual obtained is considered to be the coherent component of the real data. This residual
is then fitted with Gaussian distribution, Eq. 3.17, to obtain the peak and width value of the
residual. Also, the Gaussian fitting is applied as well on Monte-Carlo-simulated coherent events
and the consistency of the peak and width between the residual distribution of real data and
the Monte-Carl-simulated coherent events is then utilized as the criteria to select out the best
scheme.

Fig. 3.27 shows the peak and width values with the open circles denoting the results from
Monte-Carlo-simulated coherent data and the closed circles denoting those from LD2 residual.
The line in the plot of the peak values indicates the mass of deuteron, 1.8756 GeV. Only the
results of scheme 1-(a) and scheme 2-(a) are illustrated because these two schemes give the best
agreement of the peak and width values.
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Figure 3.26: Off-shell effect examination on peak and width in different Eγ bin.
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Figure 3.27: Off-shell effect examination on peak and width in different Eγ bin.
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Figure 3.28: Off-shell effect examination on MMd fitting.

Another examination is then preformed. As shown in Fig. 3.28, the MMd fitting of LD2 real
data by Monte-Carlo-simulated coherent events and incoherent events of scheme 1-(a) and
scheme 2-(a). As can be seen, scheme 2-(a) gives the better χ2/ndf value still.

Because of the best agreement among all the examinations, scheme 2-(a) is therefore selected
to be the off-shell treatment of Monte Carlo simulation of incoherent events. The results of the
schemes other than 1-(a) and 2-(a) can be found in Appendix E.1.

3.8 t resolution

3.8.1 Rough estimation

To determine the reasonable bin size of t for the evaluation of dσ/dt, the resolution of t need
to be estimated. First, the resolution of t can be conjectured base on the understanding of the
resolution of Eγ discussed in section 3.6. As is reported in [24], the typical momentum resolution
is around 1.3 MeV which is small compared to the Eγ resolution obtained in section 3.6. It’s
fairly enough to attribute the t resolution to the resolving ability of Eγ .

Same as the previous treatment, the four-momentum of the incident photon can be written
as kreal = (Eγ, 0, 0, Eγ). The measured Eγ deviates from this real photon energy in the amount
of the resolution of photon energy, σγ , approximately. The four-momentum of the measured
Eγ can then be written as:

kmeasured = (Eγ ± σγ , 0, 0, Eγ ± σγ). (3.18)

The four-momentum of φ-meson is defined as q = (Eφ, pφx, pφy, pφz). Because the setup
of LEPS spectrometer is at the very forward angle, the φ-meson produced with momentum
of larger z-direction component would be accepted. Therefore the x- and y-component are
neglected and the four-momentum of φ-meson can be rewritten as q = (Eφ, 0, 0, pφz). Assume
the resolving ability of t is limited solely by the resolution of Eγ , the resolution of t is thus
deduced as:

σt = treal − tmeasured = (kreal − q)2 − (kmeasured − q)2. (3.19)

Together with Eq. 3.18, Eq. 3.19 gives:

σt = ± 2σγ(pφz − Eφ).
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And this equation can be further reduced to:

σt = ± σγ
M2

φ

pφz
. (3.20)

Take the Eγ resolution acquired in section 3.6 as σγ ' 11 MeV, typical pφz ' 1.2 GeV/c,
and Mφ, the resolution of t is then deduced approximately as σt ' 10 MeV2

3.8.2 Examination by Monte Carlo simulation

Estimation of t resolution can also be made by utilizing the Monte Carlo simulation.

Let the t evaluated from the event generator is denoted as tgene and this value represents
the exact t value of the physical event. On the other hand, tmeas denotes the t value obtained
with the experimental uncertainties considered and then processed by the same procedure as is
done on the real data. Make the distribution of tgene − tmeas and then fit the distribution with
Gaussian distribution, Eq. 3.17. The σ value of the Gaussian fitting is then the resolution of
t .
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Figure 3.29: The t resolution of LD2 data.

Fig. 3.29 and Fig. 3.30 show the σt values in different Eγ bin as a function of t in the region
−0.4 GeV 2 ≤ t ≤ 0.0 GeV 2 for the LD2 and LH2 data from Monte Carlo simulation. As can
be seen in the plots, in the low Eγ bins, the σt values fluctuate violently and large error bar
appeared due to the insufficient statistics in these Eγ regions. This fluctuation is smoothen
in the high Eγ bins and the σt values approach a steady distribution of value lower than 0.02
GeV2 in both cases. The resolution of t is therefore concluded to be somewhat better than 0.02
GeV2 or 20 MeV2, which coincides the result of the rough deduction in subsection 3.8.1.
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Figure 3.30: The t resolution of LH2 data.

3.9 Background subtraction

3.9.1 Possible backgrounds

The φ-meson is identified by the invariant mass of K+K− . It can be seen that there are events
away from the main peak distribution of φ, these events that are not from those produced φ
are called the backgrounds.

Backgrounds come in two categories. The first type of backgrounds come from specific
reactions which are not of interest but may occur with the same initial state and result in
same final state particles. These kinds of backgrounds can likely be understood by theoretical
approach and handled with Monte Carlo simulation. The other possibility of backgrounds,
on the other hand, come from sources that can’t be identified such as random noises of the
electronic equipments. Here, only the first type of backgrounds are discussed and the second
type of backgrounds are assumed to be suppressed to the scale that can cause only minor effect
to the real φ signals.

The main backgrounds come from two types of reaction known; the non-resonant KKN
production and the Λ(1520) production:

γ +N → K+ +K− +N, (3.21)

γ + p→ Λ(1520) +K+ → K− + p+K+. (3.22)

The K+K− produced from non-resonant KKN production wouldn’t form resonance, they
are produced only from phase space. The Λ(1520) hyperon would decay into K−p with the
branching ratio of 23 and therefore makes contribution to the K+K− final state.

Among these two backgrounds, non-resonant KKN production should take the majority of
the backgrounds which is illustrated in [13] or other previous studies of LEPS group. Especially
in the K+K− mode used for this analysis, the K−-mesons generated from Λ(1520) decay are
more likely to deviate from the spectrometer and have less probability to be detected because
most of the momentum of Λ(1520) would be taken away by the heavier proton. The Λ(1520)
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contribution in K+K− mode is therefore suppressed for this reason.
The Monte-Carlo simulated K+K− invariant mass distribution for non-resonant KKN and

Λ(1520) backgrounds are shown in Fig. 3.31. It can be seen that no peak around mass of φ
(1.019 GeV) is observed.
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Figure 3.31: Monte Carlo simulated K+K− invariant mass of backgrounds.

Attempts to reproduce the real data with these Monte-Carlo-simulated backgrounds gave
unsatisfactory results. One of the possible reasons could be that the physical process of the non-
resonant KKN background is unknown. Simultaneous fitting on different spectra of real data
was performed as shown in Fig. 3.32 by utilizing the MINUIT package [33] and unsatisfactory
results of fitting was obtained. The simultaneous fitting would give better χ2/ndf in smaller
phase space, that is, with Eγ and t̃ binning. But the result is questionable due to low statistics
in individual bin.
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Figure 3.32: Simutaneous fitting with Monte Carlo simulated backgrounds in E8 bin.

Undeniably, the background treatment with Monte Carlo simulation claims on entire un-
derstanding of the background properties and this may be the cause of the failure of the
Monte-Carlo-simulation treatment. Another approach using phenomenological description of
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the background is therefore adopted.

3.9.2 Phenomenological approach

The phenomenological approach assumes that the distribution of the background events are
continuous and smooth in the invariant mass region considered. Under this assumption, by
fitting the invariant mass distribution away from the signal peak which can all be considered
to be background events, the backgrounds contained in the signal peak are extrapolated.

A phenomenological background function with a polynomial of leading order of 2 is suggested
in the previous measurement of φ-meson [34]. The background function is therefore chosen to be
a second-order polynomial. A preliminary fitting of LD2 and LH2 K

+K− invariant mass with a
Breit-Wigner distribution representing the signal plus a second-order polynomial background is
shown in Fig. 3.33 and the results are tabulated in Table 3.2. In Fig. 3.33, the K+K− invariant
mass distribution from real data are denoted as cross symbols and the fit result with background
distribution together are the solid lines. The vertical lines in the plots indicate the invariant
mass cut (1.009 GeV < Minv < 1.029 GeV) discussed in section 3.3.4.
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Figure 3.33: Fitting of K+K− invariant mass with background.

Table 3.2: LD2 fitting result and extracted background in different Eγ bin

Data set Peak (GeV) χ2/ndf Nsignal Nφ NBG NBG/Nsignal

LD2 1.0198 3.0961 13588 13231 357 0.0263 ± 0.0014

LH2 1.0197 1.4591 4370 4156 214 0.0490 ± 0.0033

As can be seen in Fig. 3.33, there are only few background contributions in both LD2 and
LH2 events. This can also be seen by the low background-to-signal ratio NBG/Nsiganl listed in
Table 3.2 where Nsiganl, NBG, and Nφ are the original event signals, the extracted backgrounds,
and the background-subtraction obtained φ signals in the 1.009 GeV - 1.029 GeV invariant
mass region. The relation between these quantities is:

Nsignal = Nφ +NBG. (3.23)

Same procedure is then applied to the invariant mass distribution in different Eγ bin to
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extract background components in different Eγ bin. Still, a small number of backgrounds are
observed in every Eγ bin.

As can be seen in Eq. 3.21 and Eq. 3.22, these two main backgrounds comes from the
incoherent interaction. Therefore, the extracted backgrounds from LD2 invariant mass spectra
would only be subtracted from the LD2 incoherent events.
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Figure 3.34: Fitting of LD2 invariant mass with background in different Eγ bin.

Table 3.3: LD2 fitting result and extracted background in different Eγ bin

Eγ bin Peak (GeV) χ2/ndf Nsignal Nφ NBG NBG/Nsignal

E1 1.0191 0.2587 47 29 18 0.3896 ± 0.0704

E2 1.0189 0.4551 127 106 21 0.1695 ± 0.0332

E3 1.0198 1.1749 372 346 26 0.0720 ± 0.0134

E4 1.0191 0.9766 787 777 10 0.0131 ± 0.0040

E5 1.0196 0.8787 1468 1450 18 0.0124 ± 0.0029

E6 1.0197 1.1950 1997 1954 43 0.0218 ± 0.0033

E7 1.0199 1.7720 3229 3180 49 0.0154 ± 0.0022

E8 1.0199 1.8937 3679 3604 75 0.0206 ± 0.0023

E9 1.0199 1.3883 1874 1855 19 0.0105 ± 0.0024
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Figure 3.35: Fitting of LH2 invariant mass with background in different Eγ bin.

Table 3.4: LH2 fitting result and extracted background in different Eγ bin

Eγ bin Peak (GeV) χ2/ndf Nsignal Nφ NBG NBG/Nsignal

E1 1.0200 0.1499 5 34 -29 0.0000 ± 0.0000

E2 1.0185 0.2678 33 14 19 0.5600 ± 0.0851

E3 1.0189 0.5975 116 92 24 0.2077 ± 0.0375

E4 1.0196 0.7885 288 269 19 0.0661 ± 0.0146

E5 1.0192 0.6777 521 509 12 0.0242 ± 0.0067

E6 1.0198 0.9572 669 648 21 0.0317 ± 0.0068

E7 1.0198 1.4786 1036 1000 36 0.0356 ± 0.0058

E8 1.0197 1.1231 1178 1143 35 0.0300 ± 0.0050

E9 1.0198 0.9124 517 505 12 0.0240 ± 0.0067

3.10 The acceptance

If physical events of a total number of N occurs and n events are observed among them, the
relation between the expectation values of N and n can be expressed as:

< n >= Accep· < N >,

where Accep is the acceptance. In this general definition, the acceptance included the detecting
efficiency of the detector and the acceptibility due to geomertical set up, which is to say, the
acceptance includes all possible effects that cause losses of physical events: the finite size of
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detectors, the inefficiencies of detectors and of off-line event reconstruction, dead times, effects
of veto counters, etc.

The acceptance for the LEPS spectrometer is obtained by the Monte Carlo simulation.
Events of φ photoproduction are generated in the Monte Carlo simulation and let Ngene be
number of the generated events. Apply the same selection cuts discussed in section 3.3 on the
Monte-Carlo-generated data, and the number of accepted events then are obtained as Naccep.
The acceptance is subsequently given as:

Accep =
Naccep

Ngene

(3.24)

The acceptance may be a function of one or more physical variables such as particle mo-
mentum, the path of particle passing throught the detectors, etc. In this analysis, only the
dependence of acceptance on Eγ and t is considered and dependence on other variables are
considered to give average effect.

In addition, the spin-density-matrix elements that governs the decay angular distribution
of K+K− would affect the acceptance. The LEPS charged particle spectrometer has larger
geometrical acceptance in the horizontal direction and K+K− would be more likely to be
recorded if they were produced in a plane that is closer to the horizontal plane. As can be
seen in Appendix D, since the numbers of the vertically polarized and horizontally polarized
incident photons are close to each other in both LD2 and LH2 target runs, the overall effect
of the spin-dencity-matrix elements is considered to be cancelled out in the unpolarized cross
section, which is to be determined in this analysis.

From the result of previous experimental data, in the small t region, it is observed that the
differential cross section of diffravtive interaction exhibits an exponential t-dependence in the
following form [1]:

dσ

dt
= a · exp (bt̃ ), (3.25)

t̃ = t+ |t|min.
where a is the intercept at t = tmin and b is the exponential slope. Theoretical approaches to it
can be described by VMD applying Regge model and simple pole picture, as discussed in [15]
for example. This phenomenological parameterization to describe the near-threshold behavior
of differential cross section can also be found such as in [12, 13]. This dynamical formulation of
t-distribution is implemented into the event generator for generating φ photoproduction events
and the exponential slope b needs to be pre-defined.

Different acceptance distributions generated with Eq. 3.25 are obtained seperately for LD2 co-
herent, incoherent events and LH2 events.

3.11 Iteration

As described in section 3.10, the Monte Carlo event generator generates φ photoprdoduction
events according to Eq. 3.25. But the slope parameter can’t be obtained in advance because
it’s the physical variable to be determined in this analysis work.

Iteration on the analysis is therefore done. Firstly the Monte Carlo event generator generates
events with flat t distribution, that is, set exponential slope binput = 0. The whole analysis
framework is performed and a preliminary slope bobtained is obtained. This bobtained is then input
into the event generator and the same procedure repeats to obtain renewed slope parameter
iteratively till binput and bobtained converge.
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The b after iteration is set to be 15 GeV−2 for LD2 coherent events, 4 GeV−2 for LD2 in-
coherent events, and 3.5 GeV−2 for LH2 events. These b values are reprodeuced withing an
acceptable deviation as repsented in section 4.1.



Chapter 4

Results and discussions

4.1 Results of differential cross section

In this section, the results of the measurement of the differential cross section of for LD2 co-
herent, incoherent events and LH2 events are presented.

4.1.1 Disentanglement of coherent and incoherent events

As discussed in section 3.4, the disentanglement would be achieved by fitting MMd distribution
of LD2 real data in low t̃ region. The photon energy dependence of the yield of events is
measured in nine Eγ bins as defined in Table 3.1.

Table 4.1: The denotation of t̃ bins

t̃ bin t̃ (GeV) t̃ bin t̃ (GeV)

T1 -0.40 - -0.38 T11 -0.20 - -0.18

T2 -0.38 - -0.36 T12 -0.18 - -0.16

T3 -0.36 - -0.34 T13 -0.16 - -0.14

T4 -0.34 - -0.32 T14 -0.14 - -0.12

T5 -0.32 - -0.30 T15 -0.12 - -0.10

T6 -0.30 - -0.28 T16 -0.10 - -0.08

T7 -0.28 - -0.26 T17 -0.08 - -0.06

T8 -0.26 - -0.24 T18 -0.06 - -0.04

T9 -0.24 - -0.22 T19 -0.04 - -0.02

T10 -0.22 - -0.20 T20 -0.02 - -0.00

From the result of t-resolution obtained in section 3.8, the reasonable size of t̃ bin should be
larger than 20 MeV2. In the main framework of this analysis, the bin size of t̃ is chosen to be 20
MeV2 in the t̃ region set to be −0.4 < t̃ < 0.0 as defined in table 4.1. This choice of t̃ range is
presumed to be wide enough to include most of the coherent events and is cross checked with the
acceptance results discussed in section 4.1.2. The results of using other t̃ range, t̃ bin size and
different approaches for evaluating the differential cross section are presented in Appendix B.

Fig. 4.1 shows the MMd fitting in E8 energy bin and the t̃ range from -0.08 GeV2 to 0.00
GeV2 as a demonstration. The MMd of LD2 is denoted as solid histograms and the fitting
histograms are the dash ones . The χ2/ndf of the fitting, individual yields of incoherent and
coherent components, and corresponding errors are labeled on the plots. The MMd fitting
results in each Eγ and t̃ bin are shown in Appendix E.2.

47
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Figure 4.1: Demonstration of MMd fitting.

As can be seen in Fig. 4.1, the coherent MMd components of LD2 increase significantly as
t̃ approaches 0. This behavior is consistent with the previous conjecture that the coherent
events take place mainly in high t̃ region.

The yield of incoherent and coherent events are extracted as a function of t̃ in each Eγ bin.
In the case which t̃ is below -0.4 GeV2, it is considered that nearly no coherent events survives,
therefore the t̃ distribution of LD2 below -0.4 GeV2 in each Eγ bin is further attached to the
distribution of the disentangled incoherent events to supply distribution of incoherent yield in
this t̃ < −0.4 GeV2 region. And the t̃ bin size is change to a wider 0.1 GeV2 size in this region
to provide more statistics.

For the yield of φ events of LH2 data, the t̃ distribution with t̃ bin size 0.1 GeV2 in the
region −1.0 < t̃ < 0.0 is made in the conventional Eγ bins.

4.1.2 Acceptance as a function of t̃ in different Eγ bin

The acceptance of the LEPS detector as a function of Eγ bin and t̃ bin for LD2 coherent,
incoherent events and LH2 events are shown respectively in Fig. 4.2, 4.3, and 4.4. The t̃ bin
size is changed in the t̃ region for the acceptance of incoherent events to be in agreement with
the distribution of the yield.



4.1. RESULTS OF DIFFERENTIAL CROSS SECTION 49

0

0.01

0.02

0.03

0.04

-0.4 -0.2 0
0

0.02

0.04

0.06

-0.4 -0.2 0
0

0.025

0.05

0.075

0.1

-0.4 -0.2 0

0

0.05

0.1

-0.4 -0.2 0
0

0.05

0.1

0.15

-0.4 -0.2 0
0

0.05

0.1

0.15

-0.4 -0.2 0

0

0.05

0.1

0.15

0.2

-0.4 -0.2 0
0

0.05

0.1

0.15

0.2

-0.4 -0.2 0
0

0.05

0.1

0.15

0.2

-0.4 -0.2 0

E1

A
cc

ep
ta

nc
e E2 E3

E4 E5 E6

E7 E8 E9

t+|t|min (GeV2)

Figure 4.2: Acceptance for the LD2 coherent events.
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Figure 4.3: Acceptance for the LD2 incoherent events.
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Figure 4.4: Acceptance for the LH2 events.

As shown in the plots, the acceptance exhibits a rapid decay with the decrease of t̃ in all
these three different reactions and can be understood by the fact that the set up of LEPS
detector is at very forward angle in the direction of the incident photon. With higher

∣

∣t̃
∣

∣ ,
particles after the interaction would deviate more from this direction and are less probable to
be detected by the detector.

In Fig. 4.2 the acceptance of coherent interaction drops to the minimum value in the lowest
t̃ bin. The acceptance in this t̃ bin is around 0.025 at best. Together with the formulation that
the differential cross section drops with decreasing t̃ , the presumption that coherent events are
fairly to be observed in −0.4 < t̃ < 0.0 is ensured.

4.1.3 The fitting of t̃ distribution

The t̃ distributions in different Eγ bin are first normalize by the t̃ bin size. The dN/dt distri-
bution of different interaction is then obtained where N denotes the event yield in each t̃ bin.
These dN/dt distributions are fitted with a acceptance-convoluted function in the following
form:

N0 · exp(bt̃ ) · Accep (4.1)

where N0 and b are the fitting parameters and Accep is the acceptance. The N0 and b here
individually indicate the intercept at t̃ = 0 and the exponential slope of the dN/dt distribution.

The results of the fit to the t̃ distribution is shown in Fig. 4.5, 4.6, and 4.7 and are tabulated
in Table 4.2, 4.3, and 4.4. The open circles represent the dN/dt distribution and the dashed lines
are the results of the fit. The fitting gives good match with the t̃ distribution in LD2 incoherent
case and in LH2 case. For LD2 coherent case on the other hand, discrepancy appears in low
t̃ region especially in lower Eγ bins. This may be caused by the fact that the statistics of
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coherent events is significantly low in these regions and the yield of events would be easily
influenced by statistical fluctuation.

Note that the fitting of LH2 t̃ distribution fails in the E1 bin and unreasonably high
χ2/ndf value is given due to poor statics in this Eγ bin.
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Figure 4.5: LD2 coherent t̃ distribution fitted with acceptance-convoluted function.

Table 4.2: Results of t̃ fitting of LD2 coherent events

Eγ bin N0 (events/0.02 GeV2) b (GeV−2) χ2/ndf

E1 4322 ± 3086 -6.592 ± 9.743 0.0526

E2 21171 ± 6871 30.481 ± 13.664 1.1593

E3 27964 ± 6588 40.667 ± 11.286 2.3900

E4 17473 ± 4871 10.972 ± 4.511 0.6076

E5 27333 ± 6147 13.362 ± 3.462 1.4508

E6 24378 ± 4163 11.337 ± 1.999 0.3518

E7 48866 ± 5605 13.051 ± 1.470 0.8535

E8 61163 ± 5899 15.573 ± 1.312 1.2100

E9 56511 ± 6474 20.766 ± 2.180 1.8078
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Figure 4.6: LD2 incoherent t̃ distribution fitted with acceptance-convoluted function.

Table 4.3: Results of t̃ fitting of LD2 incoherent events

Eγ bin N0 (events/0.02 GeV2) b (GeV−2) χ2/ndf

E1 23550 ± 7939 7.730 ± 5.359 1.8469

E2 38053 ± 8304 10.886 ± 3.696 0.9588

E3 61255 ± 5987 6.216 ± 1.118 0.9009

E4 76332 ± 5282 4.898 ± 0.667 0.9238

E5 97406 ± 5027 4.448 ± 0.441 0.7680

E6 105568 ± 4455 4.538 ± 0.321 1.4274

E7 124344 ± 4670 3.945 ± 0.264 1.5269

E8 113035 ± 3897 3.824 ± 0.215 1.8100

E9 39774 ± 2074 3.052 ± 0.284 1.3777
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Figure 4.7: LH2 t̃ distribution fitted with acceptance-convoluted function.

Table 4.4: Results of t̃ fitting of LH2 events

Eγ bin N0 (events/0.02 GeV2) b (GeV−2) χ2/ndf

E1 2679 ± 3264 -9.873 ± 13.167 9999.0000

E2 9810 ± 3120 -0.835 ± 2.796 0.1098

E3 23273 ± 4088 4.157 ± 1.819 0.9186

E4 27312 ± 2689 1.980 ± 0.802 0.2686

E5 36620 ± 2778 3.033 ± 0.610 1.4597

E6 36895 ± 2228 3.544 ± 0.431 1.6004

E7 45631 ± 2336 3.618 ± 0.358 0.3875

E8 45875 ± 2206 4.168 ± 0.331 0.1551

E9 16260 ± 1225 3.124 ± 0.460 0.9346



54 CHAPTER 4. RESULTS AND DISCUSSIONS

4.1.4 The slope parameter

The coverage of Eγ of this this analysis is 1.573 GeV to 2.473 GeV and this is not a wide
Eγ range. From previous experimental results [1], the structure of t̃ distribution exhibits no
strong energy dependence which can also be observed from Fig. 4.5, 4.6,and 4.7. It is therefore
reasonable to presume that the slope parameter b is constant over all the Eγ bins.

This trend of steady slope distribution with Eγ is seen if E9 bin is removed due to the
unreliability discussed in section 3.6 and neglect the significant fluctuation in first three Eγ bins
as a result of low statistics in these bins.

For this reason, the slope parameters are fitted by a constant distribution to evaluate the
average of b and the results are tabulated in Table 4.5. Note that the fit is made with E9 bin
excluded.

The energy dependence of the slope parameter is shown in Fig. 4.8, 4.9, and 4.10 by the
closed circles for three different data sets. The result of the fit is represented with the open
triangle.

Table 4.5: The averaged slope parameters

Data set b (GeV−2) χ2/ndf

LD2 Coherent 13.784 ± 0.830 2.2215

LD2 Incoherent 4.136 ± 0.136 1.8940

LH2 3.619 ± 0.192 1.6520
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Figure 4.8: Slope parameter of LD2 coherent events
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Figure 4.9: Slope parameter of LD2 incoherent events.
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Figure 4.10: Slope parameter of LH2 events.
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4.1.5 Differential cross section

The intercept N0 obtained from the t̃ fitting needs to be background-subtracted to obtain Nφ
0 ,

the intercept of pure φ events. With the background-to-signal ratio obtained in section 3.9, N φ
0

can be evaluated as:

Nφ
0 = N0 × (1− NBG

Nsignal

). (4.2)

Note that this background-subtraction procedure is applied only on intercept of LD2 incoherent
events and LH2 events as discussed in section 3.9.

With the intercept Nφ
0 obtained, the differential cross section at t̃ = 0 can be deduced by

correcting Nφ
0 with various normalization constants such as the number of target particles, the

number of incident photons, etc.
Also, other correcting factors need to be included, such as the inefficiency of the incident

photon beam due to photons interacting with the gas in the beam pipe, the tagger efficiency,
and the others. Putting all these normalization constants and correcting factors together, the
differential cross section at t̃ = 0 GeV2 is derived as [35]:

dσ

dt
|t̃=0 =

Nφ
0 · Fnorm

Rbranch ·Ntarget · (Nbeam · Fbeam · ηtrans · Pntag1)
(4.3)

where the parameters in the equation are defined as:

� Fnorm: The normalization factors to correct tagger PL inefficiency, Tagger SSD dead
strips, and ntag = 1 inefficiency due to accidental hits.

� Rbranch: The branching ratio of φ→ K+K−.

� Ntarget: The number of target nucleons.

� Nbeam: The number of tagged photons.

� Fbeam: The fraction of the number of photons at each energy bin.

� ηtrans: The transmission rate of photon beam from storage ring to the target.

� Pntag1: The probability of ntag = 1 after correcting the inefficiencies of tagger.

From Eq. 4.3 the differential cross section at t̃ = 0 is derived in the unit of µb. The list of the
value of each parameter for LD2 and LH2 data is included in Appendix D.

The results of the energy dependence of differential cross section at t̃ = 0 is shown in
Fig. 4.11, 4.12, and 4.13 and are also tabulated in Table 4.6, 4.7, and 4.8. With the fluctuation
in few Eγ bins, different patterns of dσ/dt|t̃=0 in each kind of event arise clearly.
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Figure 4.11: Differential cross section at t̃ =0 of LD2 coherent events.

Table 4.6: Differential cross section at t̃ =0 of LD2 coherent events

Eγ bin dσ/dt|t̃ =0 (µb/GeV2)

E1 0.090 ± 0.064

E2 0.478 ± 0.155

E3 0.513 ± 0.121

E4 0.322 ± 0.090

E5 0.391 ± 0.088

E6 0.370 ± 0.063

E7 0.620 ± 0.071

E8 0.812 ± 0.078

E9 2.258 ± 0.259



58 CHAPTER 4. RESULTS AND DISCUSSIONS

Eγ (GeV)

dσ
/d

t|t
=

-|
t| m

in
 (

µb
/G

eV
2 )

0

0.5

1

1.5

2

2.5

3

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

Figure 4.12: Differential cross section at t̃ =0 of LD2 incoherent events.

Table 4.7: Differential cross section at t̃ =0 of LD2 incoherent events

Eγ bin dσ/dt|t̃ =0 (µb/GeV2)

E1 0.300 ± 0.103

E2 0.714 ± 0.158

E3 1.043 ± 0.103

E4 1.388 ± 0.096

E5 1.377 ± 0.071

E6 1.566 ± 0.066

E7 1.554 ± 0.058

E8 1.470 ± 0.051

E9 1.572 ± 0.082
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Figure 4.13: Differential cross section at t̃ =0 of LH2 events.

Table 4.8: Differential cross section at t̃ =0 of LH2 events

Eγ bin dσ/dt|t̃ =0 (µb/GeV2)

E1 0.061 ± 0.074

E2 0.327 ± 0.105

E3 0.704 ± 0.124

E4 0.883 ± 0.087

E5 0.920 ± 0.070

E6 0.973 ± 0.059

E7 1.014 ± 0.052

E8 1.061 ± 0.051

E9 1.143 ± 0.086
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4.2 Discussions

4.2.1 The slope parameter

From section 4.1.4, it is observed that the slope parameter exhibits no strong energy dependence
for the three different kind of reactions. In Fig. 4.14, the average slope parameters b as a function
of photon energy obtained from LD2 coherent, incoherent, and LH2 events are presented with
the open circle, the open square, and the open triangle.
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Figure 4.14: Slope parameters as a function of photon energy.

The slope parameter of LD2 coherent events is about 14 GeV−2, and basically in the range
of 3-5 for interaction with nucleons. As can be seen, the slope of LD2 coherent events is
significantly higher than those of LD2 incoherent and LH2 events. This feature of large t-slope
can be understood by the form factor of deuteron. Because the charge distribution of deuteron
is wider in space than that of nucleons, the form factor of deuteron would exhibits a steeper
momentum-transfer dependence. The result is consistent with the theoretical prediction [18]
and the form factors for the natural exchange amplitude SN

1,0 discussed in Appendix C.

4.2.2 Differential cross section

The differential cross section at t̃ = 0 GeV2 as a function of photon energy of LD2 coherent,
incoherent, and LH2 events are shown in Fig 4.15 and are represented respectively with open
circles, open squares, and open triangles. Further, the results of previous LEPS experiment
using 50 mm LH2 target [12] is also overlaid with closed circles. Note that results of E9 bin is
abandoned.

From section 4.1.3, the differential cross section exhibit forward peaking shape at the forward
angles within the LEPS acceptance of very forward direction for LD2 coherent, incoherent, and
LH2 interactions. This fact confirms that in φ photoproduction at forward angles, the diffractive
t-channel exchange is the dominate contribution.

As to the isotopic effect of π-η interference, since π and η are isovector and isoscalar particles,
the π pp and η pp coupling have the same sign while π nn and η nn are of the opposite
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Figure 4.15: Differential cross section at t̃ =0 as a function of photon energy.

sign. Therefore a constructive interference between π-exchange and η in the γ + p → φ + p
interaction and destructive interference in the γ + n→ φ+ n interaction are expected. In the
LD2 incoherent reactions, the measurement is performed without identifying γ+p→ φ+p and
γ + n → φ + n, so the experimental observable is considered to be the coherent sum of these
two reaction channels. If there were no π-η interference, the differential cross section at t̃ = 0
of LD2 incoherent events would close to that of the interaction with nucleons doubled, which
is not seen in Fig 4.15. This fact suggests the cross section of γ + n → φ + n is 20-30% lower
than that of γ+ p→ φ+ p interaction which is somehow inconsistent with the prediction of [9]
but may still provide information of π- and η-exchange contribution to be further analyzed.

The differential cross section at t̃ = 0 of LD2 coherent events increases with the photon
energy. For the differential cross section at t̃ = 0 of LD2 incoherent events and LH2 coherent,
although not so significant for the LH2 events, local maximum similar to the previous LEPS
result is seen around Eγ = 2.2 GeV. Together with the analysis on decay asymmetry discussed
in [36] which shows the dominating natural-parity exchanges contribution, the scenario of man-
ifestation of other exchanges of natural-parity particles such as the daughter Pomeron exchange
is suggested.

Since the formulation of differential cross section of LD2 coherent events is basically different
from that of the interaction with nucleons by the form factor of deuteron, the results of coherent
interaction and interaction with nucleons can be compared on the same basis by correcting the
differential cross section of coherent events with deuteron form factor. In Fig. 4.16, open circles
represent the differential cross section of LD2 coherent events corrected by the deuteron form
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factor and related phase-space factors discussed in Appendix C.
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Figure 4.16: Corrected differential cross section at t̃ =0 of LD2 coherent events comparing with LH2 result.

Compared to the result of LH2 events of [12] represented with closed circles, the corrected
differential cross section of LD2 coherent events is lower than that of the LH2 events. This is
resonable because of the absence of π-meson exchange in the coherent interaction. However,
the trend of the result of LD2 coherent events doesn’t drop with the photon energy but rather
retains at the value around 0.6 µb. As discussed before, the Pomeron exchange is expected to
take the majority of the particle exchange process if the π exchange is eliminated. Pomeron
exchange contribution is understood to go down with decreasing photon energy and therefore
the observed non-decreasing behavior can’t be simply interpreted by the scenario of a dominance
of natural-parity Pomeron exchange. According to the decay-asymmetry analysis of ??, the
LD2 coherent interaction is dominated by natural-parity exchange process. Thus, the non-
decreasing behavior can’t caused by unnatural-parity η exchange but comes from other natural-
parity particle exchange.

In the future work, since the LD2 coherent reaction is conjectured to be dominated by
natural-parity exchanges. The form factors | SN

1.0|2 of deuteron can be implemented into the
predicted cross section of γ + p → φ + p at t̃ = 0 from Pomeron exchange and any deviation
from this measurement of LD2 coherent events will indicates the existence of other process of
natural-parity exchange at Eγ =1.573 - 2.373 GeV. Further, by using polarized target, more
informative observables such as the beam-target asymmetry may be obtained [6, 9, 18]. New
measurement at higher energies (Eγ > 2.4 GeV) can also be performed to establish an overall
exhibition of the non-monotonic structure of the cross section near threshold.



Chapter 5

Summary

The differential cross section of the photoproduction of φ meson from deuterium target has
been studied and compared with the results from hydrogen target in the energy range from the
production threshold to Eγ = 2.4 GeV.

The diffractive photoproduction of φ meson provides an good opportunity to observe non-
conventional particle-exchange processes due to the OZI suppression. By using the LD2 target,
natural-parity exchange contribution can be further extracted by isospin conservation. Isospin
effect can also be studied

Clear contribution from coherent reactions was observed in the LD2 MMd spectra, and
therefore the disentanglement was achieved by fitting the MMd spectra with those of Monte-
Carlo-simulated coherent and incoherent events in each Eγ and t̃ bin. Various examinations
were done to verify the validity of the Monte-Carlo simulation for disentanglement. Also, the
background subtraction, acceptance, and other issues need to be nailed down were studied with
Monte-Carlo simulation.

The properly determined Monte-Carlo-simulated MMd spectra fitted the real data with
reasonably good agreement. For the disentangled LD2 coherent, incoherent events, and the
LH2 events, no strong energy dependence was observed. The LD2 coherent differential cross
section was observed to have a large t-slope which can be understood by the form factor of
deuteron. And the differential cross section at t̃ = 0 of LD2 coherent events shows a constant
increase with the photon energy.

As to the differential cross section of LD2 incoherent events, the result shows a strong isospin
effect. Together with the differential cross section of LH2 events, consistent exponential slopes
were obtained and the peaking structure around Eγ = 2.2 GeV observed in the previous LEPS
analysis with liquid hydrogen target is also shown in both kinds of reactions. Together with the
study on decay asymmetry of another LEPS analysis, the presence of the peaking structure in
the cross section may be interpreted as the manifestation of additional natural-parity exchange
processes, such as the daughter Pomeron trajectory.

In the future, the comparison of the predicted differential cross section of γ + p → φ + p
at t̃ = 0 from Pomeron exchange and that of the LD2 coherent interaction can be proceeded
to discriminate the possible natural-parity contribution. Further, more informative observables
such as the beam-target asymmetry may be obtained by using polarized target. New measure-
ment at higher energies is also crucial to pin down and establish the non-monotonic-increase
structure of the cross section near threshold.
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Appendix A

Survey of stability of momentum
resolution

The particle identification (PID) involves the determination of the momentum and the time of
flight of different particles. The momentum resolution is therefore involved in the procedure
of PID. Here the momentum resolution is examined in different runs to see if there is any run
dependence of it by utilizing the same framework as discussed in [23].

From experiment, the momentum p of a particle can be measured by the bending angle of
it when passing through the bending magnet. And the flight-path length and the time of flight
(TOF) together gives the velocity β of the particle. With these two information the mass m of
the particle can be determined as:

m = [p2(
1− β2

β2
)]1/2 (A.1)
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Figure A.1: Scatter plot of Momentum square and momentum.

The 2-d scatter plot of mass square and particle momentum is shown in Fig. A.1 using the
data taken from LD2 target events. Bands representing pions, kaons, and protons can be seen
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separately. It can also be seen that the distribution of the band is not uniform at different
momentum and this non-uniformity comes from the resolution of momentum and TOF.

Define the width of the band as σm2 and this reconstructed mass resolution can be parame-
terized as [37]:

σ2
m2 = 4m4(

σp
p
)2 +

4p4

β2
(
σTOF
L

)2. (A.2)

where σp, σTOF , and L are the momentum resolution, TOF resolution, and the flight-path
length.

To obtain the momentum resolution by utilizing Eq. A.2, the mass resolution as a function of
particle momentum need to be obtained first. The bands corresponding to each type of particle
is cut out as defined by the box region depicted in Fig.A.1. The selected mass distributions are
then sliced into different momentum region as defined in Table A.1.

Table A.1: The definition of momentum slices.

Particle Range of m (GeV2) Range of p (GeV/c) Number of slices

Pion -0.15 - 0.15 0.0 - 2.0 20

Kaon 0.08 - 0.43 0.0 - 2.0 20

Proton 0.60 - 1.20 0.0 - 2.5 25

Each slice of mass distribution is then fitted with a Gaussian distribution plus a first-order
polynomial as is illustrated in Fig. A.2 by taking the LD2 proton-band case for example.

Proton

Figure A.2: Fitting of proton mass distribution in each momentum slice.
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The mean value and the width of the Gaussian fitting in each momentum region are then
obtained from the fitting. The Gaussian width values are assigned to be the mass resolution
σm and the momentum resolution can subsequently be derived.

The momentum resolution σp in Eq. A.2 can be decomposed into two terms relating to
spectrometer resolution and multiple scattering separately. The momentum resolution and
TOF resolution are thus parameterized as:

(
σp
p
)2 = a2

1 · p2 +
a2

2

β2
, (A.3)

a3 =
σTOF
L

. (A.4)

The parameter a1 dominates in high p region and is related to the spectrometer resolution. It
would be altered by the aging of sensing wire, the variation of the gas of the chamber, and
other possibles effects. The parameter a2, on the other hand, dominates in low p region and
is affected by the multiple scattering process relating to the material through which particle
passes.

Substitute Eq. A.1, A.3 and A.4 into Eq. A.2, the mass resolution can be expressed as:

σ2
m2 = 4m2p2 · a2

1 + 4m4(1 +
m2

p2
) · a2

2 + 4p2(m2 + p2) · a2
3. (A.5)

Set a1, a2, and a3 as fitting parameters, the measured Gaussian widths in different momentum
region are fitted with Eq. A.5 as a function of momentum p as is shown in Fig. A.3 by using
LD2 proton-band case still as an illustration.
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Figure A.3: Fitting of Gaussian width of the mass distribution.

The three parameters obtained by different particle band given by the fitting are then shown
in Fig A.4, A.5, and A.6. Putting LD2 target runs and LH2 target runs all together, the
parameters are presented in different runs with the LD2 target runs denoted by closed circles
and LH2 target runs denoted by open circles.
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As shown in Fig. A.4, A.5, and A.6, the momentum resolution related parameters; a1 and
a2, exhibits no significant run dependence and fluctuates around a stable value within error bar
in all three kind of particle bands utilized.

Neglect the results from low-statics kaon band, one problem is that the values a2 from pion
band are almost zero. This may be under stand by the fact that π is relatively light particle
and the probability of multiple scattering for π is low. Therefore the pion band is not sensitive
enough to produce proper a2.

Another problem is that the parameters shouldn’t depend on which particle band used. But
as can be seen that these three parameters derived from pion, kaon, and proton differ from each
other. The explanation for this problem is not well understood in this analysis work. But even
though this inconsistency appears, the stability of the momentum is evidenced.
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Figure A.4: Three fitting parameters in different runs evaluated with pion band.



69

-0.05

0

0.05

0.1

0.15

0.2

24000 24500 25000 25500 26000

-0.02

-0.01

0

0.01

0.02

24000 24500 25000 25500 26000

Kaon

Number of Run

a1

Number of Run

a2

Number of Run

a3

0

0.005

0.01

0.015

0.02

24000 24500 25000 25500 26000

Figure A.5: Three fitting parameters in different runs evaluated with kaon band.
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Appendix B

Systematic examinations

Different systematic examination is explained in this appendix to test the authenticity of the
differential cross section. Consistency between different approaches is shown.

B.1 Cross check on disentanglement

If the Monte-Carlo simulation is valid and reliable, the disentanglement should not depend
on whether it is MMp or MMd spectra to be fitted. Therefore, the same procedure used to
disentangle coherent and incoherent contribution by MMd fitting is applied on MMp .

1

10

10 2

10 3

-0.4 -0.2 0
1

10

10 2

10 3

-0.4 -0.2 0
1

10

10 2

10 3

-0.4 -0.2 0

1

10

10 2

10 3

-0.4 -0.2 0
1

10

10 2

10 3

-0.4 -0.2 0
1

10

10 2

10 3

-0.4 -0.2 0

1

10

10 2

10 3

-0.4 -0.2 0
1

10

10 2

10 3

-0.4 -0.2 0
1

10

10 2

10 3

-0.4 -0.2 0

E1

dN
/d

t

E2 E3

E4 E5 E6

E7 E8 E9

t+|t|min (GeV2)

Figure B.1: LD2 coherent t̃ distribution disentangled from MMp and MMd spectra.

In Fig. B.1 and Fig. B.2, LD2 coherent, incoherent t̃ distribution in each Eγ bin are shown
with the open circles representing the MMd disentangled components and open triangles rep-
resenting MMp disentangled ones. Within error bar, clear consistency is verified between the
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disentanglement by MMp and by MMd fitting.
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Figure B.2: LD2 incoherent t̃ distribution disentangled from MMp and MMd spectra.

Since the disentanglement by MMp and MMp show good agreement with each other, the
MMd and MMp spectra from real data (backgrounds within) must be dominantly contributed
from demanded coherent and incoherent events and can thus be successfully extracted by the
non-background-contaminated Monte-Carlo simulated events. This indicates the fact of rare
contamination of backgrounds in the events before background subtraction.

B.2 Bin-size dependence

The choice of range and bin size of t̃ to perform disentanglement of LD2 coherent and incoherent
events is rather arbitrary.

The distribution of coherent events concentrates in low t̃ region and is considered to be well
included if this t̃ region is set to be wide enough. But if the t range is set too wide, the statistics
of MMd distribution in low t̃ part would become too poor to give reasonable MMd fitting due
to the exponential t̃ dependence of the differential cross section.

The bin size of t̃ is limited to the t resolution. With smaller t̃ bin size, the dependence on
t̃ of the yield of events can be obtained in more t-bins and provides more degrees of freedom
as constraint of the exponential fitting. The problem still is that with smaller t̃ bin size, the
statistics of MMd in each t̃ bin would decrease and thus the MMd fitting would provide larger
error.

The result of differential cross section by different range and the bin size of t̃ is presented
with two different options listed in Table. B.1
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Table B.1: Different options of range and bin size of t̃

t̃ range (GeV2) t̃ bin size (GeV2) Number of t̃ bins

Option 1 -0.3 - 0.0 0.03 10

Option 2 -0.4 - 0.0 0.04 10

B.3 Different approaches

As is discussed, the structure of the t̃ distribution is not sensitively dependent on Eγ energy
which is shown in sub-section 4.1.4. Another way of fitting parameterization referred to as
common-slope fitting is then made by setting the b parameter to be a single parameter
among all the Eγ bins. This method is also employed in [22].

Common-slope fitting in a sense helps to correct the fitting result in the low Eγ bins of poor
statistics by utilizing the constraint provided by the higher Eγ bins. However, it is shown in
section 3.6 that the result in E9 bin is rather untrustful due to the breakdown of Eγ smearing.
The E9 bin is therefore forsaken to avoid the influence it would bring into the over all fitting.

Due to the low statistics in low Eγ bins shown, another approach to merge the merge the
lowest three Eγ bins is performed. The E1, E2, and E3 bins are merged to E* bin of range 1.573
GeV to 1.873 GeV with other Eγ bin definition kept the same. And then the same analysis
process such as acceptance evaluation and disentanglement is made. The approaches in all are
summarized as:

� Approach 1: Conventional nine Eγ binning, slope as an unstrained parameter.

� Approach 2: Conventional nine Eγ binning, common slope.

� Approach 3: E1, E2, and E3 are merged to be E*, slope as an unstrained parameter.

� Approach 4: E1, E2, and E3 are merged to be E*, common slope.

Here, the results of t̃ fitting using another approach combining with other bin size of t̃ are
presented in various plots. Note that in the plots of LD2 coherent and incoherent events, the
results of different t̃ bin size are overlaid with the convention:

� Open squares: 0.02 GeV2

� Open circles: 0.03 GeV2

� Open triangles: 0.04 GeV2



74 APPENDIX B. SYSTEMATIC EXAMINATIONS

0

5

10

15

20

25

30

35

40

45

50

1.6 1.8 2 2.2 2.4

Eγ (GeV)

t-
sl

op
e

0

2000

4000

6000

8000

10000

x 10

1.6 1.8 2 2.2 2.4

Eγ (GeV)

In
te

rc
ep

t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1.6 1.8 2 2.2 2.4

Eγ (GeV)

dσ
/d

t|t
=

-|
t| m

in
 (

µb
/G

eV
2 )

0

0.5

1

1.5

2

2.5

3

3.5

4

1.6 1.8 2 2.2 2.4

Eγ (GeV)

χ2 /n
do

f

Figure B.3: Results of Approach 1 of LD2 coherent events.
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Figure B.4: Results of Approach 2 of LD2 coherent events.
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Figure B.5: Results of Approach 3 of LD2 coherent events.
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Figure B.6: Results of Approach 4 of LD2 coherent events.
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Figure B.7: Results of Approach 1 of LD2 incoherent events.
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Figure B.8: Results of Approach 2 of LD2 incoherent events.
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Figure B.9: Results of Approach 3 of LD2 incoherent events.
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Figure B.10: Results of Approach 4 of LD2 incoherent events.
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Figure B.11: Results of Approach 1 of LH2 events.
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Figure B.12: Results of Approach 2 of LH2 events.
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Figure B.13: Results of Approach 3 of LH2 events.
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Figure B.14: Results of Approach 4 of LH2 events.
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Appendix C

Deuteron form factors

The cross sections of scattering experiments with nuclei or nucleons are determined by the form
factors which contain all the information about the spatial distribution of the charge of them.
The form factors can be interpreted as the probability for going from one particular initial
state to a particular final state when a fix amount of three momentum q is transfered and can
determine how the scattering rate is reduced from its value for a point-like scattering case.

At present, there is no decisive theoretical model for the form factor of deuteron. The
adopted way of evaluating deuteron form factor in this analysis work is explained below in
usual notations.

The radial wave function components of deuteron are parameterized with PARIS poten-
tial [29, 38]:

U(r) =
13

∑

J=1

CJ · exp(−mJr), (C.1)

W (r) =
13

∑

J=1

DJ · exp(−mJr)(1 +
3

mJr
+

3

m2
Jr

2
), (C.2)

where U(r) and W (r) are s- and d-wave functions of the deuteron state, CJ and DJ are
coefficients of the parameterized deuteron wave function components as listed in Table C.1.
The masses mJ are defined as mJ = α + (J − 1)m0, with m0 = 1 fm−1 and

α = (2mR · |ED|)1/2/~ = 0.23162461 fm−1

where mR and ED are the neutron proton reduced mass and the deuteron binding energy. The
wave functions are shown in Fig. C.1 with U(r) represented in solid line and W (r) in dash line.

With the deuteron wave functions formulated as Eq. C.1 and Eq. C.2, the deuteron charge
form factor FC , the quadrupole form factor FQ, and the magnetic form factor FM can be
evaluated as is suggested in [18, 39, 40, 41]:

FC(q) =[GEp(q) +GEn(q)]

∫ ∞

0

dr[U 2(r) +W 2(r)]j0(
qr

2
), (C.3)

FQ(q) =2[GEp(q) +GEn(q)]

∫ ∞

0

drW (r)[U(r)− W (r)√
8

]j2(
qr

2
), (C.4)

FM(q) =[GEp(q) +GEn(q)]

∫ ∞

0

dr[U 2(r) +
W 2(r)

2
]j0(

qr

2
)

+ [
√
2U(r)W (r) +W 2(r)]j2(

qr

2
), (C.5)
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Figure C.1: Deuteron wave function components.

where jn is spherical Bessel function of order n, GEp, and GEn are the proton and neutron
electric and magnetic form factors defined as:

GEp(q) = (1 +
q2

18.235 fm−2
)−2,

GEn(q) = 0.

The absolute value of the electromagnetic form factors as the function of q2 is shown in Fig. C.2
with |FC | represented by solid line, |FQ| by dash line, and |FM | by dot line.
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Figure C.2: Deuteron electromagnetic form factors.

The deuteron form factors for the natural and unnatural parity-exchange amplitude are
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similar to the deuteron electromagnetic form factors and can be written as [18]:

SN1 (q2) = FC(q
2)− 1√

2
FQ(q

2), (C.6)

SN0 (q2) = FC(q
2) +

√
2FQ(q

2), (C.7)

SU1 (q
2) = FM(q2). (C.8)

The SN,UM stands for the natural and unnatural parity-exchange form factors of the deuteron
with spin projectionM and are shown as the function of q2 in Fig. C.3. The solid line is SN1 (q2),
the dash line is SN0 (q2), and the dot line is SU1 (q

2). From Fig. C.3, it can be seen that form
factors SN,U decrease rapidly with q2 and SN1 shows a dip around q2 = 5 GeV2
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Figure C.3: Deuteron form factors of natural and unnatural exchange amplitude.

Table C.1: The coefficients of the parameterized deuteron wave function components

CJ (fm−1/2) DJ (fm−1/2)

0.88688076× 100 0.23135193× 10−1

-0.34717093× 100 -0.85604572× 100

-0.30502380× 101 0.56068193× 101

0.56207766× 102 -0.69462922× 102

-0.74957334× 103 0.41631118× 103

0.53365279× 104 -0.12546621× 104

-0.22706863× 105 0.12387830× 104

0.60434469× 105 0.33739172× 104

-0.10292058× 106 -0.13041151× 105

0.11223357× 106 0.19512524× 105

-0.75925226× 105 -0.15634324× 105

0.29059715× 105 0.66231089× 104

-0.48157368× 104 -0.11698185× 104
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The differential cross section of γ + p→ φ+ p and γ + d→ φ+ d can be derivied as [42]:

dσ

dt
|γ−p =

1

16π · Φ(sp,Mp, 0)
× 4

4
× |T p|2, (C.9)

dσ

dt
|γ−d =

1

16π · Φ(sd,Md, 0)
× 2

6
× Fform ×

2Md

Mp

× |T d|2, (C.10)

where
Φ(s,M1,M2) = [(s−M 2

1 )
2 +M4

2 − 2sM 2
2 − 2M2

1M
2
2 ]. (C.11)

T p and T d are invariant amplitudes for each reaction. Mp and Md are the masses of proton and
deuteron. s is the Mandelstam variable. The factors, 4/4 and 2/6, are spin statistical factors.
And the factor 2Md/Mp in the equation of coherent interaction is the correcting factor for the
non-relativistic wave function for the deuteron.

By the form factors derived in this appendix, Sum over the deuteron spin projection in the
final state gives factor:

2 · (SN1 )2 + (SN0 )2.

An additional factor 4 due to the coherent process from the proton and neutron need to be
added, and therefore the overall form factor Fform can be written as:

Fform = 4[2 · (SN1 )2 + (SN0 )2]. (C.12)



Appendix D

Tables of normalization of yield

The correcting parameters used to derive the differential cross section are listed. The data is
obtained from [35, 43, 36]. The number of target nucleons Ntarget can be derived as:

Ntarget =
ltgt · ρ
A

· (6.02× 1023) (D.1)

Where ltgt is the target length, ρ is the target density, and A is the atomic wight of the target.
These quantities for LD2 and LH2 runs are all presented in the tables below.

Table D.1: Normalization factor

Eγ bin (GeV) Fnorm
1.573 - 1.673 1.25290

1.673 - 1.773 1.42316

1.773 - 1.873 1.23063

1.873 - 1.973 1.33199

1.973 - 2.073 1.13190

2.073 - 2.173 1.32088

2.173 - 2.273 1.23043

2.273 - 2.373 1.23579

2.373 - 2.473 1.34186

Table D.2: Beam efficiency including tagger inefficiency and backward Compton scattering spectra

Eγ bin (GeV) Fbeam
1.573 - 1.673 0.0867

1.673 - 1.773 0.0910

1.773 - 1.873 0.0969

1.873 - 1.973 0.1044

1.973 - 2.073 0.1142

2.073 - 2.173 0.1258

2.173 - 2.273 0.1400

2.273 - 2.373 0.1344

2.373 - 2.473 0.0485
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Table D.3: Other parameters used in deducing differential cross section

LD2 runs LH2 runs

NV T
beam 2.27× 1012 1.71× 1012

NHT
beam 2.24× 1012 1.50× 1012

Nbeam 4.51× 1012 2.21× 1012

ρ (g/cm3) 0.1790 0.0708

A (g/mole) 2.0140 1.0079

Table D.4: Other parameters used in deducing differential cross section common for LD2 and LH2 data

ltgt (cm) 16

Rbranch 0.492

ηtrans 0.52



Appendix E

Supplementary plots

E.1 Results of examination on other off-shell schemes

The plots of the results of examination in other schemes are shown here with the same conven-
tion discussed in subsection 3.7.2.

Scheme 3-(a)
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Figure E.1: Scheme 3-(a), off-shell effect examination on peak and width in different Eγ bin.
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Scheme 4-(a)

1.86

1.865

1.87

1.875

1.88

1.885

1.89

1.895

1.9

0 1 2 3 4 5 6 7 8 9 10
Eγ binµ

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 1 2 3 4 5 6 7 8 9 10
Eγ binσ

Figure E.2: Scheme 4-(a), off-shell effect examination on peak and width in different Eγ bin.
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Figure E.3: Scheme 1-(b), off-shell effect examination on peak and width in different Eγ bin.
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Scheme 2-(b)
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Figure E.4: Scheme 2-(b), off-shell effect examination on peak and width in different Eγ bin.
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Figure E.5: Scheme 3-(b), off-shell effect examination on peak and width in different Eγ bin.
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Scheme 4-(b)
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Figure E.6: Scheme 4-(b), off-shell effect examination on peak and width in different Eγ bin.
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Figure E.7: Scheme 3-(a), off-shell effect examination on MMd fitting.
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Scheme 4-(a)
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Figure E.8: Scheme 4-(a), off-shell effect examination on MMd fitting.
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Figure E.9: Scheme 1-(b), off-shell effect examination on MMd fitting.
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Scheme 2-(b)
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Figure E.10: Scheme 2-(b), off-shell effect examination on MMd fitting.
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Figure E.11: Scheme 3-(b), off-shell effect examination on MMd fitting.
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Scheme 4-(b)
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Figure E.12: Scheme 4-(b), off-shell effect examination on MMd fitting.
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E.2 MMd fitting

The MMd fitting in each Eγ , t̃ bin is illustrated here. The t̃ bins marked on the plots are
defined in Table 4.1. In every plot, the solid line is the MMd distribution and the dash line is
the result of the fit. Although the number of events is low in the low E bins and T bins, the
fitting is observed to be generally reasonable.
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Figure E.13: E1 bin, MMd fitting.
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Figure E.14: E2 bin, MMd fitting.
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Figure E.15: E3 bin, MMd fitting.
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Figure E.16: E4 bin, MMd fitting.
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Figure E.17: E5 bin, MMd fitting.
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Figure E.18: E6 bin, MMd fitting.

0

1

2

1.8 2
0

0.5

1

1.8 2
0

2

1.8 2
0

1

2

1.8 2

0

1

2

1.8 2
0

1

2

1.8 2
0

2

1.8 2
0

2

1.8 2

0

2

1.8 2
0

2

4

1.8 2
0

2

4

1.8 2
0

2.5

5

1.8 2

0

2.5

5

1.8 2
0

2.5

5

1.8 2
0

5

1.8 2
0

5

10

1.8 2

0

5

10

1.8 2
0

5

10

1.8 2
0

10

1.8 2
0

10

1.8 2

Eγ=2.173to2.273

E
ve

nt
s T1 T2 T3 T4

T5 T6 T7 T8

T9 T10 T11 T12

T13 T14 T15 T16

T17 T18 T19

MMd (GeV/c2)

T20

Figure E.19: E7 bin, MMd fitting.
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Figure E.20: E8 bin, MMd fitting.
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Figure E.21: E9 bin, MMd fitting.
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