Sub-Threshold Behavior for Low-Energy Germanium Detectors

- ULGe-PCGe: Phys & Requirements
- Event Selection & Efficiencies

Status & Plans

Heng-Ye. Liao/廖恒毅 Institute of Physics, Academia Sinica TEXONO Collaboration Weekly Journal Club for Medium Energy Physics, June 13, 2011

Physics Programs at Reactor

◊ [1] Magnetic Moment Search at ~ 10keV ⇒ [PRD 75 2007]
 ◊ [2] sin²θw, Axion Search at MeV range ⇒ [PRD 81, 82 2010]
 ◊ [3] v_eN Coherent Scattering
 ◊ [3] Low-mass WIMP Search ⇒ [PRD 79 2009]
 ◊ Critical Issues: Signal efficiencies for trigger, DAQ & Selection ⇒ Main Topic of this talk

Detector Scale-up Plans: Point Contact Ge Detector

Standard Coaxial Ge Detector
 Large-capacitance, noise(_keV);
 Short-charge drift times

◆ 500 g, 900 g PCGe ⇒ low threshold ⊕ larger mass, lower background ⊕ Position-sensitive from drift ⊕ Add: Dual-electrode readout

Noise Trigger Rate

$$R \sim \frac{1}{4\tau} \ exp \ \left[-\frac{d^2}{2 \ \sigma^2}\right]$$

- τ: shaping time
 σ: RMS of the pedestal noise fluctuations
 d: threshold level above the pedestal
- Detector Response:
 Match well with theoretical predcition
- ♦ Behaviour of the theoretical prediction
 ♦ Universal for all

detectors

- DAQ threshold at ~ 4.3 above mean of noise fluctuations
 - ⇒ minimal DAQ dead time (5Hz ⊕ 10% deadtime)

Energy Measurement & Calibration

PCGe Response for two modes

Elaborate Settings of Hardware & Software

- Fine tuning of Q-Mode spectrum:
 - optimization of the resolution & threshold

 Only good Hardware & software settings were preserved!

Evaluation of Trigger Efficiency

⇒ Reinforced by pulser method

- Efficiency(background): from (mean, RMS) of Max. Amplitude distribution of physics events
- Trigger Efficency(pulser):
 Survival possibilities of pulser events
- Pulser Method:
 - Consistent well with trig. efficiency from backgound
 - Potentials for Simulating Physical (CRT+ACT) events

Event Selection

 Candidate Events: selected by ⇒
 Anti-Compton Vetos
 [ACV : γ] &
 Cosmic-Ray Vetos
 [CRV: μ] &
 Pulse-Shape Discrimination
 [PSD: electronic noise]

PSD Selection to Suppress Electronic Noise

Correlations in two readout of different gains & shaping times

PCGe 500 $g \Rightarrow PSD$ Cut

Below Hardware	
Threshould:	
⇒ Statistical Pulse sha	pe
difference between	
Signal/Noise	
Rigorous PSD Cut	
Selection:	
good efficiency	
less background	
Over threshould	
Only "good" PSD	
Cut survives !	

PCGe 500 g \Rightarrow PSD Selection Efficiency

ACV-Tagged Events at 200-400eV

PCGe 500 g \Rightarrow Threshold

PCGe 500 g ⇒ Surface & Bulk

- ♦ Origion of Surface Event ⇒ n+ contact is not totally dead, deposit partial charge
- ♦ Surface Event ⇒ Dominant in low energy
 - PCGe can reject surface events using "Rise Time cuts"
- ♦ Reference Sample for Bulk & Surface: selected by ⇒ Cosmic without anti-Compton [CRT+ACV : n-rich, Bulk dominant]
 - Cosmic-Veto with Compton [CRV+ACT: Ambient y, Surface-rich]

Reference :

Strauss and Larsen, NIM 56 (1967) p. 80

Sakai, IEEE Trans. Nucl. Sci. 18 (1971) p. 208

PCGe 500 g \Rightarrow ¹³⁷Cs Source

PCGe 500 g \Rightarrow ²⁴¹Am Source

PCGe 500 g ⇒ Surface & Bulk

PCGe 900 g ⇒ Neutron/Gamma Separation(on processing)

Status and Plans

