Weekly Journal Club for Medium Energy Physics at IPAS 2011/1/24

Studies on Neutrino-Electron Elastic Scattering in the Standard Model and Beyond

Muhammed Deniz^{1,2} 1: IoP, Academia Sinica, Taiwan 2: KTU & METU, Turkey

On behalf of TEXONO Collaboration

Institute of Physics, Academia Sinica Taipei, TAIWAN, 24 Jan 2011

OUTLINE

- Theory overview $\overline{v_e} e^-$ Scattering Motivation
- TEXONO Physics Program
- TEXONO Experiment CsI(TI) Array
 - Event Selection & Data Analysis Outline
 - Background Understanding & Suppression
 - Analysis Results
- Cross Section & EW Parameters World Status
- Probing New Physics NSI & UP with $\overline{v_e}$ e^-
- Summary

\bar{v}_e - e⁻ Scattering Formalism

$$\begin{array}{c} \overline{\mathbf{v}_{e}} + \mathbf{e}^{*} & \longrightarrow & \overline{\mathbf{v}_{e}} + \mathbf{e}^{*} \\ \hline \mathbf{v}_{e} + \mathbf{e}^{*} & \longrightarrow & \overline{\mathbf{v}_{e}} + \mathbf{e}^{*} \\ \hline \mathbf{v}_{e} + \mathbf{e}^{*} & \longrightarrow & \overline{\mathbf{v}_{e}} + \mathbf{e}^{*} \\ \hline \mathbf{v}_{e} + \mathbf{v}_{e}^{*} & \xrightarrow{\overline{\mathbf{v}_{e}}} & \xrightarrow{\overline{\mathbf{v}_{e}}} \\ \hline \mathbf{v}_{e} + \mathbf{v}_{e}^{*} & \xrightarrow{\overline{\mathbf{v}_{e}}} & \xrightarrow{\overline{\mathbf{v}_{e}}} \\ \hline \mathbf{v}_{e} + \mathbf{v}_{e}^{*} & \xrightarrow{\overline{\mathbf{v}_{e}}} & \xrightarrow{\overline{\mathbf{v}_{e}}} \\ \hline \mathbf{v}_{e} + \mathbf{v}_{e}^{*} & \xrightarrow{\overline{\mathbf{v}_{e}}} & \xrightarrow{\overline{\mathbf{v}_{e}}} \\ \hline \mathbf{v}_{e} + \mathbf{v}_{e}^{*} & \xrightarrow{\overline{\mathbf{v}_{e}}} & \xrightarrow{\overline{\mathbf{v}_{e}}} \\ \hline \mathbf{v}_{e} + \mathbf{v}_{e}^{*} & \xrightarrow{\overline{\mathbf{v}_{$$

Neutrino-Electron Scattering Cross-Section

$$\frac{\nabla_{e} + e^{-} \qquad \nabla_{e} + e^{-}}{dT} = \frac{V_{e} + e^{-}}{2\pi} \left\{ \begin{array}{c} (g_{V} + 1)^{2} \left[1 + \left(1 - \frac{T}{E_{v}} \right)^{2} - \frac{m_{e}T}{E_{v}^{2}} \right] \\ + (g_{A} + 1)^{2} \left[1 + \left(1 - \frac{T}{E_{v}} \right)^{2} + \frac{m_{e}T}{E_{v}^{2}} \right] \\ - (g_{V} + 1)(g_{A} + 1) \left[2 - 2 \left(1 - \frac{T}{E_{v}} \right)^{2} \right] \end{array} \right\} \left\{ \begin{array}{c} \mathbf{g}_{A} \\ \mathbf{g}_{$$

Expected event rate for $\bar{\nu}_e e$ scattering can be written as

$$r_{SM}(T) = \int_{E_{\nu}} \frac{d\sigma_{SM}}{dT} \frac{d\phi}{dE_{\nu}} dE_{\nu}$$

$$R_{SM} = \rho_e \int_{T} r_{SM}(T) dT = \rho_e \int_{T} \int_{E_{\nu}} \left[\frac{d\sigma}{dT} \right]_{SM} \frac{d\phi}{dE_{\nu}} dE_{\nu} dT = 0.0128 \ day^{-1} \times kg^{-1}$$
in 3 - 8 MeV

Studies on Neutrino-Electron Scattering

TEXONO Physics Program **TEXONO Collaboration: Taiwan (AS,INER,KSNPS,NTU)**; China (IHEP,CIAE,THU,NKU,SCU,LNU); Turkey (METU, KTU); India (BHU) **Program:** Low Energy Neutrino & Astroparticle Physics guality mass Detector requirements Count day⁻¹ keV⁻¹(1kg) 10 ⁴ 10 ³ [3] 10 ² **Observable Spectrum** ,Ψ_N with typical 10 reactor neutrino "beam" v e(MM) Taiwan [1 v_e(SM) **EX**periment [2] 10 On 10 -7 **NeutrinO** 10 -8 10 10 ⁻² 10 ⁻¹ 10³ 10² 10 10 1 Recoil Energy(keV)

[1] Magnetic Moment Search at ~10 keV \rightarrow PRL 2003, PRD 2007

[2] Cross-Section and EW Parameters measurement at MeV range → PRD 2010

[3] \overline{v}_e N Coherent Scattering & WIMP Search at sub keV range \rightarrow PRD-R 2009

Kou-Sheng Reactor Power Plant

Kuo-Sheng Nuclear Power Station : Reactor Building

KS NPS -II : 2 cores × 2.9 GW

Total flux about 6.4x10¹² cm⁻²s⁻¹

KS v Lab: 28m from core #1

10 m below the surface 30 mwe overburden

Studies on Neutrino-Electron Scattering

Neutrino Laboratory

CsI Scintillating Crystal Array

Cross-Sectional View

Side View

Experimental Approach; CsI(TI) Crystal Scintillator Array:

- proton free target
 (suppress v_e-p background)
- scale to ϑ (tons) design possible
- good energy resolution, alpha & gamma Pulse Shape Discrimination (PSD)
- allows measure energy, position, multiplicity
- more information for
 - background understanding & suppression
 - **DAQ Threshold: 500 keV**
 - Analysis Threshold: 3 MeV

(less ambient **background & reactor** \bar{v}_e spectra well known)

- Data Volume: ~ 29883 kg-day / 7369 kg-day Reactor ON/OFF
- Energy : Total Light Collection
 σ (E) ~ 6% @ E>660 keV
 Z-position : The variation of Ratio
 σ (Z) ~ 1.3 cm @ E>660 keV

-2 0

Studies on Neutrino-Electron Scattering

B/Y

Normal Event Pulse

Alpha

Event Pulse

Data Analysis: Event Selection

CUTS (3 - 8 MeV)	Efficiencies DAQ Live Time Eff. ~ 90%
CRV	92.7 %
MHV	99.9 %
PSD	~100 %
Z-pos	80%
Total	77.1 %

Studies on Neutrino-Electron Scattering

Background Understanding

Radioactive Contaminants

Decays of radioactive contaminants mainly ²³²Th and ²³⁸U decay chain produce background in the region of interest. Estimate the abundance of ¹³⁷Cs, ²³⁸U and ²³²Th inside the detector.

IDEA: By monitoring the **timing and position** information related β - α or α - α events can provide distinct signature to identify the decay process and the consistency of the isotopes involved.

Environmental Backgrounds

Cosmic Ray muons, Products of cosmic ray muons, Spallation neutrons and High Energy γ 's from such as ⁶³Cu, ²⁰⁸Tl

IDEA: multiple-hit analysis can give us very good understanding ²⁰⁸TI, High Energy γ and cosmic related background in the region of interest.

- Cosmic & High Energy Gamma Ray
 - By comparing cosmic and non-cosmic multiple-hit spectra.
- > TI-208 Decay Cascade

- By examining multiple-hit spectra as well as simulation of **TI-208** decay chain energies to **understand/suppress** background in the region of 3-4 MeV.

Intrinsic ¹³⁷Cs Level

Studies on Neutrino-Electron Scattering

Intrinsic U and Th Contamination Level

Data: The total of 40 crystals with data size of 1725 kg·day was analyzed.

i) $^{214}Bi(\beta) \rightarrow ^{214}Po(\alpha, 164 \mu s) \rightarrow ^{210}Pb$

Selection: 1st pulse is $\gamma(\beta)$ shaped &

 2^{nd} pulse α shaped

²³⁸U abundance = $0.82 \pm 0.02 \text{ x10}^{-12} \text{ g/g}$

iii) ²²⁰Rn(α) \rightarrow ²¹⁶Po(α , 0.15s) \rightarrow ²¹²Pb

Selection: two α events with time delay less than 1s

²³²Th abundance = $2.23 \pm 0.06 \times 10^{-12}$ g/g

ii) ${}^{212}\text{Bi}(\beta^{-},64\%) \rightarrow {}^{212}\text{Po}(\alpha, 299\text{ns}) \rightarrow {}^{208}\text{Pb}$ Selection: β - pulse followed by a large α pulse

²³²Th abundance = $2.3 \pm 0.1 \text{ x}10^{-12} \text{ g/g}$

Studies on Neutrino-Electron Scattering

Intrinsic Radiopurity Measurement and Contamination Level

DS	Signature	Selection Efficiency	Background -to-signal	Half- Nominal	$life(au_{1/2})$ Measured
1	$\alpha - \alpha$	0.93	0.51	3.10 min	$3.2{\pm}0.2$ min
2	$\beta - \alpha$	0.77	3.2×10^{-3}	$164 \ \mu s$	$163 \pm 8 \mu s$
3a	$\alpha - \alpha$	0.86		55 s	$54.4{\pm}2.4~{\rm s}$
3b	α	0.97	9×10^{-5}	$0.15 \ s$	0.141±0.006 s
4	$\beta - \alpha$	0.37	3×10^{-5}	299 ns	283 ± 37 ns
5a	$\alpha - \alpha$	0.78	_	3.96 s	No signal
5b	α	_	_	1.78 ms	DAQ inactive

	Measured	Contaminations	Contominations
DS	activity	of long-lived	contaminations
	$(mBqkg^{-1})$	parents (g/g)	of series (g/g)
1	0.0107 ± 0.0004	$^{226}Ra:(2.92\pm0.11)\times10^{-19}$	$^{238}U:(0.86\pm0.03)\times10^{-12}$
2	$0.0102 {\pm} 0.0003$	$^{226}Ra:(2.79\pm0.07)\times10^{-19}$	$^{238}U:(0.82{\pm}0.02){\times}10^{-12}$
3a, 3b	0.0090 ± 0.0002	$^{228}Th:(2.97\pm0.08)\times10^{-22}$	$^{232}Th:(2.23\pm0.06)\times10^{-12}$
4	0.0061 ± 0.0003	$^{228}Th:(3.1\pm0.2)\times10^{-22}$	$^{232}Th:(2.3\pm0.1)\times10^{-12}$
5a, 5b	<0.003	$^{227}Th:<1.6 imes10^{-21}$	$^{235}U:<\!\!4.9{ imes}10^{-14}$

Estimate the background due to Intrinsic ²⁰⁸Tl

Background Understanding: via Multiple Hit Analysis

Background Understanding via Multi Hit

Studies on Neutrino-Electron Scattering

Background Prediction via PAIR PRODUCTION

Residual Background Understanding & Suppression Background Sources : High Energy γ-rays & Cosmic Rays & ²⁰⁸TI Idea -- Use Multiple Crystal Hit (MH) spectra to predict Single Crystal Hit (SH) Background to the neutrino events $\left(\frac{MH_{non\ cos}}{MH_{tot}}\right)_{ON,OFF} = 1 - \varepsilon = \left(\frac{SH[BKG(cos)]}{SH_{tot}}\right)_{ON,OFF}$ SH[2614 + 583(MC)]SH[BKG(2614 + 583)] $\overline{MH[2614;583(data)]} = \overline{MH[2614;583(MC)]}$

Background Understanding & Suppression

 Combined BKG(SH) from three measurements:

 ● Direct Reactor OFF(SH) spectra
 Predicted BKG(SH) from OFF(MH)

 Predicted BKG(SH) from ON(MH)
 V = ON(SH) - BKG(SH)

Systematic Uncertainties Approach - Use non-v events for demonstration

Systematic Uncertainties

Summary of the sources of systematic errors and their contributions to the measurement uncertainties.

Sources	$\delta_{\rm sys}$ (Source)	$\Delta_{ m sys}(\xi)$
Signal strength :		
Φ_{ν} Evaluation	<3%	< 0.03
Efficiencies for neutrino events	<1.3%	< 0.013
Fiducial target mass	<4%	< 0.04
* Combined (signal)	-	< 0.052
Background subtraction :		
Reactor OFF measurement	<0.4%	< 0.06
Background evaluation		
\odot H1(CRV; Tl _{γ})	<3%	< 0.08
\odot H1(CRV; μ) + H1(CRV; μ)	<1%	< 0.17
Net	-	< 0.19
* Combined (background)	-	< 0.15
Total		< 0.16

Cross Section & Weak Mixing Angle

World Status: Summary Table

	Experiment	Energy (MeV)	Events	Cross-Section	sin²θ _w
V _ @-	LAMPF [Liquid Scin.]	7 - 60	236	$[10.0 \pm 1.5 \pm 0.9] \\ x E_{ve} 10^{-45} cm^2$	0.249 ± 0.063
ve-e	LSND [Liquid Scin.]	10 - 50	191	$[10.1 \pm 1.1 \pm 1.0] \\ x E_{ve} 10^{-45} cm^2$	0.248 ± 0.051
(Savannah-River [Plastic Scin.]	1.5 - 3.0 3.0 - 4.5	381 71	[0.86 ± 0.25] x σ _{V-A} [1.70 ± 0.44] x σ _{V-A}	0.29 ± 0.05
	Savannah-River Re-analysed (PRD1989, Engel&Vogel)	1.5 – 3.0 3.0 – 4.5	N/A	[1.35 ± 0.4] x σ_{SM} [2.0 ± 0.5] x σ_{SM}	N/A
<u>.</u>	Krasnoyarsk (Fluorocarbon)	3.15 – 5.18	N/A	[4.5 ± 2.4] x 10 ⁻⁴⁶ cm ² /fission	0.22 ± 0.75
v _e -e	Rovno [Si(Li)]	0.6 – 2.0	41	[1.26 ± 0.62] x 10 ⁻⁴⁴ cm ² /fission	N/A
	MUNU [CF₄(gas)]	0.7 – 2.0	68	1.07 ± 0.34 events day ⁻¹	N/A
l	TEXONO [Csl(Tl) Scin.]	3 - 8	~ 410	[1.08 ± 0.21 ± 0.16] x R _{SM}	0.251 ± 0.031(stat) ± 0.024(sys)

Neutrino-Electron Scattering Cross-Section

$$\overline{\mathbf{v}_{e} + e^{-}} \longrightarrow \overline{\mathbf{v}_{e} + e^{-}} \qquad \sigma_{SM} = \sigma^{INT} + \sigma^{CC} + \sigma^{NC}$$

$$\sigma^{CC} = 4 \times I_{2}$$

$$\sigma^{NC} = (g_{V} - g_{A})^{2} \times I_{1} + (g_{V} + g_{A})^{2} \times I_{2} + (g_{A}^{2} - g_{V}^{2})^{2} \times I_{3}$$

$$= (4\sin^{4}\theta) \times I_{1} + (1 - 2\sin^{2}\theta)^{2} \times I_{2} + 2\sin^{2}\theta(1 - 2\sin^{2}\theta) \times I_{3}$$

$$\sigma^{INT} = 4(g_{V} + g_{A}) \times I_{2} + 2(g_{A} - g_{V}) \times I_{3}$$

$$= 4(2\sin^{2}\theta - 1) \times I_{2} - (4\sin^{2}\theta) \times I_{3}$$

$$I_{1} = \frac{G_{F}^{2}m_{e}}{2\pi} \rho_{e} \iint_{IE_{v}} \left(\frac{d\phi}{dE_{v}}\right) dE_{v} dT$$

$$I_{2} = \frac{G_{F}^{2}m_{e}}{2\pi} \rho_{e} \iint_{IE_{v}} \left(1 - \frac{T}{E_{v}}\right)^{2} \left(\frac{d\phi}{dE_{v}}\right) dE_{v} dT$$

$$I_{3} = \frac{G_{F}^{2}m_{e}}{2\pi} \rho_{e} \iint_{IE_{v}} \left(\frac{m_{e}T}{E_{v}}\right) \left(\frac{d\phi}{dE_{v}}\right) dE_{v} dT$$

Interference, Neutrino Magnetic Moment and Charge Radius

Interference Term

$$R_{SM} = R^{CC} + R^{NC} + \eta \times R^{I}$$

Interference Term $\eta = -0.92 \pm 0.30(\text{stat}) \pm 0.24(\text{sys})$

Neutrino Magnetic Moment

$$R(ON - BKG) = R(SM) + \mu_v^2 \times R(MM)$$

 $\mu_{
m v}^{2}$ = [0.42 \pm 1.79(stat) \pm 1.49(sys)]. $\mu_{
m B}^{2}$

Neutrino Charge Radius

 $\sin^2 \theta$

$$_{W} \rightarrow \sin^{2} \theta_{W} + (\sqrt{2}\pi \alpha / 3G_{F}) \langle r_{\overline{\nu}_{e}}^{2} \rangle$$

 $\times \mu_{B}$

 $\mu_{\rm h} < 2.2 \times 10^{-10}$

at 90% C. L.

 $-2.1 \times 10^{-32} < \langle r_{\bar{\nu}_e}^2 \rangle < 3.3 \times 10^{-32} \ cm^2$

Energy (MeV)

Constraints of New Physics with $\bar{v}_e - e^2$ Scattering [PRD 82, 033004 (2010)]

- The measurements of neutrino scattering provide a sensitive tools to probe NSI and UP Physics

NSI of Neutrino

$$\mathscr{L}_{\text{eff}} = -\epsilon^{eP}_{\alpha\beta} 2\sqrt{2} G_F(\bar{\nu}_{\alpha}\gamma_{\rho}L\nu_{\beta})(\bar{e}\gamma^{\rho}Pe)$$

$$\begin{aligned} \frac{d\sigma(E_{\nu},T)}{dT} &= \frac{2G_F^2 M_e}{\pi} [(\tilde{g}_L^2 + \sum_{\alpha \neq e} |\epsilon_{\alpha e}^{eL}|^2) + \\ &+ (\tilde{g}_R^2 + \sum_{\alpha \neq e} |\epsilon_{\alpha e}^{eR}|^2) \left(1 - \frac{T}{E_{\nu}}\right)^2 - (\tilde{g}_L \tilde{g}_R + \sum_{\alpha \neq e} |\epsilon_{\alpha e}^{eL}| |\epsilon_{\alpha e}^{eR}|) m_e \frac{T}{E_{\nu}^2}] \end{aligned}$$

- v mass models all mechanisms carry some modifications to the structure of the standard EW NC & CC

NSI of Neutrino

 $-\bar{v}_e - e^-$ scattering provide a sensitive tool to probe NSI

- The NSI parameters are constrained by the accuracy of the SM cross-section measurements

The measurable recoil spectra with typical reactor neutrino "flux" at typical values of NSI parameters for both NU and FC NSI

Studies on Neutrino-Electron Scattering

Comparison of Bounds of NSI Parameters

Studies on Neutrino-Electron Scattering

Unparticle Physics

The notion of unparticles is introduced by Howard Georgi . A scale invariant sector which decouples at a suffciently large energy scale exists. [Phys. Rev. Lett. 98, 221601 (2007)]

The signatures of Unparticles can also be observed by reactor neutrinos by searching the effects of virtual unparticle exchange between fermionic currents.

This interaction can be either exchange of Scalar Unparticles or Vector Unparticles.

1. Exchange of Scalar Unparticles

$$\frac{d\sigma_{\mathcal{U}_S}}{dT} = \frac{[g_{0e}^{\alpha\beta}(d)]^2}{\Lambda^{(4d-4)}} \frac{2^{(2d-6)}}{\pi E_{\nu}^2} (m_e T)^{(2d-3)} (T+2m_e)$$

2. Exchange of Vector Unparticles

- The UP does not have any well defined invariant mass but rather has a contniuous mass spectrum

 \mathcal{U}_S

 (\mathcal{U}_V)

$$\frac{d\sigma_{\mathcal{U}_V}}{dT} = \frac{1}{\pi} \frac{[g_{1e}^{\alpha\beta}(d)]^2}{\Lambda^{(4d-4)}} 2^{(2d-5)} (m_e)^{(2d-3)} (T)^{(2d-4)} \left[1 + \left(1 - \frac{T}{E_\nu}\right)^2 - \frac{m_e T}{E_\nu^2} \right]$$

For the flavour changing case:

 $\bar{\nu}_{\beta}$

 $\bar{\nu}_{\alpha}$

$$\frac{d\sigma_{\mathcal{U}_V-SM}}{dT} = \frac{\sqrt{2}G_F}{\pi} \frac{g_{1e}(d)}{\Lambda^{(2d-2)}} (2m_e T)^{(d-2)} m_e \left\{ g_L + g_R \left(1 - \frac{T}{E_\nu} \right)^2 - \frac{(g_L + g_R)}{2} \frac{m_e T}{E_\nu^2} \right\}$$

For the flavour conserving case

i= 0(1) : Unparticle scalar/vector field

 $\lambda_0(\lambda_1)$: Scalar(Vector) unparticle couplings

f:e,u,d

 α , β : denotes neutrino flavours

d: Unparticle mass dimension

 $\Lambda\colon$ Unparticle energy scale

$$g_{if}^{\alpha\beta}(d) = \frac{\lambda_{i\nu}^{\alpha\beta}\lambda_{if}}{2\sin(d\pi)}A_d \qquad A_d = \frac{16\pi^{5/2}}{(2\pi)^{2d}}\frac{\Gamma(d+1/2)}{\Gamma(d-1)\Gamma(2d)}$$
$$\lambda_0 \ (\lambda_1) = \sqrt{\lambda_{0\nu}^{e\beta}\lambda_{0e}} \ (\sqrt{\lambda_{1\nu}^{e\beta}\lambda_{1e}})$$

Unparticles

$\overline{\nu}_{\alpha} + e^{-} \xrightarrow{UP} \overline{\nu}_{\beta} + e^{-}$

- The differential cross-section of the interaction for \overline{v}_e -e scattering via virtual scalar and vector UP exchange

Unparticle - Exclusion Plots

- For the illustrations (only) the measurable spectra of an excluded and allowed parameter space where the data provides the stringent bounds for typical values of parameters

Scalar Unparticle

Vector Unparticle

$$\frac{d\sigma_{\mathcal{U}_{V}}}{dT} = \frac{1}{\pi} \frac{[g_{1e}^{\alpha\beta}(d)]^{2}}{\Lambda^{(4d-4)}} 2^{(2d-5)} (m_{e})^{(2d-3)} (T)^{(2d-4)} \left[1 + \left(1 - \frac{T}{E_{\nu}}\right)^{2} - \frac{m_{e}T}{E_{\nu}^{2}} \right]$$
$$\frac{d\sigma_{\mathcal{U}_{V}-SM}}{dT} = \frac{\sqrt{2}G_{F}}{\pi} \frac{g_{1e}(d)}{\Lambda^{(2d-2)}} (2m_{e}T)^{(d-2)} m_{e} \left\{ g_{L} + g_{R} \left(1 - \frac{T}{E_{\nu}}\right)^{2} - \frac{(g_{L} + g_{R})}{2} \frac{m_{e}T}{E_{\nu}^{2}} \right\}$$

10³¹

ULE Ge

FV

HP Ge

 $\Lambda = 1 - 10 \text{ TeV}$

— both FC and FV scenario are considered and analysed

Summary

Detector: CsI(TI) Scintillating Crystal Array (~ 200 kg)

Threshold: 3 MeV

Analysis Results:

- $\sigma(\overline{v}_e e^-)$ with ~ 25% accuracy
- Weak Mixing Angle with ~ 15% accuracy
- Verify SM negative interference
- $\mu_{\overline{\nu}}$ sensitivity ~ 10⁻¹⁰ μ_{B}
- neutrino charge radius sensitivity ~ 10⁻³² cm²

Probing new Physics : NSI and UP

Current bounds are improved over those from the previous experiments

Thank YOU