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Electromagnetically Induced Transparency (EIT) Effect
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® A probe field is tuned to the resonance. ® The probe suffers a large absorption due to a large OD.
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® The presence of a coupling field can ® The coupling (EM wave) makes the medium transparent

suppress the absorption. for the probe due to quantum interference.



EIT Spectrum

Y. F. Chen, Y. C. Liu, Z. H. Tsai, S. H. Wang, & IAY, PRA 72, 033812 (2005).
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e Near the resonance frequency, 7 is nearly 0 (¢’ = 0.1%). Right on the resonance frequency, 7'~ 100%.
e Transparency window is much narrower than the natural linewidth, T".

e The high-contrast and narrow-width spectrum reveals a large chromatic dispersion.
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Slow Light and Storage of Light

Y. H. Chen, M. J. Lee, I. C. Wang, S. Du, Y. F. Chen, Y. C. Chen, & IAY, PRL 110, 083601 (2013).
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e The EIT effect gives rise to slow light and storage of light.

e In the constant presence of the coupling, the light speed < ¢/10°. The 1 km-long pulse is compressed to 1 cm
in the atoms. The gap of ~ 4 us in the probe signal demonstrates the storage of light.
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Dark-State Polariton (DSP)
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The coupling and probe generate the ground-state coherence p,; in the EIT system, which is an indication

of a stronge light-matter coupling, 1.e., slow light.

To describe the collective behavior of photons and atoms under the strong coupling, the DSP is the

superposition of photon and atomic coherence, a bosonic quasi-particle.



Storage and Retrieval

Light storage is the exchange of ‘P = COS 9 Qp — sin 6 \/ncpyy
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A Narrow-Linewidth High-Brightness

Biphoton Source




What are heralded single photons or, aka, biphotons?

Why are they useful?
4 Single )
photon
Single
\_ photon

The biphoton is a pair of time-correlated single photons.

Single photons are optical qubits, but they appear randomly in time. It 1s difficult to use qubits
in the random timing.

Biphotons also appear randomly in time.

The second photon of a pair is called the heralded single photon (= biphoton).

It 1s more convenient to use heralded single photons or qubits in quantum communication or
quantum information processing.



Biphoton Sources Based on Atoms and SFWM

J.-M. Chen, T. Peters, P.-H. Hsieh, & IAY, “Review of Biphoton Sources based on the Double-A
Adv. Quantum Technol. 7, 2400138 (2024).
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® The vacuum fluctuation induces a Raman transition to generate the signal photon and also the coherence

between states 1 and 2.

® The coupling field utilizes the coherence to generate the probe photon based on the EIT effect.

® The EIT effect makes the probe photon become slow light.



Biphoton Generation Experiment

e i Cold Atom Cloud BF780  Probe
R 0 tom Clou
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® Two laser fields (coupling and pump) are applied to the atoms to generate a EF . d EF
biphoton pair (i.e., a signal and a probe photons).
w2 W

e Inside the atoms, the signal photon propagates at speed of ¢ and the probe

photon is slow light.

Time
Tagger

e Coincidence count: The signal photon makes a trigger for the
time tagger, which records the delay time of the probe photon’s

arrival.




Temporal Profile of the Biphoton Wave Packet in Cold Atoms
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e C(ircles are the two-photon coincidence counts, green line is the result of 4-point moving average of the circles,

and red line is the theoretical prediction.

® In the inset, squares and blue line are the Fourier transforms of the data and the prediction.



The Longest Biphoton with the Narrowest Linewidth to Date

Y.-S. Wang, K.-B. Li, C.-F. Chang, T.-W. Lin, J.-Q. Li, S.-S. Hsiao, J.-M. Chen, Y.-H. Lai, Y.-C. Chen, Y.-F. Chen, C.-S. Chuu, & IAY,
APL Photonics 7, 126102 (2022).
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Narrow-linewidth heralded single photons can (1) achieve better efficiencies of quantum operations; (2) be
employed in quantum network of superconducting qubits driven by narrow-linewidth microwaves; (3) interact
with 1ion qubits of narrow-linewidth transitions.



A Room-Temperature Atomic Vapor Cell

® A cylindrical glass cell is commercially available and has a diameter of 1 inch and a length of 7.5 cm.
® The cell is filled with the vapor of isotopically enriched ®’Rb atoms.

® The inner wall 1s coated with paraffin film. So, we only heated it up to about 65 °C.



Phase Mismatch in the Counter-Propagation Scheme
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Previously, SFWM biphoton sources utilized the counter-propagation scheme.
The degree of phase mismatch is given by L|AE| (L: the medium length). At L = 7.5 cm, the phase mismatch

Two absorption-emission processes

w w 2w
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Typically, w,; = 2m X6.8 GHz. |Ak| ~88cm

reduces the generation rate by 1000 folds!



Phase-Mismatch-Free in the All Co-Propagation Scheme
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e Our biphoton source utilized the all co-propagation scheme.
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® The all-copropagation scheme ensures the phase match, and also maintains a low decoherence rate, which

enables a narrow linewidth.



High Extinction for Laser Light
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The probe etalon has T, of 42% and
the FWHM of 35 MHz.

The signal etalon has T, of 37% and
the FWHM of 35 MHz.

ﬁhoton

Polarizer

Probe
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The polarization filter
provides an extinction
ratio (ER) of 60 (48) dB
to block the pump
(coupling) field.

The probe etalon blocks
the coupling field with
an ER of 88 dB.

The signal etalon blocks

the pump field with an
ER of 74 dB.

® Laser light of 40 mW, and single-photon pulses of 0.4 pW. Their powers differ by 10! folds!

e Fortunately, an overall ER of ~135 dB to block the pump and coupling fields.




The Narrowest-Linewidth Source of Single-Mode Biphotons

among All Kinds of Room-Temperature or Hot Media

C.-Y. Hsu, Y.-S. Wang, J.-M. Chen, F.-C. Huang, Y.-T. Ke, E. K. Huang, W. Hung, K.-L. Chao, S.-S. Hsiao, Y.-H. Chen, C.-S. Chuu,
Y.-C. Chen, Y.-F. Chen, & IAY, Opt. Express 29, 4632 (2021). Editors’ Pick.
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® Biphoton wave packet (left) and EIT spectrum (right) were measured at the same condition.

® The temporal profile is an exponential-decay function due to a short coherence time. The decoherence

rate in the experimental system limits the narrowest linewidth.



The Highest Spectral Brightness to Date

J.-M. Chen, C.-Y. Hsu, W.-K. Huang, S.-S. Hsiao, F.-C. Huang, Y.-H. Chen, C.-S. Chuu, Y.-C. Chen, Y.-F. Chen, & IAY,
Phys. Rev. Res. 4, 023132 (2022).
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® The spectral brightness, i.e., generation rate per linewidth, is the measure of success rate of a quantum

information process.
e The high generation rate, together with the narrow linewidth, results in a spectral brightness of 3.8 x 10°

pairs/s/MHz, better than all known results with all kinds of media.



Comparison between Different Kinds of Biphoton Sources

Best Best Spectral Linewidth | Frequency Notes
Linewidth Brightness Tunability Tunablllty
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[1]
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[1] New J. Phys. 18, 123013 (2018).  [4] Phys. Rev. A 92, 063827 (2015). [7] Opt. Express 29, 4632 (2021).
[2] PRX Quantum 2, 010337 (2021).  [5] Optica 1, 84 (2014). [8] Phys. Rev. Res. 4, 023132 (2022).

[3] Nat. Commun. 7, 12783 (2016).  [6] Appl. Phys. Lett. 110, 161101 (2017). [9] APL Photonics 7, 126102 (2022).
[10] arXiv:2502.06344.



Conditional Auto-Correlation Function of Heralded Single Photons

T.-J. Shih, W.-K. Huang, Y.-M. Lin, K.-B. Li, C.-Y. Hsu, J.-M. Chen, P.-Y. Tu, T. Peters, Y.-F. Chen, & IAY, Opt. Express 32, 13657 (2024).
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e The CACEF is a way to quantify the single-photon purity. However, the CACF measurement of the three-fold

HBT-type coincidence count is time-consuming!
® We proposed and experimentally verified a universal formula to predict the CACF from the CCF data, which
can work for all kinds of biphoton sources.



Time-Reversed Biphoton Source with the Highest Heralding
Probability among All of the Atom-based Sources to Date

W.-K. Huang, B. Kim, T.-J. Shih, C.-Y. Hsu, P.-Y. Tu, T.-Y. Lin, Y.-F. Chen, C.-S. Chuu, & IAY, Quantum Sci. Technol. 10, 015062 (2025).

HP: Probability of detecting a heralded photon upon a trigger from a heralding photon (i.e., not a dummy bullet).
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Protecting Heralded Single Photons with a Far-Detuned Frequency

W.-K. Huang, T.-Y. Lin, P.-Y. Tu, Y.-F. Chen, & TAY, arXiv:2502.06344.
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Ac: the coupling detuning: Rg: generation rate; 7,,: temporal FWHM: Aw: spectral FWHM;
SB: spectral brightness; SBR: signal-to-background ratio; f1,: heralding probability.

We introduce the new tuning knob of the coupling detuning which
is counterintuitive to the present theory.
At the optimum detuning of 1.0 GHz, GR x3.6, SB x10, HP x3.1!
The surprising results led us to develop a new theory, considering
that the far-detuned frequency protects the heralded single
photons from a previously unexplored physical mechanism.



Summary of the Hot-Atom Biphoton Source

e As the pioneer of cold-atom experiments in Taiwan, [ am delightful for our converting the knowledge
and experiences learned from the cold atoms into some nice results of the hot atoms, which are more
practical in the real-world applications.

e We started to develop the hot-atom biphoton source in 2015, and observed the first biphoton data in
2017 (sFWHM =~ 5 MHz and GR ~ 30 pairs/s).

e Now, we have a state-of-art source (SFWHM = 290 kHz, GR = 6.4x10° pairs/s, HP = 82%, and SB =
3.5x10° pairs/s/MHz close to the ultimate limit, referring to the biphotons inside SMFs).
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Stationary Dark-State Polaritons

Dressed by
Rydberg-State Dipole-Dipole Interaction
for the Realization of BEC




What is the dark-state polariton (DSP)? Slow light.
How to make it stationary? Storage of light and FWM retrieval.

Why do we want to realize the DSP BEC? A new type of BEC.
Why is the dipole-dipole interaction (DDI) needed? Thermalization.
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Atomic and Exciton-Polariton Bose-Einstein Condensations
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BEC of Stationary DSPs

M. Fleischhauer, J. Otterbach, and R. G. Unanyan, Bose-Einstein Condensation of Stationary-Light Polaritons, PRL 101, 163601 (2008).

e The 1D EOM of DSPs: ¥ 0Z20¥ 0% 0%¥
ot T T 9z 20’ 022

— () group velocity of the slow light or DSP

e The 3D EOM of stationary DSPs similar to Schrodinger equation with the effective mass ::
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e The 3D nonlinear EOM of stationary DSPs with and decay rate due to an interaction:
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Kerr-Type Nonlinearity for the DSP-DSP Interaction
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e The Kerr-type nonlinearity is proposed for the DSP-DSP interaction. However, it is typically too weak to have a
sufficient elastic collision rate for thermalization.

e Can we utilize the Rydberg-state dipole-dipole interaction instead of the Kerr nonlinearity?



Rydberg Atoms and Dipole-Dipole Interaction (DDI)

For example, rubidium atoms: Ground-state
atoms
n = 1 O ~ 1 2 O 27N
ko)
n~p5 — _ s ~-7
€ e (\9)

Ground-state atom atoms S d
(0.5 nm in dia.) / [ /
,', L") ,Ii
® A Rydberg atom has its electron in an excited state with a large principal \ N
e

quantum number, 7. : ,

® Rydberg atoms have a large electric dipole moment (Cg < n'! or €3 « n*).

e Rydberg atoms have a long lifetime (t < n3) together with the strong DDI,

making them suitable qubits.



DDI and Dipole Blockade

Rydberg-EIT
Transition Scheme

R) R,R)
Qc
e)
i “A New Order in the Quantum World,”
|g > > by Olivia Meyer-Streng (MPQ, Garching,
r B r November 1st, 2012. Press Release)

® At r <ry, the energy shift due to the DDI > the transition linewidth, and an excitation of the 2nd Rydberg
atom 1s suppressed. 7 1s the blockade radius.

® Only one Rydberg atom is inside the sphere of r; (blockade sphere).



Slow Light in the Rydberg-Atom System

B. Kim, K.-T. Chen, C.-Y. Hsu, S.-S. Hsiao, Y.-C. Tseng, C.-Y. Lee, S.-L. Liang, Y.-H. Lai, J. Ruseckas, G. Juzeliiinas, & TAY,
PRA 100, 013815 (2019).
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e We utilized the EIT effect, i.e., slow light, to test the decoherence rate in the Rydberg-atom system.

e The intrinsic decoherence rate (accounting for Doppler effect, laser frequency stability, etc.) is small as
compared with the DDI-induced decay rate.

e In the presence of DDI, the delay time 1 or the interaction time between Rydberg atoms can be 2 us or longer.



Mean-Field Theory DDI based on the Nearest-Neighbor Distribution

S.-S. Hsiao, K.-T. Chen, & IAY, Opt. Express 28, 28414 (2020).

Neal‘fszt'N?igh‘?f{r Distribution Function Dilute Rydberg atoms: (rg/r,)° « 1
*-E@ 1-0‘; DDI-induced decoherence rate: _
2 06 o =PI 20
E 0-45 _ DDI 3T m atomP22
§ 8‘3 DDI-induced two-photon detuning:
K 'ri(u'ni'ts'o'fri)' o Opp1 = iHZQC\/lc_d\/ Tt 2 NatomP22
. 3VT JT2 + 442

P(r) = 3r?/r{)Exp(—1°/13),
where 7, is the half mean distance.
S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).

Ce: van der Waal coefficient, p,,: Rydberg-state population, 1,0 : atomic density,

Q.: coupling Rabi frequency, A.: coupling detuning, I': spontaneous decay rate.

e Under particles being randomly distributed, P(r) is the probability of finding the nearest neighbor at a distance .
e We derive the analytical formulas for the weak-interaction regime of DDI. A, > 0 and A, < 0 have different
DDI effects.



Data of DDI-Induced Phase Shifts and Attenuation Coefficients

Max[Q,] = 0.2T, Q. = 1.0T,32D5,, = 1, = 4.5 pum; g = 2.0 pm. Max[(r3/1,)°] < 0.09 is the dilute regime.
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A larger probe Rabi frequency results in more population in the Rydberg state. The experimental data are
consistent with the theoretical predictions.

Phase shift and attenuation can be viewed as the consequences of elastic collisions (thermalization) and inelastic
collisions (decay).



Demonstration of Cooling Effect with Rydberg-State Slow Light

B. Kim, K.-T. Chen, S.-S. Hsiao, S.-Y. Wang, K.-B. Li, J. Ruseckas, G. Juzeliiinas, T. Kirova, M. Auzinsh, YCC, YFC, & [AY
Commun. Phys. 4, 101 (2021)
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® Take TOF images at the far field to measure of probe beam profiles. When leaving the atom cloud, photons carry
Rydberg polaritons’ momentums.
® We can derive the transverse momentum distribution of Rydberg polaritons and thus the transverse temperature.

® A larger DDI results in a narrower momentum distribution and a lower transverse temperature.



The Proposed Transition Scheme

Stationary Dark-State-and-Rydberg-State Polariton:

¥ = cosB (Qy,; + Qp_)/\/f — sin 0y/nc(cos ¢ py1 + sin @ psq),
where tan 6 = \/1c/Q., n is the OD per unit length, and ¢ = Q.

e In the subsystem of |1), |2), and |3), we created the stationary DSPs with the EIT scheme. In the subsystem
of'|2), |4), and |5), we utilized the two-photon transition to generate the Rabi oscillation between the ground
state |2) and Rydberg state |5).

e The population in |5) induced the DDI between the stationary DSPs .



DDI-Induced Attenuation Coefficients and Phase Shifts
B. Kim, K.-T. Chen, K.-Y. Chen, Y.-S. Chiu, C.-Y. Hsu, Y.-H. Chen, & TAY, PRL 131, 133001 (2023).
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e [ysp and @yqp: the attenuation coefficient and phase shift of DSPs. AS (or A¢): the difference between attenuation
coefficients (or phase shifts) with and without the DDI.

e Red and blue shaded areas are the theoretical predictions with fluctuations in the OD and decoherence rate.

e The consistency between the data and predictions is satisfactory.
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Bose-Einstein Condensation (BEC)

H. W. Cho, Y. C. He, T. Peters, Y. H. Chen, H. C. Chen, S. C. Lin, Y. C. Lee, & TAY, Opt. Express 15, 12114 (2007).
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BEC i1s formed, when the thermal de Broglie wavelength 1s about the mean spacing between particles.
The Bose condensate is a coherent matter wave, superfluid, synthetic quantum matter, ......



Summary of Stationary DSPs Dressed by Rydberg-State DDI

m* ¢ 10%m, ~102m, 10-5m, >
n {—1083=10"cm3 ~ 100 cm3 1019~1012 cm3 —>
I, {——<1pK ~1TmK >1K >
T {———>1ms ~1us <100ps D
Atomic BEC Dark-State-Polariton BEC? 2D Exciton-Polariton BEC

https://jila.colorado.edu/bec/
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Need a trap for DSPs?
Avoid dark Rydberg states! =

-3-2-101 2 3 8-2-101 2 3

-3-2-1 01 2 3
In-plane wavevector (104 crm™1)



