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Dynamics are important!
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Dynamics of metabolism-signaling

Matabolism Signaling



Biological dynamics across time and space

Bistable switch

Oscillations Self-organization

Trigger waves

in time in space
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Auguste Rodin (1904) 

The Thinker



Weismann A (1864a) 

Nature is a fascinating sculptor



Cell death during embryogenesis—
Identify programmed cell death, apoptosis, in C. elegans



Large-scale cell death during embryogenesis of complex organisms

 Death in Embryonic Systems

” Abundant death, often cataclysmic in its onslaught, is part of 

early development in many animals; it is the usual method of 

eliminating organs and tissues that is useful only during 

embryonic or larval life”

- John W. Saunders, Jr.  (Science, 1966)



Large-scale cell death occurs in disease pathologies

Garcia-Dorado, D., Ruiz-Meana M 
(2000) News Physiol. Sci.

Roth, T., Nayak, D., Atanasijevic, T. et al.
(2014) Nature.

Linkermann, A. et al.
(2014) PNAS



A century-old question: 
how does large-scale cell death occur?



First proposal of bistable systems

Enzyme systems with alternative steady 
states. In Unités Biologiques Douées de Continuité 

Genetique (International Symposium CNRS No. 8). 
(Paris: Editions du CNRS), pp. 33–34. Delbrück, M. 
(1949). 

Nobel Prize in Physiology or Medicine 1969 



Formulate mathematical models for 
bistability of lac operon activity

Max Delbrück (1949)
Enzyme systems with alternative steady states. In 
Unités Biologiques Douées de Continuité Genetique 
(International Symposium CNRS No. 8). (Paris: 
Editions du CNRS), pp. 33–34.

Bi-stability

Glansdorff, P. Prigogine, I.,(1971)
Thermodynamics of Structure,
Stability and Fluctuations.Wiley, New York

• Switch in states

Babloyantz, A. and Sanglier, M (1972)
Chemical instabilities of "all-or none” type in β-galactosidase 
induction and active transport. FEBS Lett. 1972, 23: 364-366.

• System dynamics

Nicolis, G. and Prigogine, I., (1977)
Self-Organization in Nonequilibrium
Systems. From Dissipative Structures to Order through 
Fluctuations. John Wiley and Sons, New York, 1977, pp. 387-394

• Nonlinear feedback

Thomas, R., (1973)
Boolean formalisation of genetic control circuits. J.
Theoret. Biol. 1973, 42: 563-585.

• Boolean logic

Ozbudak, E.M., Van 
Oudenaarden, A. etc, (2004) 
Multistability in the lactose utilization network of
Escherichia coli. Nature 2004, 427: 737-740.

• Bring exp and theory together

• Memory of 
      lac operon

Arron Novick(1957)



Switch-like elevation of ROS upon glucose starvation

Hannah K. C. CoJo-Hsi Huang



Redox bistable switches can act like biochemical bombs



Chemical bombs can be powerful, especially when they are 
physically coupled



Chemical bombs can be powerful, especially when they are 
physically coupled



Redox bistable switches can act like biochemical bombs



Cystine starvation leads to cell death propagation

Hannah K. C. Co



Cystine starvation leads to cell death propagation



Ferroptosis propagation is a general occurrence in different cell lines



Hypothesis: 
large-scale cell death occurs via ferroptotic trigger waves



Ferroptosis is an ROS & iron-mediated cell death
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Diffusion Trigger wave

Trigger waves maintain signal intensity and transmission speed



Wild fires are an example of trigger waves
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1. Initiation point

2. Spatial coupling mechanism
- Diffusion
- Cell-cell communication

3. Feedback loop

Heat/Ignition

Components of a trigger wave
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Ferroptosis propagates at a constant speed over long distances

Photoinduction site



Ferroptosis propagates with a constant speed



Ferroptosis propagates with lipid ROS wave fronts
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Ferroptosis propagates across gaps < ~ 150 μm 



Ferroptosis can be halted by gaps > ~ 150 μm 



ROS propagates across physical gaps of ~ 150 μm
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Components of a trigger wave



Multiple feedback loops in the ferroptosis regulatory network



Iron chelation slows down 
ferroptotic trigger waves



Wave speed changes dose-dependently with iron levels 



Wave speed changes dose-dependently with NOX feedback strength



Can feedback loops lead to ROS bistable switch and 
ferroptosis propagation?



Multiple feedback loops in the ferroptosis regulatory network



Experimental measurements of ROS bistability



Experimental measurements of ROS bistability

0 0.15 0.3 0.6 1.25 2.5 5 10

Erastin (µM)

Before photoinduction
After photoinduction



Ferroptosis stress quantitatively promotes ferroptotic trigger waves

Erastin (μM)

Simulations

Experiments



Trigger wave model of ferroptosis propagation

48

1. Initiation point

Ferroptosis

Diffusion 
of ROS

Reaction

Amplification of 
ROS

2. Spatial coupling mechanism

3. Positive feedback loop

Ferroptosis
Ferroptosis



Nutrient starvation primes cells for ROS bistability, 
causing large-scale ferroptotic cell death

• Nutrient (cystine) 
starvation

Priming signal ROS switch Trigger waves

• Large-scale ferroptosis
• Long-distance ROS signaling



Do ferroptotic trigger waves occur in vivo?



Cell death during embryogenesis

 Death in Embryonic Systems

” Abundant death, often cataclysmic in its onslaught, is part of 

early development in many animals; it is the usual method of 

eliminating organs and tissues that is useful only during 

embryonic or larval life”

- John W. Saunders, Jr.  (Science, 1966)



Does cell death spread as waves during embryogenesis?

”Sculpturing of the limb… follows closely upon 

waves of necrosis that sweep proximodistally along the 

mesoderm of the anterior and posterior margins of the limb”

- John W. Saunders, Jr.  (Science, 1966)



Sculpturing of the limb via cell death waves

Hannah K. C. Co



Lipid peroxidation along the central area of the embryonic limb

4HNE (Lipid peroxidation)



Cell death propagates along the central area of the embryonic limb

UAMC-3203



Apoptosis inhibitor do not suppress cell death waves in developing limb

Ferroptosis inhibitors Apoptosis inhibitor

DFO (10 mM)Control UA (10 µM)Control Fer-1 (10 µM)Control zVAD (10 µM)Control



Oxidizable lipids (PUFAs) are higher at the central region of the limb



What is the function of ferroptosis during 
limb development?



Lipid peroxidation occurs in the developing limb

Myosin
4HNE (Lipid peroxidation)

200µm

400µm



Muscle mass remodeling during embryonic development

Day 6.5 Day 7 Day 8Myosin



Day 6.5 Day 7 Day 8

foot

shank

foot

shank

foot

shank

Myosin

Muscle mass remodeling during embryonic development



Ferroptosis facilitates segregation of the muscle mass

Lipid 
peroxidation Merged

Myosin
Myosin



Phenotypic characterization with amniotic sac injection



Amniotic sac injection of ferroptosis inhibitor

Candling Injection

Success!

Fail



Alteration of muscle development under systemic ferroptosis suppression

Control (DMSO) UAMC-3203

UAMC-3203



Central ectodermal cells as a temporary structure for muscle 
remodeling during limb development



• Nutrient (cystine) 
starvation

• Developmental signal, 
e.g., morphogens

Priming signal ROS switch Trigger waves

• Large-scale ferroptosis
• Long-distance ROS signaling
• Tissue sculpturing

Large-scale cell death via ferroptotic trigger waves



Future directions

Priming signal ROS switch Trigger waves

Biological regulation of 
large-scale cell death

Control of large-
scale cell death

Behavior of 
ROS switches
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