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Why is it difficult to find the

electromagnetic counterpart?

-We don’t know where it is on the sky.

-T'he counterpart emissions fade away.

-Rapid sky localization.

Singer et al, ApJ, 2014
Singer, Chen et al, ApJL, 2016
Chen and Holz, ApJ, 2017
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hen and Holz, 2016




Gravitational-wave weather forecast

We can anticipate from where on the sky the events will
most likely come at a given time.

Chen, Essick et al., ApJ, 2017



Gravitational-wave weather forecast

-Spatial selection effect: Antenna Patterns

Chen, Essick et al., ApJ, 2017



Gravitational-wave weather forecast

-Spatial selection effects: Antenna Patterns

Mbtamndenegels
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Chen, Essick et al., ApJ, 2017



Gravitational-wave weather forecast

-Temporal selection effect: Diurnal cycle
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Chen, Essick et al., ApJ, 2017



Chen, Essick et al., ApJ, 2017

Gravitational-wave weather forecast
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This method has already been implemented on the

Swift Gamma-Ray Burst satellite observatory.
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We still have only one binary
neutron star with electromagnetic
counterparts. Why?

Because we used up our luck in O1 and O2.

O3b is running!
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Direct measurement of the luminosity distance

AW

Luminosity Distance~1/Amplitude

-Constrain the cosmological parameters
with the redshift and luminosity distance:

z dZ/

Dy = C(1 —|—Z) | H(Z/)

H(z) = Ho\/QM(l +2)3 + Qp(1 + 2)2 + Qp(1 + 2)3(0+wotwa) g—3waz/(1+2)

Schutz, Nature, 1986



Systematic uncertainties

- Luminosity distance:

-Interferometer calibration uncertainty:

3% in amplitude

-Gravitational waveform:

Currently negligible, but it could become a
problem for future high signal-to-noise ratio
events.

-Binary viewing angle:

Highly depends on the astrophysical models



Systematic uncertainties

- Redshift:
-Host galaxy peculiar velocity:

A few hundred km/s. Less significant for high
redshift sources.
-Host galaxy property:

An assumption on the host galaxy property can
help reducing the number of hosts, but it can also
introduce bias.

-Misidentification of electromagnetic counterpart




Gravitational-wave cosmology
without standard sirens

-From the distribution of gravitational-wave
detections.
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GW170817 was an exceptional event




The probability distribution of
gravitational-wave signal-to-noise ratio (SNR)
has to follow a universal shape
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The probability distribution of
gravitational-wave signal-to-noise ratio
has to follow a universal shape

-If not? It possibly indicate

B2 A violation of general relativity.
Calabrese et al. 2016/Pardo et al. 2018

P A defect in the detection process.

16

So far, no violation of the universal distribution has been found.




The probability distribution of
gravitational-wave signal-to-noise ratio
has to follow a universal shape

-The universal shape is A

P(SNR)
—A power-law: 2nd generation detectors K

>
Schutz, CQG, 2011 SNR
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The probability distribution of
gravitational-wave signal-to-noise ratio
has to follow a universal shape
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Measure Ho without any redshift measurement

Largercomoving volume Smaller comoving volume

| Cosmology A Cosmology B

LIGO /‘\/

Chen & Holz, 2014
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Measure Ho without any redshift measurement

Same comoving volume Same comoving volume
Higher astrophysical rate Lower astrophysical rate
v’ ¢

Same cosmology

y N
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Chen & Holz, 2014
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Determine the redshift of gravitational-wave source
with the source frame mass

(1 + Zl)Ml Identical signal (1 + ZQ)MQ



Gravitational-wave cosmology
without standard sirens

-From the tidal effects of neutron star binaries

22
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Tidal deformation of neutron stars

-Neutron star equation-of-state.

GW170817 Equation-of-state
(Abbott et al., PRX 2019)
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Tidal deformability of GW170817
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Neutron star mass-radius relation

30 Ozel et al., Ann.Rev.Astron.Astrophys 2016
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Were they really binary neutron stars?
Could they be...

A) Neutron star-black hole mergers

Chen & Chatziioannou, 2019
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Were they really binary neutron stars?

Could they be...
Chen & Chatziioannou, 2019

A) Neutron star-black hole mergers

All, A=0.01
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Were they really binary neutron stars?
Could they be...

B) Hybrid star mergers (Quark matter core)

Chen et al., 2019

Neutron star mass
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Were they really binary neutron stars?
Could they be...

B) Hybrid star mergers

A) Neutron star-black hole mergers

rk m r cor
Chen & Chatziioannou, 2019 (Qua atter co e)

Chen et al., 2019

Combining O(10) to O(100) detections will verify/exclude these scenarios.




Constrain neutron star mass from
the observation of tidal effects

The sensitivities of the 3rd generation detectors will allow for better than
40% determination of redshift without electromagnetic observations.
Messenger & Read, 2011



Gravitational-wave cosmology
without standard sirens

-From the mass distribution of binaries.

Taylor et al., 2012
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Stellar pair instability that destroys black hole
above ~65 M

Model A
Model B

Model C
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Jointly fit the black hole mass distribution and

the cosmological parameters
(Mass and redshift distribution+ PISN cutoff + cosmology)
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After one year of LIGO observation H(z) can be constrained to 6% at z=0.8.

Farr et al., 2019



- 70 Mo black hole has been found recently.
Liu et al., arXiv: 1911.11989

- There are several different proposals on how
to make black holes in the upper mass gap.

- It is unclear whether the upper mass gap

will stay or not = gravitational-wave

observations can help.



Summary

-There are other possibilities to estimate
cosmological parameters with gravitational-
wave observations.

-Different methods allow for cross-check of
systematics.
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