CMB Anisotropy and Polarization

Kin-Wang Ng (吳建宏)

Institute of Physics & Institute of Astronomy and Astrophysics Academia Sinica, Taiwan

APCTP School/Workshop on Gravitational-Wave Cosmology Nov 30 - Dec 4, 2019 Taipei

Outline

- The 3K cosmic microwave background
 - the relic photons of Hot Big Bang
- CMB anisotropy and polarization
- How to probe the early Universe and measure the cosmological parameters
- Current status and future directions

Cosmic Microwave Background

- Relic photons of hot big bang
- First observed in 1965
- Black body radiation of temperature about 3K
- Coming from last scatterings with electrons at redshift of about 1100 or 400,000 yrs after the big bang (age of the Universe is about 14 Gyrs)
- Slightly anisotropic (10µK) and linearly polarized (µK)

CMB Anisotropy and Polarization

- On large angular scales, matter imhomogeneities or primordial gravitational waves generate gravitational redshifts
- On small angular scales, acoustic oscillations in plasma on last scattering surface generate Doppler shifts
- Thomson scatterings with electrons generate polarization

CMB Measurements

- Point the telescope to the sky
- Measure CMB Stokes parameters:

$$T = T_{CMB} - T_{mean}$$

 $Q = T_{EW} - T_{NS}, U = T_{SE-NW} - T_{SW-NE}$

- Scan the sky and make a sky map
- Sky map contains CMB signal, system noise, and foreground contamination including polarized galactic and extra-galactic emissions
- Remove foreground contamination by multi-frequency subtraction scheme
- Obtain the CMB sky map

CMB Anisotropy and Polarization Angular Power Spectra

Decompose the CMB sky into a sum of spherical harmonics: $T(\theta, \phi) = \sum_{lm} a_{lm} Y_{lm}(\theta, \phi)$ $(Q - iU) (\theta, \phi) = \sum_{lm} a_{2,lm} {}_{2}Y_{lm} (\theta, \phi)$ $(Q + iU) (\theta, \varphi) = \Sigma_{lm} a_{-2,lm} Y_{lm} (\theta, \varphi)$ $I = 180 \text{ degrees} / \theta$ $C_{l}^{T} = \Sigma_{m} (a_{lm}^{*} a_{lm})$ anisotropy power spectrum $C_{l}^{E} = \Sigma_{m} (a_{2,lm}^{*} a_{2,lm}^{*} + a_{2,lm}^{*} a_{2,lm}^{*})$ E-polarization power spectrum $C_{l}^{B} = \Sigma_{m} (a_{2,lm}^{*} a_{2,lm} - a_{2,lm}^{*} a_{2,lm})$ B-polarization power spectrum $C_{l}^{TE} = -\Sigma_{m} (a_{lm}^{*} a_{2,lm})$ TE correlation power spectrum magnetic-type electric-type (Q,U)/___`|

PGWs and CMB temperature anisotropy

Collisional Boltzmann Equation Ng&Ng 96

$$\left(\frac{\partial}{\partial\eta} + \mathbf{e} \cdot \frac{\partial}{\partial\mathbf{x}}\right)\mathbf{n} = -\frac{1}{2} \frac{\partial\mathbf{n}}{\partial\ln\nu} \frac{\partial\mathbf{h}_{ij}}{\partial\eta} e^{i}e^{j} - \sigma_{\mathrm{T}}N_{e}a \\ \times \left[\mathbf{n} - \frac{1}{4\pi} \int_{-1}^{1} \int_{0}^{2\pi} P(\mu, \phi, \mu', \phi')\mathbf{n} \, d\mu' \, d\phi'\right], \quad (1)$$

where σ_T is the Thomson scattering cross section, N_e is the number of free electrons per unit volume, ($\mu = \cos \theta$, ϕ) are the polar angles of the propagation direction e of the photon with a comoving frequency v, and P is the phase matrix for Thomson scattering.

scalar modes/ density perturbations

The solution **n** for the equation of transfer assumes the form $\mathbf{n} = \mathbf{n}_0 + (n_0 \,\delta \mathbf{n}/2)$, where \mathbf{n}_0 and $\delta \mathbf{n}$ are the unperturbed solution and perturbation, respectively. We expand $\delta \mathbf{n} = \int d\mathbf{k} \, \mathbf{n}' e^{i\mathbf{k} \cdot \mathbf{x}}$, where $\mathbf{n}' = \alpha \mathbf{a} + \beta \mathbf{b}$. For the scalar-mode solution, the Stokes components n_u and n_v both decouple from n_i and n_r , and it suffices to consider only the first two components of \mathbf{n} with $\mathbf{a} = (1, 1)$ and $\mathbf{b} = (1, -1)$. Substituting the solution \mathbf{n} and the Fourier expansion for h_{ij} into equation (1), and expanding α and β in terms of Legendre polynomials,

$$\alpha(\mu) = \sum_{l} (2l+1)\alpha_{l} P_{l}(\mu) ,$$

$$\beta(\mu) = \sum_{l} (2l+1)\beta_{l} P_{l}(\mu) ,$$
(3)

tensor v modes/ d GWs

+ multi-component fluid perturbation evolution → CMB numerical codes : COSMICS Ma+Bertschinger, CMBFAST Seljak+Zaldarriaga, CAMB,...

Theoretical Predictions for CMB Power Spectra

Gravity-wave induced B-mode

Large-scale CMB Polarization and Reionization of the Universe

Weak Lensing by Large-Scale Structure

Primordial gravitational waves

CMB Foreground

Diffuse InfraRed Background Experiment

Far InfraRed Absolute Spectrophotometer

Differential Microwave Radiometer

CMB Spectrum T=2.725 ± 0.002

COBE - DMR Map of CMB Anisotropy Four Year Results

North Galactic Hemisphere

South Galactic Hemisphere

 $-100 \ \mu K$ +100 μK

7º resolution

Location of first Doppler peak determining the curvature of the Universe (2000)

 $1 = \Omega_{\rm M} + \Omega_{\rm DE} - k / (R^2 H^2)$

 $\Omega_{\rm M} + \Omega_{\rm DE} = 1.099 ^{+0.100}_{-0.085}$

First detection of polarization by DASI (2002)

DASI@South Pole Interferometry

FIRST-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP)¹ OBSERVATIONS: TEMPERATURE-POLARIZATION CORRELATION

A. KOGUT,² D. N. SPERGEL,³ C. BARNES,⁴ C. L. BENNETT,² M. HALPERN,⁵ G. HINSHAW,² N. JAROSIK,⁴ M. LIMON,^{2,4,6} S. S. MEYER,⁷ L. PAGE,³ G. S. TUCKER,^{2,6,8} E. WOLLACK,² AND E. L. WRIGHT⁹ Received 2003 February 11; accepted 2003 May 20

WMAP Cosmological Parameters

Model: lcdm+sz+lens

Data: wmap5+cmb

$10^2\Omega_b h^2$	2.250 ± 0.061		$1 - n_s$	0.040 ± 0.014
$1 - n_s$	$0.013 < 1-n_s < 0.067~(95\%~{\rm CL})$	A	$_{\rm BAO}(z=0.35)$	0.451 ± 0.021
C_{220}	5753^{+42}_{-44}		$d_A(z_{eq})$	$14351^{+186}_{-181} \mathrm{Mpc}$
$d_A(z_*)$	14188^{+188}_{-183} Mpc		$\Delta_{\mathcal{R}}^2$	$(2.41\pm 0.11)\times 10^{-9}$
h	$0.725\substack{+0.026\\-0.027}$		H_0	$72.5^{+2.6}_{-2.7} \text{ km/s/Mpc}$
$k_{ m eq}$	0.00952 ± 0.00045		leq	135.0 ± 4.7
ℓ_*	$302.14\substack{+0.84\\-0.83}$		n_s	0.960 ± 0.014
Ω_b	$0.0430\substack{+0.0028\\-0.0029}$		$\Omega_b h^2$	0.02250 ± 0.00061
Ω_c	$0.207\substack{+0.025\\-0.026}$		$\Omega_c h^2$	$0.1079^{+0.0061}_{-0.0060}$
Ω_{Λ}	$0.750\substack{+0.029\\-0.028}$		Ω_m	$0.250\substack{+0.028\\-0.029}$
$\Omega_m h^2$	0.1304 ± 0.0061		$r_{ m hor}(z_{ m dec})$	$287.2\pm3.4~{\rm Mpc}$
$r_s(z_d)$	$154.2^{+2.0}_{-1.9} \mathrm{Mpc}$	$r_s($	$z_d)/D_v(z=0.2)$	$0.1969\substack{+0.0079\\-0.0078}$
$r_s(z_d)/D_v(z=0.35)$	0.1178 ± 0.0042		$r_s(z_*)$	$147.5^{+1.8}_{-1.7} \mathrm{~Mpc}$
R	1.708 ± 0.020		σ_8	0.783 ± 0.035
A_{SZ}	$0.66^{+0.57}_{-0.66}$		$t_{ m O}$	$13.70^{+0.14}_{-0.13}~{ m Gyr}$
τ	$0.086\substack{+0.017\\-0.016}$		$ heta_*$	0.010398 ± 0.000029
$ heta_*$	$0.5958^{+0.0016}_{-0.0017}$ $^{\circ}$		t_*	382028^{+5752}_{-5791} yr
$z_{\rm dec}$	1087.9 ± 1.2		z_d	1019.8 ± 1.5
$z_{ m eq}$	3122 ± 147		2 _{reion}	10.9 ± 1.4
Z*	1090.62 ± 0.95		L	

Planck CMB Anisotropy $D^{TT}_{l} = l(l+1) C^{T}_{l}$ 2018

Planck CMB Polarization Power Spectra 2018

Best-fit 6-parameter ΛCDM model 2018

Density perturbation (scalar)

Spectral index $\mathcal{P}_{\mathcal{R}}(k) = A_s \left(\frac{k}{k_0}\right)^{n_s-1}$

k₀=0.05Mpc⁻¹

Parameter	TT+lowE 68% limits	TE+lowE 68% limits	EE+lowE 68% limits	TT,TE,EE+lowE 68% limits	TT,TE,EE+lowE+lensing 68% limits	TT,TE,EE+lowE+lensing+BAO 68% limits
Ω _b h ²	0.02212 ± 0.00022	0.02249 ± 0.00025	0.0240 ± 0.0012	0.02236 ± 0.00015	0.02237 ± 0.00015	0.02242 ± 0.00014
$\Omega_c h^2$	0.1206 ± 0.0021	0.1177 ± 0.0020	0.1158 ± 0.0046	0.1202 ± 0.0014	0.1200 ± 0.0012	0.11933 ± 0.00091
100 <i>ө</i> _{MC}	1.04077 ± 0.00047	1.04139 ± 0.00049	1.03999 ± 0.00089	1.04090 ± 0.00031	1.04092 ± 0.00031	1.04101 ± 0.00029
τ	0.0522 ± 0.0080	0.0496 ± 0.0085	0.0527 ± 0.0090	$0.0544^{+0.0070}_{-0.0081}$	0.0544 ± 0.0073	0.0561 ± 0.0071
$\ln(10^{10}A_{\rm s})$	3.040 ± 0.016	3.018 ^{+0.020} -0.018	3.052 ± 0.022	3.045 ± 0.016	3.044 ± 0.014	3.047 ± 0.014
n _s	0.9626 ± 0.0057	0.967 ± 0.011	0.980 ± 0.015	0.9649 ± 0.0044	0.9649 ± 0.0042	0.9665 ± 0.0038
۔ ۲ _{re}	7.50 ± 0.82	$7.11^{+0.91}_{-0.75}$	7.10 ^{+0.87} -0.73	7.68 ± 0.79	7.67 ± 0.73	7.82 ± 0.71

 Λ CDM model + 1-parameter extension

Spectral index
$$\mathcal{P}_{\mathcal{R}}(k) = A_s \left(\frac{k}{k_0}\right)^{n_s-1}$$
 r = Tensor/Scalar
= $P_h(k)/P_R(k)$ at k=0.002 Mpc⁻¹

Parameter	TT+lowE	TT, TE, EE+lowE	TT, TE, EE+lowE+lensing	TT, TE, EE+lowE+lensing+BAO
$\Omega_{K} \dots \dots$	$\begin{array}{r} -0.056^{+0.044}_{-0.050} \\ < 0.537 \end{array}$	$-0.044^{+0.033}_{-0.034}$ < 0.257	$\begin{array}{r} -0.011\substack{+0.013\\-0.012}\\<0.241\end{array}$	$\begin{array}{r} 0.0007^{+0.0037}_{-0.0037} \\ < 0.120 \end{array}$
N _{eff}	$3.00^{+0.57}_{-0.53}$ $0.246^{+0.039}_{-0.041}$	$2.92^{+0.36}_{-0.37}$ $0.240^{+0.024}_{-0.025}$	$2.89^{+0.36}_{-0.38}$ $0.239^{+0.024}_{-0.025}$	$2.99^{+0.34}_{-0.33}$ $0.242^{+0.023}_{-0.024}$
$dn_s/d\ln k$	$-0.004^{+0.015}_{-0.015}$	$-0.006^{+0.013}_{-0.013}$	$-0.005^{+0.013}_{-0.013}$	$-0.004^{+0.013}_{-0.013}$
<i>r</i> _{0.002}	< 0.102	< 0.107	< 0.101	< 0.106
<i>w</i> ₀	$-1.50_{-0.48}$	$-1.58_{-0.41}$	$-1.57_{-0.40}$	$-1.04_{-0.10}^{+0.10}$

POLARBEAR+BICEP2 B-mode Detection

Current B-mode measurements

Joint Planck+BICEP2/Keck Array constraint on r by removal of dust contamination (2018)

Alternative sources?

Can primordial magnetic fields be the origin of the BICEP2 data?

Camille Bonvin¹, Ruth Durrer² and Roy Maartens^{3,4}

Search for Cosmic Parity Violation

- T. D. Lee and C. N. Yang, C. S. Wu Parity symmetry is broken in sub -atomic world - weak interaction is left-handed
- Is there any parity violation in the cosmos on the sky?
 CMB polarization, polarized radio galaxies,...
- BICEP to AliCPT@China

CMB power spectra

- <TT>, <EE>, <BB>, and <TE> correlations exist in standard
 ΛCDM model
- Since B is odd under parity symmetry, we expect that
 <TB> = <EB> = 0
- Any trace of <TB> ≠ <EB> ≠ 0 may indicate parity violation

DE/DM Coupling to Electromagnetism

$$\mathcal{L}_N = -\frac{1}{4}\sqrt{-g}B_{F\tilde{F}}(\phi)F_{\mu\nu}\tilde{F}^{\mu\nu}\,,\quad\text{where}\quad\phi\equiv\frac{\Phi}{M}\,,\qquad M=M_{Pl}/\sqrt{8\pi}$$

This leads to photon dispersion relation

Carroll, Field, Jackiw 90

 $n_{\pm} = \varepsilon \mp \frac{1}{2} \frac{\partial B_{F\tilde{F}}}{\partial \phi} \left(\frac{\partial \phi}{\partial \eta} + \vec{\nabla} \phi \cdot \hat{n} \right)_{\pm \text{ left/right handed } \eta \text{ conformal time}}^{(\varepsilon, \vec{n}) \text{ is the photon four-momentum}}$

vacuum birefringence

then, a rotational speed of polarization plane

$$\omega = \frac{1}{2}(n_{+} - n_{-}) = -\frac{1}{2}\frac{\partial B_{F\tilde{F}}}{\partial\phi}\left(\frac{\partial\phi}{\partial\eta} + \vec{\nabla}\phi \cdot \hat{n}\right)$$

If B= $\beta\phi$, cooling of horizontal branch stars would imply $\beta < 10^7$

DE mean field induced vacuum birefringence – CMB photon $\operatorname{Photon}^{\operatorname{CMB}} \operatorname{photon}^{\operatorname{CMB}} \operatorname{photon}^{\operatorname$

Parity violating EB,TB cross power spectra – cosmic parity violation

Constraining β by CMB polarization data

Likelihood analysis assuming reasonable quintessence models $V(\phi) = V_0 \exp(\lambda \phi^2 / 2\bar{M}^2)$ $V(\phi) = V_0 \cosh(\lambda \phi / \bar{M})$

 $|\beta_{FF}\Delta\phi|/\bar{M} < 8.32 \times 10^{-4}$ at 95% c.l. where $\Delta\phi$ is the total change of ϕ until today.

M reduced Planck mass

More stringent limits from...WMAP...to Planck

Including Dark Energy Perturbation

$$\begin{split} & \text{Dark energy} \\ & \text{perturbation} \quad \phi(\eta, \vec{x}) = \bar{\phi}(\eta) + \delta \phi(\eta, \vec{x}) \quad \delta \phi(\eta, \vec{x}) = \frac{1}{\sqrt{(2\pi)^3}} \int \delta \phi(\vec{k}', \eta) e^{i\vec{k}'\cdot\vec{x}} d^3k' \\ & \text{time and space} \\ & \text{dependent rotation} \quad \omega = -\frac{1}{2} \frac{\partial B_{F\tilde{F}}}{\partial \phi} \left(\frac{\partial \phi}{\partial \eta} + \vec{\nabla} \phi \cdot \hat{n} \right) \\ & \dot{\Delta}_{Q\pm iU}(\vec{k}, \eta) + ik\mu \Delta_{Q\pm iU}(\vec{k}, \eta) = n_e \sigma_T a(\eta) \left[-\Delta_{Q\pm iU}(\vec{k}, \eta) \times \right] \\ & \sum_m \sqrt{\frac{6\pi}{5}} \pm 2Y_2^m(\hat{n}) S_P^{(m)}(\vec{k}, \eta) \right] \mp i2 \frac{1}{\sqrt{(2\pi)^3}} \int d\vec{k}' \, \tilde{\omega}(\vec{k} - \vec{k}', \eta) \Delta_{Q\pm iU}(\vec{k}', \eta) \\ & \tilde{\omega}(\vec{k}, \eta) = -\frac{1}{2} \frac{\partial B_{F\tilde{F}}}{\partial \phi} \left[\delta \phi_{\vec{k}}(\eta) + i\vec{k} \cdot \hat{n} \, \delta \phi_{\vec{k}}(\eta) \right] \end{split}$$

- Perturbation induced polarization power spectra in general quintessence models are small
- Interestingly, in nearly ACDM models (no time evolution of the mean field), birefringence generates <BB> while <TB>=<EB>=0

We Tried Many Scalar Dark Energy Models

Cosmic Birefringence (CB) Fluctuations

Nearly massless pseudo scalar

 $\begin{array}{l} \left\langle \delta\phi_{\vec{k},i}\delta\phi_{\vec{k}',i}\right\rangle = (2\pi^2/k^3)P_{\delta\phi}(k)\,\delta(\vec{k}-\vec{k}') \begin{array}{l} \text{Pospelov et al. 08} \\ P_{\delta\phi}(k) = Ak^{n-1} \end{array} \begin{array}{l} \text{Lee, Liu, Ng14} \end{array} \right.$

Axion (m~10⁻²²eV) CDM curvature perturbation

Recent, On-going, and Future CMB Space Missions and Experiments

Summary

- Cosmic microwave background is a powerful tool for unveiling the initial conditions of the early Universe
- Anisotropy power spectrum has been well measured
- Combined with other observations such as supernova, large-scale structure formation, gravitational lensing, cosmological parameters have been measured at ~1% accuracy
- Polarization signal is a sensitive probe of the formation of first stars and reionization history
- B-mode polarization is a clean signal of primordial gravitational waves and inflation
- Future and next-generation observations will lead us to an era of high-precision cosmology