Reactor neutrino spectrum

H. B. Li (李浩斌)

April 25, 2011

H. B. Li (李浩斌) Reactor neutrino spectrum

Motivation

- Accurate reactor γ oscillations experiments.
- Better sesitivities on v magnetic search.
- · Reactor monitoring.

SONGS: replacement of Pu was seen. Most of the material based on arXiv:1101.2663v2 [hep-ex].
$$\begin{split} & \text{Spectrum}(E) = S_{\text{fission}} + S_{n \text{ capture on }^{238}\text{U}} + S_{n \text{ capture on fission product}} \\ & \text{S}_{\text{fission}}\text{: fission of }^{235}\text{U}, \\ & \text{S}_{n \text{ capture on }}^{238}\text{U}\text{: }^{238}\text{U} + n \rightarrow \\ & \overset{239}{}\text{U} \xrightarrow{} \\ & \overset{239}{}\text{Np} \xrightarrow{} \\ & \overset{239}{}\text{Np} \xrightarrow{} \\ & \overset{239}{}\text{Pu} \\ & \text{S}_{n \text{ capture on fission product}\text{: e. g. }} \\ \end{split}$$

$$S_{\text{fission}}(t,E) = \sum_{k=^{235}\text{U},\;^{238}\text{U},\;^{239}\text{Pu},\;^{241}\text{Pu}} \alpha_k(t) S_k(t,E)$$

 α_k : fission rate, depend on abundance of isotope and neutrons. S_k: $\bar{\nu_e}$ or e^- spectrum per fission.

$$S_k(t, E) = \sum_{fp=\text{fission product}} A_{fp}(t) S_{fp}(E)$$

 A_{fp} : activity of fp^{th} fission product, depend on neutrons. S_{fp} : $\bar{\nu_e}$ or e^- spectrum of fp^{th} fission product.

$$S_{fp} = \sum_{b=decay branch} BR_b S_b$$

BR_b: branching ratio of each decay branch. S_b: $\bar{v_e}$ or e^- spectrum of each β -decay Number of nuclei involve: 845 + unknown. Number of decay branch: >10000 + unknown. Example: A fission of ^{235}U into ^{92}Kr and $^{141}\text{Ba},$ and $\beta\text{-decay branchs of }^{92}\text{Kr}$

 e^- spectrum of ²³⁵U, ²³⁹Pu, ²⁴¹Pu are measured at ILL(Institut Laue-Langevin) High-Flux reactor by neutron bombardment on ²³⁵U, ²³⁹Pu, ²⁴¹Pu thin foil.

Convert e^- spectrum to $\bar{\nu_e}$ spectrum: old way

Cut e^- spectrum into n-bin, the highest E bin must come from largest branch(one branch), assume constant Z

- \rightarrow fit the last bin with SINGLE branch e^- spectrum
- ightarrow subtract that spectrum from measured e^- spectrum
- \rightarrow fit the last bin after subtraction.

Z dependent of Fermi function affect jigsaw structure of low Energy $\bar{v_e}$ spectrum.

Add all the fission product and β -branch

A near complete data available at ENSDF(Evaluated Nuclear Structure Data File).

However ...

 E_0 and branching ratio was measured by γ spectrum, and γ could "lost" in measurement \rightarrow assign larger E_0 \rightarrow Pandemonium Effect(Hardy, 1977) Using Total Absorption Gamma Spectrometer(TAGS).

Compare with Measured e^- spectrum

ENSDF only, replace some with Pandemonium-corrected data, add in JENDL(Japanese Evaluated Nuclear Data Library) and model.

 $\pm 10\%$

Another way

Add everythings in ENSDF and Pandemonium-corrected data, and fit remaining as "old way".

The remaning are fitted with 5 virtual branches with Z=46.

 e^- spectrum $\pm 1\%$

 $\bar{\nu_e}$ spectrum shift +3%

Use ENSDF only to generated $\bar{\nu_e}$ and e^- , then convert generated- e^- spectrum to $\bar{\nu_e}$ with old way.

Switch on-off various effects \rightarrow +3% below 4 MeV from QED correction. \rightarrow +3% above 4 MeV from using correct Z ("old way" use constant Z to fit all virtual branches) Activities was simulated by MCNP(Monte-Carlo N-Particle transport code) for Reactor Evolution.

after 12h, after 36h, accumulate. Time variation affect \pm 1%. Total error for 235 U, 239 Pu, 241 Pu < 4% at 2-5 meV.

Using ENSDF, Pandemonium-corrected, JENDL and model. Compare with [Vogel, 1981](different nuclear database) $\pm 10\%$. 238 U+n $\rightarrow ^{239}$ U $\xrightarrow{\rightarrow} ^{239}$ Np $\xrightarrow{\rightarrow} ^{239}$ Pu 239 Pu

Time evolution

n capture on fission product

 $\begin{array}{l} \mbox{Mainly on } ^{135}\mbox{Xe, very strong n-absorber.} \\ ^{135}\mbox{Xe} \rightarrow {}^{135}\mbox{Cs.} \\ \mbox{or } {}^{135}\mbox{Xe} + n \rightarrow {}^{136}\mbox{Xe(stable)} \end{array}$

The effect is minor. [Kipeikin, 2004]

Average N_{obs}/N_{pred} = 0.937±0.027(used to 0.979±0.029). \rightarrow a sterile neutrino?

- \pm ~1% on e^- spectrum of 235 U, 239 Pu, 241 Pu.
- + \pm ~10% on new/old calculation on $^{238}\text{U's}~\bar{v_e}.$
- + 3% shift above 2 MeV.
- < 2 MeV spectrum uncheck.