

Electromagnetically Induced Transparency (EIT) and Slow Light

Ite A. Yu

Department of Physics & Center for Quantum Science and Technology National Tsing Hua University

Acknowledgements

Collaborators in the Studies of Heralded Single Photon (HSP)

Dr. Ying-Cheng Chen AS

Prof. Yong-Fan Chen NCKU

Prof. Chih-Sung Chuu NTHU

NSTC 112-2112-M-007-020-MY3, 112-2119-M-007-007, and 111-2639-M-007-001-ASP

Collaborators in the Studies of Dark-State Polariton (DSP)

Gediminas Juzeliūnas Vilnius U.

Marcis Auzinsh U. Latvia

Julius Ruseckas Vilnius U.

Teodora Kirova U. Latvia

Wen-Te Liao Natl. Central U.

Chen

Yi-Hsin Natl. Sun Yat-sen U. Yong-Fan Chen Natl. Cheng Kung U.

NSTC 111-2639-M-007-001-ASP Taiwan-Latvia-Lithuania Collaboration Program NSTC 111-2923-M-008-004-MY3

Electromagnetically Induced Transparency, Slow Light, Light Storage or Quantum Memory, and Stationary Light

Electromagnetically Induced Transparency (EIT) Effect

• The presence of a coupling field can suppress the absorption.

• The coupling (EM wave) makes the medium transparent for the probe due to quantum interference.

EIT Spectrum

- Near the resonance frequency, T is nearly 0 ($e^{-7} \approx 0.1\%$). Right on the resonance frequency, $T \approx 100\%$.
- Transparency window is much narrower than the natural linewidth, Γ .
- The high-contrast and narrow-width spectrum reveals a large chromatic dispersion.

EIT Spectrum Y. F. Chen, Y. C. Liu, Z. H. Tsai, S. H. Wang, & IAY, PRA 72, 033812 (2005). 100% C. C. Lin, M. C. Wu, B. W. Shiau, $|3\rangle$ Y. H. Chen, IAY, Y. F. Chen, & Y. ~ 250 kHz 🎮 C. Chen PRA 86, 063836 (2012). 0.5 0.8 Probe Coupling **Fransmission** 0.1 0.2 0.3 0.6 $e^{-228} \approx 10^{-99}$ $|2\rangle$ $|1\rangle$ 0.4 Transmission ~ 10% $\Gamma = 6$ MHz is the (a) detuning = 5Γ natural linewidth of the excited state $|3\rangle$. 0.2 OD = 228Near the resonance fr 0 Transparency window -2 -6 -4 0 2 4 6 The high-contrast and Detuning (Γ)

Slow Light and Storage of Light

Y. H. Chen, M. J. Lee, I. C. Wang, S. Du, Y. F. Chen, Y. C. Chen, & IAY, PRL 110, 083601 (2013).

- The EIT effect gives rise to slow light and storage of light.
- In the constant presence of the coupling, the light speed $\leq c/10^5$. The 1 km-long pulse is compressed to 1 cm in the atoms. The gap of ~ 4 µs in the probe signal demonstrates the storage of light.

Dark-State Polariton (DSP)

- The coupling and probe generate the ground-state coherence ρ_{21} in the EIT system, which is an indication of a stronge light-matter coupling, i.e., slow light.
- To describe the collective behavior of photons and atoms under the strong coupling, the DSP is the superposition of photon and atomic coherence, a bosonic quasi-particle.

Storage and Retrieval

Light storage is the exchange of wave functions between photons and atoms, i.e., quantum memory.

 $\tan \theta = \sqrt{\eta c} / \Omega_c$

Observation of SLP or SDSP

Coupling Intensity (arb. units)

A Narrow-Linewidth High-Brightness Biphoton Source

What are heralded single photons or, aka, biphotons? Why are they useful?

- The **biphoton** is a pair of time-correlated single photons.
- Single photons are optical qubits, but they appear randomly in time. It is difficult to use qubits in the random timing.
- Biphotons also appear randomly in time.
- The second photon of a pair is called the **heralded single photon** (\equiv **biphoton**).
- It is more convenient to use heralded single photons or qubits in quantum communication or quantum information processing.

Biphoton Sources Based on Atoms and SFWM

J.-M. Chen, T. Peters, P.-H. Hsieh, & IAY, "Review of Biphoton Sources based on the Double-Λ Spontaneous Four-Wave Mixing Process," Adv. Quantum Technol. 7, 2400138 (2024).

- The vacuum fluctuation induces a Raman transition to generate the signal photon and also the coherence between states 1 and 2.
- The coupling field utilizes the coherence to generate the probe photon based on the EIT effect.
- The EIT effect makes the probe photon become slow light.

Biphoton Generation Experiment

Temporal Profile of the Biphoton Wave Packet in Cold Atoms

- Circles are the two-photon coincidence counts, green line is the result of 4-point moving average of the circles, and red line is the theoretical prediction.
- In the inset, squares and blue line are the Fourier transforms of the data and the prediction.

The Longest Biphoton with the Narrowest Linewidth to Date

Y.-S. Wang, K.-B. Li, C.-F. Chang, T.-W. Lin, J.-Q. Li, S.-S. Hsiao, J.-M. Chen, Y.-H. Lai, Y.-C. Chen, Y.-F. Chen, C.-S. Chuu, & IAY, APL Photonics 7, 126102 (2022).

Narrow-linewidth heralded single photons can (1) achieve better efficiencies of quantum operations; (2) be employed in quantum network of superconducting qubits driven by narrow-linewidth microwaves; (3) interact with ion qubits of narrow-linewidth transitions.

A Room-Temperature Atomic Vapor Cell

- A cylindrical glass cell is commercially available and has a diameter of 1 inch and a length of 7.5 cm.
- The cell is filled with the vapor of isotopically enriched ⁸⁷Rb atoms.
- The inner wall is coated with paraffin film. So, we only heated it up to about 65 °C.

Phase Mismatch in the Counter-Propagation Scheme

- Previously, SFWM biphoton sources utilized the counter-propagation scheme.
- The degree of phase mismatch is given by $L|\Delta \vec{k}|$ (*L*: the medium length). At L = 7.5 cm, the phase mismatch reduces the generation rate by 1000 folds!

Phase-Mismatch-Free in the All Co-Propagation Scheme

- Our biphoton source utilized the all co-propagation scheme.
- The all-copropagation scheme ensures the phase match, and also maintains a low decoherence rate, which enables a narrow linewidth.

High Extinction for Laser Light

- Laser light of 40 mW, and single-photon pulses of 0.4 pW. Their powers differ by **10**¹¹ **folds**!
- Fortunately, an overall ER of ~ 135 dB to block the pump and coupling fields.

The Narrowest-Linewidth Source of Single-Mode Biphotons among All Kinds of Room-Temperature or Hot Media

C.-Y. Hsu, Y.-S. Wang, J.-M. Chen, F.-C. Huang, Y.-T. Ke, E. K. Huang, W. Hung, K.-L. Chao, S.-S. Hsiao, Y.-H. Chen, C.-S. Chuu, Y.-C. Chen, Y.-F. Chen, & IAY, Opt. Express 29, 4632 (2021). Editors' Pick.

- Biphoton wave packet (left) and EIT spectrum (right) were measured at the same condition.
- The temporal profile is an exponential-decay function due to a short coherence time. The decoherence rate in the experimental system limits the narrowest linewidth.

The Highest Spectral Brightness to Date

J.-M. Chen, C.-Y. Hsu, W.-K. Huang, S.-S. Hsiao, F.-C. Huang, Y.-H. Chen, C.-S. Chuu, Y.-C. Chen, Y.-F. Chen, & IAY, Phys. Rev. Res. 4, 023132 (2022).

- The spectral brightness, i.e., generation rate per linewidth, is the measure of success rate of a quantum information process.
- The high generation rate, together with the narrow linewidth, results in a spectral brightness of 3.8×10^5 pairs/s/MHz, better than all known results with all kinds of media.

Comparison between Different Kinds of Biphoton Sources

		Best Linewidth	Best Spectral Brightness	Linewidth Tunability_	Frequency Tunability	Notes	
Single-Mode SPDC		3 MHz ^[1]	3.5×10 ⁵ pairs/s/MHz ^[4]	N.A.	a few GHz	Frequency is set by the temperature.	
Cold-Atom SFWM Our Works		50 kHz ^[9]	4,700(×10%) pairs/s/MHz ^[5]	one order of magnitude	N.A.	Duty cycle $\leq 10\%$.	
Integrated Photonics Devices		92 MHz ^[2]	1.4×10 ⁵ pairs/s/MHz ^[2]	N.A.	160 MHz ^[2]	Micro-ring resonator ^[2] with Q of ~10 ⁶ .	
Hot-Atom SFWM	Earlier Works	2 MHz ^[3]	1.4×10 ⁴ pairs/s/MHz ^[6]	more than	N.A.	Frequency set by the laser field and hence can be very stable.	
	Our Works	290 kHz ^[7]	3.8×10 ⁵ pairs/s/MHz ^[8]	magnitude	a few GHz ^[10]		
 [1] New J. Phys. 18, 123013 (2018). [2] PRX Quantum 2, 010337 (2021). [3] Nat. Commun. 7, 12783 (2016). 		 [4] Phys. Rev. A 92, 063827 (2015). [5] Optica 1, 84 (2014). [6] Appl. Phys. Lett. 110, 161101 (2017). [7] Opt. Express 29, 4632 (2021). [8] Phys. Rev. Res. 4, 023132 (2022). [9] APL Photonics 7, 126102 (2022). 					

[10] arXiv:2502.06344.

Conditional Auto-Correlation Function of Heralded Single Photons

T.-J. Shih, W.-K. Huang, Y.-M. Lin, K.-B. Li, C.-Y. Hsu, J.-M. Chen, P.-Y. Tu, T. Peters, Y.-F. Chen, & IAY, Opt. Express 32, 13657 (2024).

- The CACF is a way to quantify the single-photon purity. However, the CACF measurement of the three-fold HBT-type coincidence count is time-consuming!
- We proposed and experimentally verified a universal formula to predict the CACF from the CCF data, which can work for all kinds of biphoton sources.

Time-Reversed Biphoton Source with the Highest Heralding Probability among All of the Atom-based Sources to Date

W.-K. Huang, B. Kim, T.-J. Shih, C.-Y. Hsu, P.-Y. Tu, T.-Y. Lin, Y.-F. Chen, C.-S. Chuu, & IAY, Quantum Sci. Technol. 10, 015062 (2025).

HP: Probability of detecting a heralded photon upon a trigger from a heralding photon (i.e., not a dummy bullet).

_	Reference	Medium*	Transition Scheme	Heralding Photons [§]	Temporal FWHM	Detection Efficiency [†]	Heralding Efficiency	Heralding Probability*
	This work	RHA	Double A	Probe	47 ns	13±1%	$10.7 \pm 0.1\%$	82±6%
Re Re Re Re Re Re Re Re Re Re	Ref. [5]	LCA	Double Λ	Signal	200 ns	27%	17%	64%
	Ref. [14]	LCA	Double Λ	Signal	30 ns	1.4%	0.90%	64%
	Ref. [13]	LCA	Double Λ	Probe	24 ns	8%	3.4%	43%
	Ref. [1]	LCA	Double Λ	Signal	140 ns	7.1%	3.0%	43%
	Ref. [23]	RHA	Double Λ	Probe	3.8 ns	23~42%‡	9.0%	21~39% [‡]
	Ref. [10]	LCA	Double Λ	Signal	160 ns	$22 \sim 40\%^{\ddagger}$	7.2%	18~32%‡
	Ref. [22]	RHA	Double Λ	Signal	180 ns	11%	3.4%	31%
	Ref. [52]	RHA	Diamond	Signal	0.45 ns	68%	16%	24%
	Ref. [15]	RHA	Double Λ	Signal	64 ns	15%	3.1%	21%
	This work	RHA	Double Λ	Signal	46 ns	$9.4{\pm}0.5\%$	2.02±0.02%	21±1%
	Ref. [53]	RHA	Ladder	Signal	1.9 ns	32%	5.8%	18%
	Ref. [9]	LCA	Double Λ	Signal	700 ns	26%	3.2%	12%
	Ref. [17]	RHA	Double Λ	Signal	1.3 ns	13~23%‡	1.5%	$6.5 \sim 12\%^{\ddagger}$
	Ref. [54]	RHA	Ladder	Signal	1.9 ns	32%	3.5%	11%
	Ref. [55]	RHA	Diamond	Idler	0.5 ns	10%	$0.5 \sim 0.9\%^{\ddagger}$	5~9% [‡]
	Ref. [21]	RHA	Double Λ	Signal	180 ns	11%	0.88%	8.0%
_	Ref. [56]	RHA	Ladder	Signal	0.56 ns	60%	0.24%	0.4%

RHA: room-temperature or hot atoms. LCA: laser-cooled atoms.

Protecting Heralded Single Photons with a Far-Detuned Frequency

3000 (nuits) 0.5 Power Density .0.0 Arb. 2000 Ó -8 -4 8 4 Frequency (MHz) 1000 Resonance Coincidence Count (1/s) 0 0 0 0 0 0 (nuits) 0.5 Power Density .0 Arb. -8 -4 0 4 8 Frequency (MHz) 000-1.0-GHz Detuning 0.2 0.8 0.00.4 0.6 1.0 Time (us)

W.-K. Huang, T.-Y. Lin, P.-Y. Tu, Y.-F. Chen, & IAY, arXiv:2502.06344.

$\Delta_c/2\pi$ (GHz)	R_g (10 ⁵ /s)	$ au_w$ (ns)	$\Delta \omega/2\pi$ (MHz)	SB (10 ⁵ /s/MHz)	SBR	h_p
0.0	1.79 ± 0.03	63.6±0.7	5.2±0.1	0.34 ± 0.01	12.4±0.3	26.2±0.4%
0.2	2.32±0.01	54.1±0.5	5.1±0.1	0.46±0.01	16.4±0.7	38.0±0.3%
0.7	5.35 ± 0.09	65±1	$3.0{\pm}0.1$	1.78 ± 0.07	11.9 ± 0.3	74±1%
1.0	6.42±0.03	132±1	1.83 ± 0.03	3.51 ± 0.06	6.8±0.1	79.9±0.4%

 Δ_c : the coupling detuning; R_g : generation rate; τ_w : temporal FWHM; $\Delta\omega$: spectral FWHM; SB: spectral brightness; SBR: signal-to-background ratio; h_p : heralding probability.

- We introduce the new tuning knob of the coupling detuning which is counterintuitive to the present theory.
- At the optimum detuning of 1.0 GHz, $GR \times 3.6$, $SB \times 10$, $HP \times 3.1!$
- The surprising results led us to develop a new theory, considering that the far-detuned frequency protects the heralded single photons from a previously unexplored physical mechanism.

Summary of the Hot-Atom Biphoton Source

- As the pioneer of cold-atom experiments in Taiwan, I am delightful for our converting the knowledge and experiences learned from the cold atoms into some nice results of the hot atoms, which are more practical in the real-world applications.
- We started to develop the hot-atom biphoton source in 2015, and observed the first biphoton data in 2017 (sFWHM ≈ 5 MHz and GR ≈ 30 pairs/s).
- Now, we have a state-of-art source (sFWHM = 290 kHz, GR = 6.4×10⁵ pairs/s, HP = 82%, and SB = 3.5×10⁵ pairs/s/MHz close to the ultimate limit, referring to the biphotons inside SMFs).

Stationary Dark-State Polaritons Dressed by Rydberg-State Dipole-Dipole Interaction for the Realization of BEC

What is the dark-state polariton (DSP)? Slow light.How to make it stationary? Storage of light and FWM retrieval.Why do we want to realize the DSP BEC? A new type of BEC.Why is the dipole-dipole interaction (DDI) needed? Thermalization.

Atomic and Exciton-Polariton Bose-Einstein Condensations

Atomic BEC https://jila.colorado.edu/bec/

Dark-State-Polariton BEC?

2D Exciton-Polariton BEC

In-plane wavevector (10⁴ cm⁻¹)

BEC of Stationary DSPs

M. Fleischhauer, J. Otterbach, and R. G. Unanyan, Bose-Einstein Condensation of Stationary-Light Polaritons, PRL 101, 163601 (2008).

- The 1D EOM of DSPs: $\frac{\partial \Psi}{\partial t} + \frac{\Omega_c^2}{\eta \Gamma} \frac{\partial \Psi}{\partial z} - \frac{\Omega_c^2}{2\eta^2 \Gamma} \frac{\partial^2 \Psi}{\partial z^2} = 0 \quad \text{group velocity of the slow light or DSP}$
- The 3D EOM of **stationary** DSPs similar to Schrodinger equation with the effective mass *m*:

$$i\hbar \left(\frac{\partial \Psi}{\partial t} + \frac{(\Omega_{c+}^2 - \Omega_{c-}^2)}{\eta \Gamma} \frac{\partial \Psi}{\partial \chi} - \frac{\Omega_c^2}{2\eta^2 \Gamma} \frac{\partial^2 \Psi}{\partial z^2} \right) = -\frac{\hbar^2}{2} \left(\frac{1}{m_{\parallel}} \frac{\partial^2 \Psi}{\partial z^2} + \frac{1}{m_{\perp}} \frac{\partial^2 \Psi}{\partial x \partial y} \right) \equiv -\frac{\hbar^2}{2m} \nabla^2 \Psi$$
$$m_{\parallel} = \hbar \eta^2 \Gamma^2 / 8\Omega_c^2 |\Delta|^2 \quad m_{\perp} = \hbar k_p \eta \Gamma / \Omega_c^2 \quad m = (m_{\parallel} m_{\perp}^2)^{1/3}$$

• The 3D nonlinear EOM of stationary DSPs with mean-field energy and decay rate due to an interaction:

$$i\hbar\frac{\partial\Psi}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2\Psi + i\hbar\frac{\Omega_c^2}{2\eta^2\Gamma}\frac{\partial^2\Psi}{\partial z^2} + g|\Psi|^2\Psi - i\hbar\Gamma_{\rm loss}\Psi \qquad \text{ir}$$

interaction-induced mean-field energy interaction-induced decay rate

Kerr-Type Nonlinearity for the DSP-DSP Interaction

- The Kerr-type nonlinearity is proposed for the DSP-DSP interaction. However, it is typically too weak to have a sufficient elastic collision rate for thermalization.
- Can we utilize the Rydberg-state dipole-dipole interaction instead of the Kerr nonlinearity?

Rydberg Atoms and Dipole-Dipole Interaction (DDI)

- A Rydberg atom has its electron in an excited state with a large principal quantum number, *n*.
- Rydberg atoms have a large electric dipole moment ($C_6 \propto n^{11}$ or $C_3 \propto n^4$).
- Rydberg atoms have a long lifetime (τ ∝ n³) together with the strong DDI, making them suitable qubits.

DDI and Dipole Blockade

"A New Order in the Quantum World," by Olivia Meyer-Streng (MPQ, Garching, November 1st, 2012. Press Release)

- At $r < r_B$, the energy shift due to the DDI > the transition linewidth, and an excitation of the 2nd Rydberg atom is suppressed. r_B is the blockade radius.
- Only one Rydberg atom is inside the sphere of r_B (blockade sphere).

Slow Light in the Rydberg-Atom System

B. Kim, K.-T. Chen, C.-Y. Hsu, S.-S. Hsiao, Y.-C. Tseng, C.-Y. Lee, S.-L. Liang, Y.-H. Lai, J. Ruseckas, G. Juzeliūnas, & IAY, PRA 100, 013815 (2019).

- We utilized the EIT effect, i.e., slow light, to test the decoherence rate in the Rydberg-atom system.
- The intrinsic decoherence rate (accounting for Doppler effect, laser frequency stability, etc.) is small as compared with the DDI-induced decay rate.
- In the presence of DDI, the delay time τ or the interaction time between Rydberg atoms can be 2 μ s or longer.

Mean-Field Theory DDI based on the Nearest-Neighbor Distribution

S.-S. Hsiao, K.-T. Chen, & IAY, Opt. Express 28, 28414 (2020).

Dilute Rydberg atoms: $(r_B/r_a)^3 \ll 1$

DDI-induced decoherence rate:

$$\gamma_{\text{DDI}} = \frac{\pi^2 \Omega_c \sqrt{|C_6|}}{3\sqrt{\Gamma}} \frac{\sqrt{\sqrt{\Gamma^2 + 4\Delta_c^2} - 2\Delta_c}}{\sqrt{\Gamma^2 + 4\Delta_c^2}} n_{\text{atom}} \rho_{22}$$

DDI-induced two-photon detuning:

$$\delta_{\rm DDI} = \pm \frac{\pi^2 \Omega_c \sqrt{|C_6|}}{3\sqrt{\Gamma}} \frac{\sqrt{\sqrt{\Gamma^2 + 4\Delta_c^2} + 2\Delta_c}}{\sqrt{\Gamma^2 + 4\Delta_c^2}} n_{\rm atom} \rho_{22}$$

 C_6 : van der Waal coefficient, ρ_{22} : Rydberg-state population, n_{atom} : atomic density, Ω_c : coupling Rabi frequency, Δ_c : coupling detuning, Γ : spontaneous decay rate.

- Under particles being randomly distributed, P(r) is the probability of finding the nearest neighbor at a distance r.
- We derive the analytical formulas for the weak-interaction regime of DDI. $\Delta_c > 0$ and $\Delta_c < 0$ have different DDI effects.

Data of DDI-Induced Phase Shifts and Attenuation Coefficients

 $Max[\Omega_p] = 0.2\Gamma, \Omega_c = 1.0\Gamma, 32D_{5/2} \implies r_a = 4.5 \ \mu m; r_B = 2.0 \ \mu m. \ Max[(r_B/r_a)^3] < 0.09 \ \text{is the dilute regime.}$

- A larger probe Rabi frequency results in more population in the Rydberg state. The experimental data are consistent with the theoretical predictions.
- Phase shift and attenuation can be viewed as the consequences of elastic collisions (thermalization) and inelastic collisions (decay).

Demonstration of Cooling Effect with Rydberg-State Slow Light

B. Kim, K.-T. Chen, S.-S. Hsiao, S.-Y. Wang, K.-B. Li, J. Ruseckas, G. Juzeliūnas, T. Kirova, M. Auzinsh, YCC, YFC, & IAY Commun. Phys. 4, 101 (2021)

- Take TOF images at the far field to measure of probe beam profiles. When leaving the atom cloud, photons carry Rydberg polaritons' momentums.
- We can derive the transverse momentum distribution of Rydberg polaritons and thus the transverse temperature.
- A larger DDI results in a narrower momentum distribution and a lower transverse temperature.

The Proposed Transition Scheme

Stationary Dark-State-and-Rydberg-State Polariton:

 $\Psi = \cos\theta \left(\Omega_{p+} + \Omega_{p-}\right)/\sqrt{2} - \sin\theta \sqrt{\eta c} (\cos\phi \ \rho_{21} + \sin\phi \rho_{51}),$

where $\tan \theta = \sqrt{\eta c} / \Omega_c$, η is the OD per unit length, and $\phi = \Omega t$.

- In the subsystem of |1>, |2>, and |3>, we created the stationary DSPs with the EIT scheme. In the subsystem of |2>, |4>, and |5>, we utilized the two-photon transition to generate the Rabi oscillation between the ground state |2> and Rydberg state |5>.
- The population in $|5\rangle$ induced the DDI between the stationary DSPs .

DDI-Induced Attenuation Coefficients and Phase Shifts

B. Kim, K.-T. Chen, K.-Y. Chen, Y.-S. Chiu, C.-Y. Hsu, Y.-H. Chen, & IAY, PRL 131, 133001 (2023).

 $\text{OD} = 36 \pm 1, \gamma_{\Lambda} = (9 \pm 1) \times 10^{-4} \Gamma, \Omega_{c0} = 0.54 \Gamma, \Omega_{c\pm} = 0.44 \Gamma; \gamma_{R} = 0.02 \Gamma, \Delta_{a} = +5 \Gamma, \Omega_{a} = 2.0 \Gamma, \Omega_{b} = 1.6 \Gamma$

- β_{DSP} and ϕ_{DSP} : the attenuation coefficient and phase shift of DSPs. $\Delta\beta$ (or $\Delta\phi$): the difference between attenuation coefficients (or phase shifts) with and without the DDI.
- Red and blue shaded areas are the theoretical predictions with fluctuations in the OD and decoherence rate.
- The consistency between the data and predictions is satisfactory.

Bose-Einstein Condensation (BEC)

H. W. Cho, Y. C. He, T. Peters, Y. H. Chen, H. C. Chen, S. C. Lin, Y. C. Lee, & IAY, Opt. Express 15, 12114 (2007).

- BEC is formed, when the thermal de Broglie wavelength is about the mean spacing between particles.
- The Bose condensate is a coherent matter wave, superfluid, synthetic quantum matter,

Summary of Stationary DSPs Dressed by Rydberg-State DDI

Atomic BEC https://jila.colorado.edu/bec/

Dark-State-Polariton BEC?

-200 -200 -100 -0

Need a trap for DSPs? Avoid dark Rydberg states!

2D Exciton-Polariton BEC

