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1999 Chi-Chi (Mw7.6) Earthquake
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seismic waveform inversion

Temporal-spatial slip distribution from

2018 0206 Hualiean Earthquake, ruptured Milun fault
Rupture three fault segments
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A Figure 6. Structural interpretation of faults involved in seismogenic deformation
during the 6 February Hualien earthquake (focal mechanism in cross-section view),
overlain on regional color tomography and seismicity (profile locations in Fig. 1, inset;
seismicity from Central Weather Bureau, 1990-2015). Discordant vertical displace-
ments on the Milun and Lingding faults indicate that they are separate strands of
a regional fault network that accommodates oblique left-lateral convergence be-
tween Eurasian crust (Central Range), Luzon arc crust in a large offshore thrust belt,
and oceanic crust of the Philippine Sea plate. Northward subduction of the Philippine
Sea plate into the Ryukyu trench flexes the plate downward, causing subsidence and
reduction of topography in the northern Coastal Range. See Discussion section.




- How earthquake was initiated and terminated?

- What mechanism to cause the damages?

- Can we predict the ground motion in amplitude and period to reduce the
impact?

1

Damaging junior high school during the 1999 Chi-Chi earthquake



Large velocity pulse observed in the 1999 Mw?7.6 earthquake
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Large velocity pulses are now commonly observed with and without
static offset

Mw6.4 Meinong earthquake Mw?7.6 Chi-Chi earthquake
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Velocity, cm/sec

Any PGV scaling relationship to Asperity Distance, and Period to Magnitudes ?

Ground-Motion Velocity from Large Earthquakes
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Strong-velocity pulses without the static-offset effect and finite-fault slip distributions
of the five moderate earthquakes. The color in circles represent the pules period, Tp.
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(d) 2016 Kumamoto mainshock
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The identified asperity and the
rupture direction of slip
distribution.

Squares represent the station
without pulses. The stations
names with frame of which
represent the pulses that are
impacted upon the static offset.

2016 Darfield earthquake

C——T, (5)

0 2 4 6 8 10 12 14 of
Tt

L
km
e p———|
0 10 20 80
L

15? 100 50 clm/s ‘ . ‘ . ‘ ;;[2

171.6° 171.8° 172° 172:2" 172.4° 172.6° 172.8° 173°

Hayes (NEIC, Darfield 2010



ChiChi (Taiwan)

$1999CHICH1maet

Mw7.7 Mo 3.79e+020
Lat/Lon/Dep: 23.87°, 120.84°, 7.0 km
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20220918 Mw7.0 Chihshan earthquake
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Within- and Between-Event Variabilities of Strong-Velocity Pulses of Moderate
Earthquakes within Dense Seismic Arrays, Yen, M.-H., S. von Specht, Y.-Y. Lin, F. Cotton, and K.-F. Ma (BSSA, 2021).
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Pulse periods are highly variable from one
earthquake to another of similar magnitude
(between-event variability) or even for various
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Challenges & Current Practices

* Multiple-Faults
* Identification of the Multiple-fault ruptures (Fault System),
* Distribution of the slip rates among the multiple-faults
SOLUTION?
- GNSS, Geodetic Model? Quality and Quantity
* Dynamic Modeling

* Ground Motion Prediction Equation

» Site Response (Vs307?)

* Near-fault ground motion, large velocity pulse
Practical SOLUTION - 2022 Bwldmg Code https://www.cpami.gov.tw/filesys/file/chinese/publication/law/law2/111061501.pdf
- New codes for near-fault; 0-2km, 2-5km, 5-9km, 8-12km, 12-14km
- Strengthen Soft Story Buildings

- Earthquake Scenarios, Annual September Earthquake Drill



Taipei Metropolitan earthquake scenario

for disaster prevention and risk management
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RESIST-Resilient societies through smart-city technology: Assessing earthquake risk
(Taiwan, Japan, US, New Zealand)
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(QSIS, Quake Structure Integrity Sensor)
TEC

meters decimeters

* accounting inflation
** target cost



H/V Spectral Ratio during earthquakes
* Resonance frequency of the structure can

be measured quantitatively through the For more data from more
H/V spectral method buildings

 MEMS sensor is suitable for extracting the — from ground to buildings
building response in a tectonically active — hazard and risk mitigation
region mv staisy  H/V Spectral Ratio
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TAIWAN, Examples on performance of low-cost sensor building array from recent two
earthquakes, M 6.6, and M, 6.4 for the site of Inten5|ty IV and Inten5|ty 0, respectlvely
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For building responses of different building types.
-sites, building types, magnitudes, azimuthal dependence.



MACROSCOPIC

* Multiple-Faults

* Identification of the Multiple-fault ruptures (Fault System),

* Dynamic Modeling

* Ground Motion Prediction Equation

* Site Response

* Near-fault ground motion, large velocity pulse
Practical SOLUTION - 2022 Building Code https://www.cpami.gov.tw/filesys/file/chinese/publication/law/law2/111061501.pdf
- New codes for near-fault; 0-2km, 2-5km, 5-9km, 8-12km, 12-14km

- Strengthen Soft Story Buildings

- Earthquake Scenarios, Annual September Earthquake Drill (Ground shaking to building shaking)
*Societal impact:
Assessing earthquake risk in ultra-high resolution, Small Sensors (QSIS, Quake Structure Integration Sensor)

MICROSCOPIC
* Modeling earthquakes with high resolution (Earthquake Physics, Fault Zone Dynamics)

- Sensing the fault zone at depth from TCDP to MiDAS
TCDP, Taiwan Chelungpu-fault Drilling Project,
MiDAS, Milun fault Drilling and All-inclusive Sensing, using borehole optical fiber)



l'k TCD P After Drilling

Taiwan Chelungpu-fault Drilling Project (2004-20035)

* Core retrieval from drilling * Temperature measurement
(~99.5%) (Hole-A, September 2005)

* Biological Analysis (randomly)  ° {ﬁg‘gﬁrgﬁ:{I%‘?V‘?_Iaslléreznagzn)"

* Gas measurements * Hydraulic Pumping Test (Nov.,

* Non-destructive Thermo- 2005)
parameters measurement * Installation of 7-level Borehole
« Core Description (on-site Seismometers (June, 2006)
geologists) * In-Situ cross hole experiments,

Fluid Injection Test (FIT) (Nov.,

* Geophysical Logging 2006~April, 2007)

* FMI &DSI logging (Hole-A)

* FMI logging and LOT (Hole-B)
A Review of the 1999 Chi-Chi, Taiwan, Earthquake from Modeling, Drilling, and Monitoring

with the Taiwan Chelungpu-Fault Drilling Project
Ma K.-F. (2021) doi.org/10.1007/978-981-15-6210-5_4



https://link.springer.com/chapter/10.1007/978-981-15-6210-5_4
https://link.springer.com/chapter/10.1007/978-981-15-6210-5_4
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FZ1111: Identification of the Primary Slip Zone
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Split and Polished PSZ from Hole-C
PSZ

-PSZ was formed in
layers from repeating
earthquakes

1 -5mm very fine grain
sub-layer in the bottom
of each layer

- The bottom layer was
least deformed
=>Major Slip Zone (MSZ)
for the

Chi-Chi earthquake

4 -Slip thickness of about
5 mm for a single event

3 cm
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Slip thickness for a single event in mm scale
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by Kuniyo Kawabata



Examination of the historical slip zone

\ 1999 slip zone )
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» Behavior of the Historical Events (studies from LW Kuo’s group)

- Fracture Energy of each slip zone
- Comparison of the Chemical Composition in each slip zone=>
whether possible to retrieve the dynamic behavior of faulting of the historical events

- Possible examination on the pressure solution (Kuniyo Watabata),

and the healine nrocess




Particle density, N(D) (number of particles per mm2)

Grain size distribution

TEM images of Major Slip Zone

10-
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10-6 4

3
3

4

10-5 ;|
107
1024 :
-;
P Figure 2 | Particle size in the major slip zone. a, Distribution of the particle
10 size, N(D) as a function of particle diameter (D) in millimetres. The N(D) is
the number of grains per mm? for a class of grain size. The measurements are
100 = ™ u UREAL) B imaged from TEM (solid circles), SEM (circles), and optical (square). The
105 104 102 10-2 10 regression of the particle size distribution follows the power law
Particle diameter, D (mm) N(D) =aD ", where a is 0.0045 and b is 2.3. b, TEM image; scale, 100 nm.

Spherical nanograins, Heating during rapid slip

. 2 : : i
Ma et al. Nature, 2006) (increasing the temperature to hundreds degree in few sec.)



Magnified view of temperature logging results for Chi-Chi
Earthquake (residual heat from rupture)
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Friction Heat Calculations
(shallow drilling at North)

First direct measurement for Friction Heat
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Temperature measurements

6 years later

0.06

Temperature C
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Kano et al., 2006

Provisional Answer:
Friction In nature is even
ess than the lab

All the small frictional coefficients of
about less than 0.1

From TCDP, WSFD, and JFAST
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Vv The Wenchuan Earthquake Fault
) Scientific Drilling (WFSD) Project

* https://link.springer.com/chapter/10.1007/978-981-13-8015-0 3 by Xu and Li

Fluid and i e
temperature -

@ SpringerLink
measurements '

The Wenchuan Earthquake Fault Scientific
Drilling (WFSD) Project | SpringerLink

Images may be subject to copyright. Learn More 2008_2010~


https://link.springer.com/chapter/10.1007/978-981-13-8015-0_3

Please feel free to get IODP Expedition 343 logo
for print sticker or T=shirt!

Chikyu J-FAST,

https://www.jamstec.go.jp/chikyu/e/exp343/science.html

EXP.343

/) <&
%P chigyy 3awSt

Japan Trench Fast Drilling Project
Importance to understanding the Devastating Tsunami
from the 2011 Tohoku earthquake



https://www.jamstec.go.jp/chikyu/e/exp343/science.html

From SJ Lee

Drilling Site




> P

Vq ceptual image of sub-seafloor structure at the drill site
\

Distance from the wrench [km]

i & 2

~150
125
—100
—75
—50
—25

N o

-
<

Measure Frictional
Heat caused by

huge sip

Depth below the sea surface [km)]
® © o

-
N




J-FAST Pore-pressure/ Temperature Observatory

( unresolved challenges, fluid/heating/penetrating the slip zone)

2012 JFAST
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A\TCDP

Taiwan Chelungpu-fault Drilling Project

(2004-2005)

* Core a continuous profile through a
large-displacement rupture at a depth
where elastic strain energy was stored
and released.

« Sample the material in the high-speed
slip zone

« Determine the physical conditions
(stress, pore pressure, temperature)
within the fault zone.

SCIENTIFIC OBJECTIVE

(2021-2022)

* Mapping the seismogenic system
(subduction zone, offshore-inland fault
structure, etc.)

e Sample the material in the frequent
rupture slip zone

(limited budget with uncertainties on the depth of
conglomerate)

* Determine the physical conditions (stress,
pore pressure, temperature) within the
fault zone.

« Earthquake physics- Energy budget
* Role of fluid
 Precursors (?)



TCDP BHS (June, 2006): Borehole Observatory 15m Slip Zone of the 1999 Chi-Chi,
Taiwan, earthquake

ASTCDP

Taiwan Chelungpu-fault Drilling Project
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Isotropic Events: Isotropic mechanism resulted from a natural hydraulic fracturing within a
complete stress drop crust
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Constant source duration event clusters along the decollement
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Evidence for non-self-similarity of microearthquakes recorded at a Taiwan borehole
seismometer array, Lin et al. (2016)

Hints to earthquake nucleation process, and formation of a new frontal fault from
fluid?




Event duration controlled by the size of the patch and event
magnitude determined by how much of the patch area has been

ruptured.

Conceptual model (Lin et al., GJI, 2016)

(@) Smaller microearthquake Source time function for smaller microevent

Heterogeneous

Smaller slip
over the area

(b) Larger microearthquake

Smooth

Larger slip rupture
through the
heterogeneous
area
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Lin and Lapusta (GRL, 2018)
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Similar features were observed for low-frequency earthquakes beneath southern

Vancouver Island in Canada (Bostock et al., 2015).



2004 TCDP => 2021 MiDAS

-seismic dynamic modeling (Ma et al., 2006)
-fault gouge: surface fracture energy (Ma, et al., 2006)

-temperature measurement
(Tanaka et al., 2006a, 2006b, Kano et al., 2007, Kuo et al., 2011)
- nano spherules grains (e.g., Kuo et al.,2014, Kuo et al., 2015)

-existence of fluid (Ishikawa et al, 2008)
-fault zone permeability (Doan et al., 2006, Murakami et al., 2008)
-long-term borehole seismometers (e.g. Lin et al., 2012, Ma et al., 2012)

-earthquake focal mechanisms (thrust—> strike-slip) (Ma et al., 2005)

-%eophysical logs, FMI, DSI (rotation of the stress axis) (Wu et al., 2007, Lin et
al., 2007, Hung et al., 2008)

Core Description, Geochemistry/Geophysics and Others
(Song et al., 2008, Kuo et al., 2019, 2020.. ,Hirono et al., 2006, 2007...)



Milun fault Drilling and All-inclusive Sensing (MiDAS), 2021~

Crossing fault downhole optical fiber

Probing the fault zone with high spatial resolution

The Milun fault has a special geographical location as it’s short recurrence

interval (~70 years, TEM), inland and near the boundary of the subducting plat:

which with high-potential for mega-earthquakes.

A three-dimensional cross-fault borehole observatory with optical fiber fo
DAS and DTS provides the key observations to address the frontier questions fo
earthquake nucleation, energy budget, fault zone dynamics, and precursors.
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Earthquake hazard and risk- Engineering Seismology (near-fault long-period motion)
Recorded PGV along the Milun Fault near Hualien city
Pulse-like velocity motion (killer pulse) was generated by the slip patch on Milun Fault.
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Milun fault Drilling and All-inclusive Sensing (DAS & DTS)
crossing fault holes: 700m Hole-A, footwall 500m Hole-B

Crossing fault three-dimensional optical fiber configuration (HoleA, 0-700m-0, Surface
A (forth-345m-back), Telecom (1052m), HoleB, 0-500m-0, Surface B(forth-1128m-back)

Hole-A, Hole-B
Borehole
Seismometer
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Y
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https://www.elab.earth.sinica.edu.tw/midas-metadata



Normalized

Fault Zone Amplification 05 10 15 20 25
Teleseismic Earthquakes

Band pass 0.05-1.5Hz

Still see similar features seen in local
earthquakes despite the thin fault
zone of 20m.

2022/1/1-2022/4/19 Teleseismics
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—200 A
Fault Zone Amplification

520-540m

- Narrow fault zone ~ 20m

- Amplitude decay from surface to

—300 A

E
Depth(km) § depth~200m
: . | - Asymmetric feature crossing fault zone
Recordmg. caE)ablhty - Amplitudes larger in hanging-wall than
for teleseismic events footwall (Hanging-wall effect)
Fault Zone Amplification 5

from teleseismic events

—> Hints on Dynamic Triggering ?

—> Global Triggered Seismicity after
mega-earthquakes (e.g. 2004 M9.3
Sumatra, 2011 M9.0 Tohoku)

Amplification due to strong velocity/

66 material contrast within/outside the fault

zone?)

—700



Su bsu rface structu re: MiDAS Ip10 2022/09/17 13:41:19 M6.4
Site effects MiDAS Hole-A, and Hole-B Records for 2022/09/17 M6.4 earthquake
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Maximum amplitudes

Site Deconvolution to #235 (bottom)

MiDAS 100Hz 2022/01/07 UTC 21:12:19

Deconvolution result
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CONCLUSIONS
2004 TCDP =>2021 MiDAS
(Macroscopic to Microscopic)

- Style of Faulting, Rupture Initiation
- Muultiple segment ruptures,
- Triggering seismicity

- long-term in-situ crossing fault borehole observatory:
Optical Fiber Sensing of DAS/DTS, and borehole seismic array,
(e.g. Linetal., 2012, Ma et al., 2012)
- roles of nano spherules grains (e.g., Kuo et al.,2014, Kuo et al., 2015), and fluid
- temperature measurement, possible capture of the Friction heat?

- earthquake focal mechanisms (thrust—> strike-slip) (Ma et al., 2005)
- rotation of the stress axis

Core Description, Geochemistry/Geophysics and Others




From Macroscopic to Microscopic
TOWARD HIGH RESOLUTION
Earthquake kinematics and dynamics modellings
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From Macroscopic to Microscopic
TOWARD HIGH RESOLUTION
Earthquake kinematics and dynamics modellings
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Milun fault Drilling and All-inclusive Sensing
MIDAS project
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