Astrophysical and Cosmological Gravity-Wave Sources

Kin-Wang Ng (吳建宏)

Institute of Physics & Institute of Astronomy and Astrophysics Academia Sinica, Taiwan

APCTP School/Workshop on Gravitational-Wave Cosmology Nov 30 - Dec 4, 2019 Taipei

Outline

- Gravitational Waves
- Detection of GWs by LIGO/VIRGO
- Cosmology using GWS
- Hubble constant, modified gravity, gravitational lensing, phase transitions, cosmic strings, inflation,.....
- Current status and future directions

Metric

$$\begin{bmatrix} \text{Units} : & \overline{h} = \overline{c} = \frac{1}{80} = 1 \\ 1 \text{ GeV} = 5.07 \times 10^{13} \text{ Gm}^{-1} = 1.52 \times 10^{13} \text{ s}^{-1} = 1.16 \times 10^{13} \text{ K} \end{bmatrix}$$

$$de^{2} = -g_{\mu\nu} dx^{\mu} dx^{\nu} \qquad \mu, \nu = 0, 1, 2, 3$$

$$where g^{\mu\nu} g_{\nu\lambda} = \delta^{\mu} x \quad z \quad \overline{T}^{\mu\nu} g_{\lambda\nu} = \overline{T}^{\mu} \text{ for a tensor } \overline{T}^{\mu\nu}$$
e.g.
$$A \text{ flat metric} \quad S_{\mu\nu} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
For light $0 = de^{2} = dt^{2} - dx^{2} \implies |\frac{dx}{dt}| = 1$.

Expanding Universe

simulated maps for cosmic microwave background temperature anisotropy

Cosmic Microwave Background

- Relic photons of hot big bang
- First observed in 1965
- Black body radiation of temperature about 3K
- Coming from last scatterings with electrons at redshift of about 1100 or 400,000 yrs after the big bang (age of the Universe is about 14 Gyrs)
- Slightly anisotropic (10µK) and linearly polarized (µK)

Gravitational Waves in Expanding Universe

$$ds^{2} = dt^{2} - a^{2}(t)d\mathbf{x}^{2} \qquad \text{conformal time}$$
$$= a^{2}(\eta) \left(d\eta^{2} - d\mathbf{x}^{2} \right) \qquad d\eta = dt/a(t)$$

$$g_{\mu\nu} = a^2(\eta)(\eta_{\mu\nu} + h_{\mu\nu}), \quad h_{\mu\nu} \ll 1$$

gravitational waves are ripples of space-time

GWs Observation

LIGO interferometry experiment

Future GWs space mission LISA

Current Pulsar Timing Arrays

Nano-Hz GWs cause small correlated changes to the times of arrival of radio pulses from millisecond pulsars

International Pulsar Timing Arrays

Detection of Gravitational Waves in Binary Black Hole Merger

Masses in the Stellar Graveyard

Speed of Gravitational Waves

GW170817 with a distance at D=43.8 Mpc ($z \sim 0.01$)

$$D/c - D/v_{gw} = 1.7s$$
 $v_{light} = c = 3x10^{10} \text{ cm/s}$

 $(v_{gw} - c)/c = 1.7s (c/D) = 10^{-16}$ at frequency of 100 Hz

This has put a severe constraint on gravity models beyond the Einstein's theory of general relativity such as f(R), MOND,....

Cosmology based on Einstein's gravity works very well.

GRAVITATIONAL LENSING OF GRAVITATIONAL WAVES

Weak Lensing by Large-Scale Structure

Binary Neutron Star Mergers as Standard Sirens

Hubble law $v_H = H_0 d$ ($d \leq 50 \,\mathrm{Mpc}$)

Multi-messenger astronomy: v_H from EM and d from GW/BNS

Precision GW standard siren cosmology Chen et al. 17

Astrophysical sources for gravitational waves

Cosmological sources for gravitational waves

GW spectral energy density

tion h_{ij} is gauged to be transverse-traceless. The latter can be decomposed into two polarization unit tensors as

$$h_{ij}(\eta, \vec{x}) = \sum_{\lambda=+,\times} \int \frac{d^3 \vec{k}}{(2\pi)^{\frac{3}{2}}} h_\lambda(\eta, \vec{k}) \epsilon_{ij}^\lambda(\hat{k}) e^{i\vec{k}\cdot\vec{x}}, \qquad (2)$$

where $h_{\lambda}(\eta, \vec{k})$ is a Gaussian random field that defines the power spectrum of tensor perturbation,

$$\langle h_{\lambda}(\eta,\vec{k})h_{\lambda'}^{\star}(\eta,\vec{k}')\rangle = \delta(\vec{k}-\vec{k}')\frac{2\pi^2}{k^3}\mathcal{P}_{h}^{\lambda\lambda'}(\eta,k).$$
(3)

In the following, we will assume that $\mathcal{P}_{h}^{\lambda\lambda'}(\eta, k) = \delta_{\lambda\lambda'}\mathcal{P}_{h}(\eta, k)$. Then, the spectral energy density of the GWs relative to the critical density is given by

$$\Omega_{\rm GW}(\eta,k,\hat{k}) \equiv \frac{k}{\rho_c} \frac{d\rho_{\rm GW}}{dkd^2\hat{k}} = \frac{1}{96\pi} \left(\frac{k}{aH}\right)^2 \bar{\mathcal{P}}_h(\eta,k), \quad (4)$$

where $\rho_c = 3M_p^2 H^2$ and the overbar denotes taking a time-average. For k-modes that re-enter the horizon

First-order phase transitions e.g. quark-hadron transition ?

Non-topological soliton model for quark-hadron transition

FIG. 1. Typical potential $U(\sigma)$ in the nontopological soliton model.

e.g. Electroweak symmetry breaking?

Bubble nucleation

Contributions to the GW spectrum

- Collisions of bubble walls and shocks in the plasma
- Sound waves in the plasma after the bubbles have collided
- Magneto-hydrodynamic (MHD) turbulence in the plasma forming after the bubbles have collided

$$h^2 \Omega_{\rm GW} \simeq h^2 \Omega_{\phi} + h^2 \Omega_{\rm sw} + h^2 \Omega_{\rm turb}$$

Relevant physical quantities for GW production

- A - A

bubble nucleation rate
$$\Gamma(t) = A(t)e^{-S(t)}$$

inverse time duration $\beta \equiv -\frac{dS}{dt}\Big|_{t=t_*} \simeq \frac{\Gamma}{\Gamma} \implies \frac{\beta}{H_*} = T_* \frac{dS}{dT}\Big|_{T_*}$
ratio of the vacuum energy density released $\alpha = \frac{\rho_{\text{vac}}}{\rho_{\text{rad}}^*}$ $\rho_{\text{rad}}^* = g_*\pi^2 T_*^4/30$,
g. degrees of freedom
fraction of vacuum energy that gets converted into bulk motion $\kappa_v = \frac{\rho_v}{\rho_{\text{vac}}}$
fraction of vacuum energy into gradient energy of the soliton field $\kappa_\phi = \frac{\rho_\phi}{\rho_{\text{vac}}}$

bubble wall velocity in the rest frame of the plasma v_w

Collisions of bubble walls and shocks

- envelope (thin wall)-approximation numerical simulations

$$h^{2}\Omega_{\rm env}(f) = 1.67 \times 10^{-5} \left(\frac{H_{*}}{\beta}\right)^{2} \left(\frac{\kappa\alpha}{1+\alpha}\right)^{2} \left(\frac{100}{g_{*}}\right)^{\frac{1}{3}} \left(\frac{0.11 \, v_{w}^{3}}{0.42 + v_{w}^{2}}\right) \, S_{\rm env}(f)$$

fraction κ of the latent heat deposited in a thin shell close to the PT front.

$$S_{\rm env}(f) = \frac{3.8 \ (f/f_{\rm env})^{2.8}}{1 + 2.8 \ (f/f_{\rm env})^{3.8}} \qquad h^2 \Omega_{\phi}(f) = h^2 \Omega_{\rm env}(f) \big|_{\kappa = \kappa_{\phi}}$$

peak frequency (at t_*) $\frac{f_*}{\beta} = \left(\frac{0.62}{1.8 - 0.1v_w + v_w^2}\right)$

peak frequency today $f_{env} = 16.5 \times 10^{-3} \,\mathrm{mHz} \,\left(\frac{f_*}{\beta}\right) \,\left(\frac{\beta}{H_*}\right) \left(\frac{T_*}{100 \,\mathrm{GeV}}\right) \left(\frac{g_*}{100}\right)^{\frac{1}{6}}$

Acoustic production - sound waves numerical simulations

$$h^2 \Omega_{\rm sw}(f) = 2.65 \times 10^{-6} \left(\frac{H_*}{\beta}\right) \left(\frac{\kappa_v \alpha}{1+\alpha}\right)^2 \left(\frac{100}{g_*}\right)^{\frac{1}{3}} v_w S_{\rm sw}(f)$$

amplified by a factor of β/H_* for long-lasting sources

$$S_{\rm sw}(f) = (f/f_{\rm sw})^3 \left(\frac{7}{4+3(f/f_{\rm sw})^2}\right)^{7/2}$$

peak frequency (at t_*) $f_* = (2/\sqrt{3})(\beta/v_w)$

 $\text{peak frequency today} \quad f_{\text{sw}} = 1.9 \times 10^{-2} \, \text{mHz} \, \frac{1}{v_w} \left(\frac{\beta}{H_*} \right) \left(\frac{T_*}{100 \, \text{GeV}} \right) \left(\frac{g_*}{100} \right)^{\frac{1}{6}}$

MHD turbulence - Kolmorgorov-type numerical simulations

$$h^2 \Omega_{\rm turb}(f) = 3.35 \times 10^{-4} \left(\frac{H_*}{\beta}\right) \left(\frac{\kappa_{\rm turb} \,\alpha}{1+\alpha}\right)^{\frac{3}{2}} \left(\frac{100}{g_*}\right)^{1/3} v_w \, S_{\rm turb}(f)$$

amplified by a factor of β/H_* for long-lasting sources

$$S_{\rm turb}(f) = \frac{(f/f_{\rm turb})^3}{\left[1 + (f/f_{\rm turb})\right]^{\frac{11}{3}} (1 + 8\pi f/h_*)} \qquad h_* = 16.5 \times 10^{-3} \,\mathrm{mHz} \left(\frac{T_*}{100 \,\mathrm{GeV}}\right) \left(\frac{g_*}{100}\right)^{\frac{1}{6}} \\ \mathrm{H}_* \,\mathrm{redshifted to today}$$

peak frequency (at t_*) $f_* \simeq (3.5/2)(\beta/v_w)$

peak frequency today $f_{\text{turb}} = 2.7 \times 10^{-2} \,\text{mHz} \, \frac{1}{v_w} \left(\frac{\beta}{H_*}\right) \left(\frac{T_*}{100 \,\text{GeV}}\right) \left(\frac{g_*}{100}\right)^{\frac{1}{6}}$

Defects in phase transitions – cosmic strings

A network of cosmic strings

Cosmic-string loops wiggle and oscillate, producing gravitational waves, then slowly shrink as they lose energy until they disappear. (Image: © Matt DePies/UW)

Inflation

- Homogeneity and flatness problems in Hot Big Bang
- Inflation solves these problems
- What drove inflation?
- Inflation models
- Density (Scalar) perturbation \rightarrow seeds for structure formation
- Tensor perturbation → primordial gravitational waves
- Preheating and reheating \rightarrow Hot Big Bang

Spectrum of the primordial curvature perturbation Scalar mode

A generic
$$V(\underline{\overline{P}})$$
 for inflation
 $V(\underline{\overline{P}})$ Very flat for slow-rolling (enough inflation)
 V_0
 V_0
 V_0
 V_0
 $\overline{\overline{P}}$
 V_0
 $\overline{\overline{P}}$
 \overline{P}
 \overline

Slow-roll inflation

$$H^2 \simeq rac{V(\phi)}{3M_{Pl}^2},$$

 $3H\dot{\phi} \simeq -V'(\phi),$
 $\mathcal{P}_{\mathcal{R}}(k) = \left(rac{H}{\dot{\phi}}
ight)^2 \left(rac{H}{2\pi}
ight)^2$

 $P_{\rm R}(k) = (\delta \rho / \rho)^2$

large scale structure of the Universe

Gravitational Wave Equation

Einstein-Hilbert action $I_G = \frac{1}{16\pi G} \int d^4x \sqrt{g} R$ $ds^2 = dt^2 - a^2(t)d\mathbf{x}^2$ $g_{\mu\nu} = a^2(\eta)(\eta_{\mu\nu} + h_{\mu\nu}), \quad h_{\mu\nu} \ll 1, \quad a(\eta) = e^{\sigma(\eta)}, \quad \sigma(\eta) \ll 1$ $= a^2(\eta)(d\eta^2 - d\mathbf{x}^2)$

$$\begin{split} I_G &= \frac{1}{16\pi G} \int d^4x \; a^2 \; \left(\frac{1}{4} \partial_\mu h_{\alpha\beta} \partial^\mu h^{\alpha\beta} - \frac{1}{4} \partial_\mu h \partial^\mu h + \frac{1}{2} \partial_\alpha h^{\alpha\beta} \partial_\beta h \right. \\ &\left. - \frac{1}{2} \partial_\alpha h^{\alpha\mu} \partial^\beta h_{\beta\mu} - 2 \partial_\mu \sigma \partial^\mu h + 2 \partial_\alpha \sigma \partial_\beta h^{\alpha\beta} - 6 \partial_\mu \sigma \partial^\mu \sigma \right), \end{split}$$

Synchronous
Transverse $h_{00} = h_{0i} = 0, \quad h_k^k = \partial_i h^{ij} = 0,$ Traceless gauge

$$I_{\rm graviton} = \frac{1}{16\pi G} \int d^4x \ a^2 \ \frac{1}{4} \partial_\mu h_{ij} \partial^\mu h^{ij}$$

Tensor mode

$$I_{\text{graviton}} = \frac{1}{16\pi G} \int d^4x \ a^2(\eta) \ \frac{1}{2} \left[(\partial_\mu h(x; \mathbf{k}, +))^2 + (\partial_\mu h(x; \mathbf{k}, \times))^2 \right]$$

$$h(x; \mathbf{k}, \lambda) = (2\pi)^{-\frac{3}{2}} h_{\lambda}(\eta; \mathbf{k}) e^{i\mathbf{k}\cdot\mathbf{x}} + \text{H.c.}$$

equation of motion for the wave amplitude

$$\ddot{h_{\lambda}} + 2\frac{\dot{a}}{a}\dot{h_{\lambda}} + k^2h_{\lambda} = 0$$

Inflation \longrightarrow Radiation-dominated \longrightarrow matter-dominated choose Bunch-Davis vacuum or positive-energy solution Almost scale-invariant power spectrum $P_{h}(k)$ \longrightarrow matter-dominated $|h_{\lambda}(\eta;k)|^{2}k^{3} \simeq 8\pi GH^{2} \left[\frac{3j_{1}(k\eta)}{k\eta}\right]^{2}$ $\frac{3j_{1}(k\eta)}{k\eta} \simeq 1$ as $k\eta \ll 1$.

spectral energy density of gravitational waves

$$\rho_{g} \equiv \sum_{\lambda=+,\times} k' \frac{d\rho_{\lambda}}{dk'} = \sum_{\lambda=+,\times} \frac{1}{32\pi Ga^{2}(\eta')} \left(\frac{k'}{2\pi}\right)^{3} \left[k'^{2}|h_{\lambda}|^{2} + \left|\frac{dh_{\lambda}}{d\eta'}\right|^{2}\right]$$

$$\Omega_{g} \equiv \frac{\rho_{g}}{\rho_{c}}, \quad \rho_{c} = \frac{3H^{2}(\eta')}{8\pi G}$$

$$v = 3GH^{2}/8\pi = V_{0}/m_{\mathrm{Pl}}^{4}$$

$$\int_{10^{14}} \frac{10^{14}}{10^{14}}$$

Primordial gravitational waves

PGWs and CMB temperature anisotropy

CMB Anisotropy and Polarization

- On large angular scales, matter imhomogeneities or primordial gravitational waves generate gravitational redshifts
- On small angular scales, acoustic oscillations in plasma on last scattering surface generate Doppler shifts
- Thomson scatterings with electrons generate polarization

Collisional Boltzmann Equation Ng&Ng 96

$$\left(\frac{\partial}{\partial\eta} + \mathbf{e} \cdot \frac{\partial}{\partial\mathbf{x}}\right)\mathbf{n} = -\frac{1}{2} \frac{\partial\mathbf{n}}{\partial\ln\nu} \frac{\partial\mathbf{h}_{ij}}{\partial\eta} e^{i}e^{j} - \sigma_{\mathrm{T}}N_{e}a \\ \times \left[\mathbf{n} - \frac{1}{4\pi} \int_{-1}^{1} \int_{0}^{2\pi} P(\mu, \phi, \mu', \phi')\mathbf{n} \, d\mu' \, d\phi'\right], \quad (1)$$

where σ_T is the Thomson scattering cross section, N_e is the number of free electrons per unit volume, ($\mu = \cos \theta$, ϕ) are the polar angles of the propagation direction e of the photon with a comoving frequency v, and P is the phase matrix for Thomson scattering.

scalar modes/density perturbations

The solution *n* for the equation of transfer assumes the form $n = n_0 + (n_0 \delta n/2)$, where n_0 and δn are the unperturbed solution and perturbation, respectively. We expand $\delta n =$ $\int dk \, n' e^{ik \cdot x}$, where $n' = \alpha a + \beta b$. For the scalar-mode solution, the Stokes components n_u and n_v both decouple from n_l and n_r , and it suffices to consider only the first two components of nwith a = (1, 1) and b = (1, -1). Substituting the solution n and vector b. Defining $\xi = \alpha + \beta$, we obtain a system of coupled the Fourier expansion for h_{ii} into equation (1), and expanding α and β in terms of Legendre polynomials,

$$\alpha(\mu) = \sum_{l} (2l+1)\alpha_{l} P_{l}(\mu) ,$$

$$\beta(\mu) = \sum_{l} (2l+1)\beta_{l} P_{l}(\mu) ,$$
(3)

tensor modes/GWs

In the case of the tensor mode, only n_{μ} decouples, and we thus choose the basis (Polnarev 1985) $a = \left[\frac{1}{2}(1-\mu^2)\cos 2\phi\right]$ (1, 1, 0) and $\mathbf{b} = \frac{1}{2} [(1 + \mu^2) \cos 2\phi, -(1 + \mu^2) \cos 2\phi, 4\mu \sin \theta]$ 2ϕ for the + mode solution. The \times mode solution is given by the same expressions with $\cos 2\phi$ and $\sin 2\phi$ interchanged, and an additional minus sign in the last component of the basis

Theoretical Predictions for CMB Power Spectra

Gravity-wave induced B-mode

Large-scale CMB Polarization and Reionization of the Universe

Weak Lensing by Large-Scale Structure

Primordial Black Holes

- Formed at high-density contrasts ($\delta \rho / \rho \sim 0.5$) over a wide range of scales or masses in the radiation-dominated Universe
- There have been stringent astrophysical and cosmological constraints on M_{PBH}
- 10M_☉PBHs could be the binary BHs observed by aLIGO gravity-wave detectors

Bird et al. 16., Clesse et al. 16, Sasaki et al. 16

• PBHs behave like cold dark matter

García-Bellido, Linde, Wands 96

• They, although being of baryonic origin, do not participate in big-bang nucleosynthesis

Astrophysical and Cosmological Constraints on PBHs

e.g. Trapped axion inflation with a steep potential Cheng, Lee, Ng 16

all rescaled by M_p

PBH seeds or Large Curvature Perturbation Associated Gravitational Waves

$$\frac{\partial^2}{\partial \eta^2} + \frac{2}{a} \frac{da}{d\eta} \frac{\partial}{\partial \eta} - \vec{\nabla}^2 \Big] h_{ij} = 0 \quad \text{Free gravitational wave equation}$$

De Sitter vacuum fluctuations during inflation lead to almost scale-invariant primordial gravitational waves $P_h = 8\pi G H^2$ and $\Delta_{\zeta}^2 = \langle \zeta \zeta \rangle = (\delta \rho / \rho)^2 \sim 2x10^{-9}$ on CMB scales

$$\left[\frac{\partial^2}{\partial\eta^2} + \frac{2}{a}\frac{da}{d\eta}\frac{\partial}{\partial\eta} - \vec{\nabla}^2\right]h_{ij} = 16\pi \text{GT}_{ij}$$

Stress due to transverse traceless part of 2nd order curvature perturbation $T_{ij}(\zeta^2)$ $\Delta_{\zeta}^2 = \langle \zeta \zeta \rangle = (\delta \rho / \rho)^2 \sim 10^{-3}$

When large curvature perturbation re-enter the horizon during the radiation-dominated era and collapse to form PBHs, they induce gravitational waves at short wavelengths Ananda, Clarkson, Wands 2007, Baumann, Steinhardt, Takahashi, Ichiki 2007

GWs associated with PBHs in modulated axion inflation

Gravitational Wave Background(GWB) Anisotropies

$$h_{ij}(t, \mathbf{x}) = \sum_{P=+,\times} \int_{-\infty}^{\infty} df \int_{S^2} d\mathbf{n} h_P(f, \mathbf{n}) e^{2\pi i f(-t+\mathbf{n}\cdot\mathbf{x})} e_{ij}^P(\mathbf{n}).$$
(1)

Here, the bases for transverse-traceless tensor e^P ($P = +, \times$) are given as

$$e^{+} = \hat{e}_{\theta} \otimes \hat{e}_{\theta} - \hat{e}_{\phi} \otimes \hat{e}_{\phi}, \qquad e^{\times} = \hat{e}_{\theta} \otimes \hat{e}_{\phi} + \hat{e}_{\phi} \otimes \hat{e}_{\theta},$$

$$\begin{pmatrix} \langle h_{+}(f, n)h_{+}^{*}(f', n') \rangle & \langle h_{+}(f, n)h_{\times}^{*}(f', n') \rangle \\ \langle h_{\times}(f, n)h_{+}^{*}(f', n') \rangle & \langle h_{\times}(f, n)h_{\times}^{*}(f', n') \rangle \end{pmatrix}$$

$$= \frac{1}{2} \delta_{\mathrm{D}}^{2}(n - n') \delta_{\mathrm{D}}(f - f')$$

$$\times \begin{pmatrix} I(f, n) + Q(f, n) & U(f, n) - iV(f, n) \\ U(f, n) + iV(f, n) & I(f, n) - Q(f, n) \end{pmatrix},$$

Q= <++> - <_{XX}>
U is the same as in
a frame rotated by
$$\pi/8$$

$$e^{R} = \frac{(e^{+} + ie^{\times})}{\sqrt{2}}, \qquad e^{L} = \frac{(e^{+} - ie^{\times})}{\sqrt{2}} \qquad \begin{pmatrix} \langle h_{R}(f, n)h_{R}(f', n')^{*} \rangle & \langle h_{L}(f, n)h_{R}(f', n')^{*} \rangle \\ \langle h_{R}(f, n)h_{L}(f', n')^{*} \rangle & \langle h_{L}(f, n)h_{L}(f', n')^{*} \rangle \end{pmatrix}$$
$$= \frac{1}{2}\delta_{D}(n - n')^{2}\delta_{D}(f - f') \\ \times \begin{pmatrix} I(f, n) + V(f, n) & Q(f, n) - iU(f, n) \\ Q(f, n) + iU(f, n) & I(f, n) - V(f, n) \end{pmatrix} \end{pmatrix}$$

GWB Anisotropy and Polarization Angular Power Spectra

Decompose the GWB sky into a sum of spherical harmonics: $T(\theta,\phi) = \Sigma_{lm} a_{lm} Y_{lm}(\theta,\phi), V(\theta,\phi) = \Sigma_{lm} b_{lm} Y_{lm}(\theta,\phi)$ $(Q - iU) (\theta, \phi) = \Sigma_{lm} a_{4.lm} {}_{4}Y_{lm} (\theta, \phi)$ $(Q + iU) (\theta, \varphi) = \Sigma_{lm} a_{-4 lm} Y_{lm} (\theta, \varphi)$ $C_{l}^{T} = \Sigma_{m} (a_{lm}^{*} a_{lm})$ anisotropy power spectrum I = 180 degrees/ θ $C_{l}^{V} = \Sigma_{m} (b_{lm}^{*} b_{lm})$ circular polarization power spectrum $C_{l}^{E} = \Sigma_{m} (a_{4,lm}^{*} a_{4,lm}^{+} a_{4,lm}^{*} a_{-4,lm}^{-}) E$ -polarization power spectrum $C_{l}^{B} = \Sigma_{m} (a_{4,lm}^{*} a_{4,lm} - a_{4,lm}^{*} a_{-4,lm}) B$ -polarization power spectrum magnetic-type electric-type (Q,U)| - - |

Collisionless Boltzman Equation for Gravitons

$$ds^{2} = a^{2}(\eta) \left[-e^{2\Phi} d\eta^{2} + (e^{-2\Psi} \delta_{ij} + h_{ij}) dx^{i} dx^{j} \right]$$

$$\frac{\partial f}{\partial \eta} + \frac{\partial f}{\partial x^i} \frac{dx^i}{d\eta} + \frac{\partial f}{\partial q} \frac{dq}{d\eta} + \frac{\partial f}{\partial n^i} \frac{dn^i}{d\eta} = 0$$

Graviton phase space distribution function

$$f=f(\eta,x^i,q,\hat{n}^i)$$

$$\frac{\partial f}{\partial \eta} + n^{i} \frac{\partial f}{\partial x^{i}} + \left[\frac{\partial \Psi}{\partial \eta} - n^{i} \frac{\partial \Phi}{\partial x^{i}} + \frac{1}{2} n^{i} n^{j} \frac{\partial h_{ij}}{\partial \eta}\right] q \frac{\partial f}{\partial q} = 0$$

$$\delta f \equiv -q \frac{\partial \bar{f}}{\partial q} \Gamma(\eta, \vec{x}, q, \hat{n})$$
Newtonian potential $\Psi = \Phi \equiv T_{\Phi}(\eta, k) \hat{\zeta}(\vec{k})$ Initial sca

k-mode

Transfer function

alar $\Phi(\eta, n) S(n)$ power spectrum

 $h_{ij} \equiv \sum_{\lambda=\pm 2} e_{ij,\lambda}(\hat{k}) h(\eta,k) \hat{\xi}_{\lambda}(k^{i})$ Initial tensor GW background power spectrum Transfer k-mode function

$$\Gamma(\hat{n}) = \sum_{\ell} \sum_{m=-\ell}^{\ell} \Gamma_{\ell m} Y_{\ell m}(\hat{n}) \qquad e^{i\vec{k}\cdot\vec{x}} = 4\pi \sum_{lm} i^{l} j_{l}(kx) Y_{lm}^{*}(\hat{k}) Y_{lm}(\hat{x})$$

Scalar
$$\frac{\Gamma_{\ell m,S}}{4\pi (-i)^{\ell}} = \int \frac{d^3k}{(2\pi)^3} \zeta(\vec{k}) Y_{\ell m}^*(\hat{k}) \mathcal{T}_{\ell}^{(0)}(k,\eta_0,\eta_{\rm in}) \qquad \begin{array}{l} x_0 = 0\\ \eta_0 \text{ today}\\ \eta_{\rm in} \text{ initial} \end{array}$$

where the scalar transfer function $\mathcal{T}_{\ell}^{(0)}$ is the sum of a term analogous to the SW effect for CMB photons, $T_{\Phi}(\eta_{\rm in}, k) j_{\ell}[k(\eta_0 - \eta_{\rm in})]$, plus the analog of the ISW term, $\int_{\eta_{\rm in}}^{\eta_0} d\eta' [T'_{\Psi}(\eta, k) + T'_{\Phi}(\eta, k)] j_{\ell}[k(\eta - \eta_{\rm in})]$. Finally,

 \rightarrow

0

Tensor contribution

$$\mathcal{T}_{\ell}^{(\pm 2)} = \frac{1}{4} \sqrt{\frac{(\ell+2)!}{(\ell-2)!}} \int_{\eta_{\rm in}}^{\eta_0} d\eta \, h'(\eta, \, k) \, \frac{j_{\ell} \left[k \, (\eta_0 - \eta)\right]}{k^2 \, (\eta_0 - \eta)^2}$$

Sachs-Wolfe or Integrated Sachs-Wolfe effects – gravitational redshift of gravitons

GWB Anisotropy Map due to SW and ISW Effects

COBE - DMR Map of CMB Anisotropy Four Year Results

North Galactic Hemisphere

South Galactic Hemisphere

Summary

- Measure H₀ to solve the Hubble-constant
 4-sigma tension
- CMB B-mode polarization observe lowfrequency PGWs, providing a window for seeing inflation scale (grand unified theories?)
- Laser Interferometry and Pulsar Timing Arrays probe high-frequency PGWs - to test scale invariance, primordial black holes,...