Progress of observation in LIGO and challenge with Taiwanese gravitational physics research facility for future R&D

National Central University & Academia Sinica Yuki Inoue

Introduce myself

Yuki Inoue

Assistant professor in National Central University Adjunct Assistant research fellow in Academia Sinica

- Research history:
 - 2011-2016: POLARBEAR/Simons Array (Cosmic Microwave Background)
 - 2016-2021: KAGRA (Gravitational Wave experiment in Japan)
 - Calibration and Reconstruction
 - 2021-: LIGO(Gravitational Wave experiment in US) + Future R&D

Outline

Introduction

LIGO

Contribution of Taiwan

ASGRAF and CHRONOS

Progress of ASGRAF construction

Summary

Introduction

Introduction

- Albert Einstein
- 1916 General Relativity
 - 'Distortion of Space and Time'
- One of the most important predictions:

Gravitational Wave!

How to generate Gravitational Waves

- GW is generated by the oscillation of the massive object.
- Binary system is one of the candidate of it.

Metric

$$ds^2 = g_{\mu\nu} \, dx^\mu \, dx^\nu$$

Metric

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

Perturbation

$$\left(\frac{\partial^2}{\partial x^2} - \frac{1}{c^2}\frac{\partial^2}{\partial t^2}\right)h = 0$$

$$h_{ij} = A_{ij} \times \exp\left[i(\omega t - kz)\right]$$

$$A_{ij} = \begin{bmatrix} h_{+} & h_{\times} & 0 \\ h_{\times} & -h_{+} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Typical gravitational wave strain sensitivity

$$h \sim \frac{2G}{c^4 R} \ddot{I} \sim \frac{r_g}{R} = \frac{\text{Schwarzschild radius}}{\text{Distance from the source}}$$
Solar mass NS-NS: rg~3km
Typical distance: 100Mpc
$$h \sim \delta L/L \sim 10^{-21}$$

$$\delta L \sim 2000 \text{km} \times 10^{-21}$$

$$\sim 10^{-15} \text{m} \sim 1 \text{ fm}$$
Proton radius

Amplitude of G₈W is very tiny

Compact Binary Coalescence

BH-BH, BH-NS, and NS-NS (BH= Black hole, NS= Neutron Star)

- Observed as Unique Chirp signal
- LIGO and Virgo can observe it every 10 days

Gravitational wave source

Multimessenger astronomy

N

E +-

1 H	Element Origins										2 He						
3 Li	4 Be								5 B	6 U	Z	8 0	9 F	10 Ne			
11 Na	12 Mg	12 //g						13 Al	14 55	15 P	16 50	17 GI	18 Ar				
19 K	20 Ca	21 Se	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra																

Merging Neutron Stars Dying Low Mass Stars

Exploding Massive Stars Exploding White Dwarfs Cosmic Ray Fission

Big Bang

Observation 3 result

Observed IMBHs

NGC	distance	vel. disp. σ	BH mass		
No.	(kpc) [<u>63</u>]	(km/s) [111]	(M_{\odot})		LIGO-Virgo Black Hole Mergers
104	4.5	10.0	794.7	160	
362	8.5	6.2	116.3	100	
1851	12.1	11.3	1299		
1904	12.9	3.9	18.04	140	
5272	10.4	4.8	41.57	(f	
5286	11.0	8.6	433.4	5 120	T I
5694	34.7	6.1	108.9	5	Intermediate Mass Black Holes
5824	32.0	11.1	1209	ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο	
5904	7.5	6.5	140.6	Số 100	
5946	10.6	4.0	19.97	ä	
6093	10.0	14.5	3539	≥ 80	
6266	6.9	15.4	4508	e	
6284	15.3	6.8	168.6	윤 ⁶⁰	
6293	8.8	8.2	357.9	¥ I	
6325	8.0	6.4	132.4	ପ୍ର 40	
6342	8.6	5.2	57.35	ä	
6441	11.7	19.5	11645	20	
6522	7.8	7.3	224.3		
6558	7.4	3.5	11.68		
6681	9.0	10.0	794.7	0-	
7099	8.0	5.8	88.96		1080 (12/ 1001 1010 1087 1080 1087 1081 1081 1011 Kill
				N	North The Strate of the The The Strate of th
				Q ²	ତି ତି ତି ତି ତି ତି ତି କୁ ନ୍

Yagi, CQG 29 075005 (2012)

Overview of LIGO

- LIGO is 2nd generation gravitational wave detector.
- They have two detector systems in Hanford and Livingston.
- 4km arm length interferometer

Principle of Observation

Test masses are moved by GWs.

Principle of Observation

Observation history

- Now is upgrade period for next observation
- Observation 4 will start from just one years later.

Science of LIGO

Sensitivity

Interferometer

- Dual recycling Fabry Perot Michelson Interferometer
- Virgo and KAGRA also use same configuration.

LIGO Voyager

- Future experiment after O5
- Cryogenic LIGO
- Coating study is ongoing.
- Cryogenic coating characterization system is necessary.

LIGO Upgrade Timeline

				-
Mirror Mass [k	(g] 40	80	160	80
Mirror Materia	al Silica	Silica	Silicon	Silica
Mirror Temp [K] 295	295	120	295
Sus Temp [K]	295	295	120	295
Sus Fiber	0.6m SiO2	$0.8 \mathrm{m~SiO2}$	0.6m Si	$0.8 \mathrm{m}~\mathrm{SiO2}$
Fiber Type	Fiber	Fiber	Ribbon	Fiber
Input Power [V	N] 125	125	450	125
Arm Power [k	W] 800	800	3200	800
Wavelength [n:	m] 1064	1064	1560	1064
NN Suppressio	on 1	5	30	5
Coating Type	SiO:TaO	TBD	AlAs:GaAs	TBD
Beam Size [cm	[] 5.3 / 6.2	8 / 9.4	5.3 / 6.2	11 / 12
SQZ Factor [d]	B] 0	6	10	10
F. C. Length [m] 0	16	300	1000

Contribution of Taiwan

Current activity of LIGO

- Calibration
 - Error estimation pipeline
 - Systematic error study based on the simulation
- Coating
 - Large coating method
 - Low loss method
 - Cryogenic measurement system

Modeling of Interferometer

Changes of arm length are measured between Actuator and Detector So, we can separate A and C part by estimation accurate model of A and C

Definition of Calibration : Parameter estimation of A and C

Definition of Reconstruction : Calculation from interferometer response

Modeling of Interferometer

Changes of arm length are measured between Actuator and Detector

So, we can separate A and C part by estimation accurate model of A and C

Definition of Calibration : Parameter estimation of A and C

Definition of Reconstruction : Calculation from interferometer response

Reconstruction of LIGO

Modeling error -> Calibration error

We reconstruct h(t) by modeling time-dependent Sensing and Actuation factor

$$h(t) = \frac{\Delta L_{\text{ext}}(t)}{L} = \mathcal{C}^{-1} * d_{\text{err}}(t)/L + \mathcal{A} * d_{\text{ctrl}}(t)/L$$

Development of pyDARM

pyDARM

- python DARM model
- Interferometer modeling
- Filter generation for reconstruction
- Calibration parameter and filter
- Systematic uncertainty estimation of provided h(t)

03 PIPELINE

Do this once to set up reference model

History of pyDARM

- O1: Matlab model only, simplified error analysis
- O2: Combination of Matlab and python codes used for modeling, filter generation, error/uncertainty (Bayesian) estimation
- O3: pure python codebase, but awkward to use (not modular, not easily extendable, doesn't integrate well, etc.)
- O4: modular python codebase, installable using pip/condaforge/source

Calibration activity

LIGO calibration code sprint on Dec.2 1:00 am -9:00 am

200 1000 Extreme Phase Uncs - 20-1024 Hz = (-1.22, 2.55), 1024-5000 Hz = (-5.91, 3.18 200 1000 Frequency

2000

- Development of systematic error estimation tool based on the interferometer model
- pyDARM = python base Differential ARM length modeling code

Taiwan team are developing new software •

Calibration error envelop

- MCMC and Gaussian process regression
- Provide hourly calibration error for the world wide collaborator

Coating study

NTHU Prof.Chao

NCU&AS Yuki Inoue

- Prof.Chao will retire at next summer
- Yuki is taking over his coating facility
- Process of taking over is ongoing
- Prof.Chao plan to continue the research in Yuki's group

Assignment of human resource for taking over

- 1 postdoc and 1 Ph.D. student visit NTHU constantly.
- 1 master student stay in NTHU and focus on CVD method (Training now)
- Technical staffs and 1 master student focus on development of cryogenic loss measurement system in Academia Sinica

LIGO coating

$$S_x(f) = \frac{2k_B T}{\pi^{3/2} f} \frac{1 - \sigma^2}{wY} \left\{ \phi_{\text{substrate}} + \frac{2}{\sqrt{\pi}} \frac{(1 - 2\sigma)}{(1 - \sigma)} \frac{d}{w} \phi_{\parallel} \right\}$$

- LIGO employs Ta₂O₅-TiO₂ coating with Fused Silica mirror
- Ion Beam Sputter (IBS) method is used in the fabrication process
- They still have a challenging issue for the large area coating with IBS.
IBS coating in LIGO

Two aLIGO mirrors are coated simultaneously with planetary rotation and masking to ensure the thickness uniformity (all Zernike poly terms <0.5nm was achieved for a-LIGO)

Fabrication of SiN film on Silicon by Plasma Enhanced CVD method

$$SiH_4 + 4NH_3 \xrightarrow{\text{plasma}} Si(NH_2)_4 + 4H_2$$
$$3Si(NH_2)_4 \xrightarrow{\text{heat}} Si_3N_4 + 8NH_3$$

Ref : Donald L. Smith, et al." mechanism of SiN_xH_y Deposition from NH_3 -SiH₄ plasma". J.Electrochem. Soc. **137**, 614-623(1990)

Ref : J. N. Chiang, et al "Mechanistic Considerations in the Plasma Deposition of silicon nitride film" J. Electrochem. Soc. **137**, 2222-2226.(1990)

Adjusting the ratio of the gas flow rate, the composition of the SiN film can be changed

With fixed N₂ gas flow at 980 sccm, we used 5 recipes with different gas flow rate :

Gas flow rate SiH ₄ /NH ₃ (sccm)	Composition	thickness * (nm)	Refractive index [†] @1550nm	Young's modulus (GPa)	Stress (MPa)	Uncoated cantilever frequency	Coated cantilever frequency
45/15	SiN _{0.40}	159.1±2.7	2.300±0.006	103.7±5.6	120.2±15.5	103.42	103.47
38/22	SiN _{0.49}	179.2±1.4	2.138±0.005	107.0±10.8	143.8±13.2	107.32	107.38
25/30	SiN _{0.65}	198.5±0.8	1.930±0.002	131.6±4.8	256.7±6.6	104.88	105.02
15/45	SiN _{0.79}	204.4±1.5	1.816±0.001	137.7±9.7	382.2±21.3	107.37	107.53
8/48	SiN _{0.87}	211.8±0.1	1.783±0.001	137.0±9.2	412.7±20.0	106.93	107.5

Development of loss measurement system - Characterization of thermal property-

- Installed two thermal stages pulse tube cooler for coating system
- By injecting power for each stage, we measured thermal loading map
- We can keep 4.2 K with 0.25 W (low stage),
 10W (high stage)

We confirmed the enough heat capability of our cryogenic system

Coating measurement system

 We are developing the coating characterization system for measurement of coating in CHRONOS.

Moving stage 1: Replace Coating sample and reference sample

Moving stage 2: Alignment of sample position

- We will mount the radiation shield around the sample
- We can replace the mirrors with piezo motor.
- We employ the high purity aluminum wire for moving cryogenic stage.

ASGRAF and CHRONOS

Introduction

2035:START OF GW SATELLITE MISSION

15 years What should we do 15 years for GW science in Taiwan??

2020:START OF WORLDWIDE JOINT OBSERVATION

Introduction

2035:START OF GW SATELLITE MISSION

CHRONOS

15 years What should we do 15 years for GW science in Taiwan??

2020:START OF WORLDWIDE JOINT OBSERVATION

CHRONOS Overview

Cryogenic sub-Hz cROss torsion bar detector with quantum NOn-demolition Speed meter

Collaborator of CHRONOS

National Central University

Yuki Inoue (PI) Daiki Tanabe Ko-Han Chen Miftahul Ma'arif Hong-Lin Lin Tsung-Chieh Ho Dennis You-Ru Lee Hsiang-Yu Huang Chiu Yi-Hsuan Tseng Shun-Lin

Academia Sinica

Tsz-King Wong Fong-Kai Lin Cheng-I Chiang Hsiang-Chieh Hsu Afif Ismail Niko Chen Yung-Ying

<u>NTHU</u>

Chao Shiuh Debby Lin Martin Spinrath

<u>тки</u> Guo-Chin Liu

<u>KEK</u>

Masaya Hasegawa

<u>NTNU</u>

Chen Chuan-Ren Chrisna Setyo Nugroho

CHRONOS Overview

- Mission: Search for Intermediate black hole on Sub-Hz range
- Method: Interferometorical Speed meter
- Full success: First detection of Intermediate Black hole merger on O(10⁴M_☉) range
- Unique point: 10m x 10m Observatory

IRØNOS

CHRONOS Phase

- Location: Underground site in Taiwan
- R&D is ongoing
- Phase 1: R&D for Key technologies (2020-2022)
- Phase 2: Integration test in ASGRAF (2022-2025)
- Phase 3: Insulation and Commissioning of CHRONOS in Underground lab (2025-2027)

CHRONOS's target observation year = 2027

Fabry-Pérot Michelson vs. Sagnac Speed meter

LIGO White paper

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO -

LIGO SCIENTIFIC COLLABORATION

Technical Note LIGO-T2000407–v3 2020/08/31

Instrument Science White Paper 2020

LIGO Scientific Collaboration

Distribution of this document: LIGO Scientific Collaboration

California Institute of Technology LIGO Project, MS 100-36 Pasadena, CA 91125 Phone (626) 395-2129 Fax (626) 304-9834 E-mail: info@ligo.caltech.edu Massachusetts Institute of Technology LIGO Project, Room NW22-295 Cambridge, MA 02139 Phone (617) 253-4824 Fax (617) 253-7014 E-mail: info@ligo.mit.edu

LIGO Hanford Observatory P.O. Box 159 Richland, WA 99352 Phone (509) 372-8106 Fax (509) 372-8137 E-mail: info@ligo.caltech.edu LIGO Livingston Observatory 19100 LIGO Lane Livingston, LA 70754 Phone (225) 686-3100 Fax (225) 686-7189 E-mail: info@ligo.caltech.edu

http://www.ligo.org/

SPEED METER

LT-4.4.5 Speed meter

Normally, a GW detector measures the test mass position at different times to infer the signal. However, position at different times does not commute with the Hamilton operator of a free mass. According to quantum measurement theory (151), such a measurement process inevitably introduces quantum back action and perturbs the test mass motion. (In the context of GW detectors, the back action is the radiation-pressure noise.) In order to evade back action, one needs to measure the conserved dynamical quantity of the test mass—the momentum. The latter is (approximately) proportional to speed, which is why a *speed meter* is ideal for measuring gravitational waves with greatly reduced radiation-pressure noise (105).

CRYOGENIC

LT-7.3.5 Cryogenics

It has long been known that cryogenically cooled test masses can have much improved material parameters which lead to significant reductions in thermal noise. However, operating at cryogenic temperatures presents multiple new challenges which need to be addressed. The most pressing is to find ways to cool the temperature, to isolate the mirrors from their hot surroundings and to constantly extract the deposited laser heat without short-circuiting the suspension and seismic isolation system. Detailed thermal models have to be developed and tested to maximize radiative and conductive cooling paths.

LIGO also has common technical issue for future GW technology

Procedure of technical demonstration in LIGO

Academia Sinica Gravitational physics Research Facility (ASGRAF)

- Location: Academia Sinica Institute of Physics (B1 floor)
- Environment: 10m x 11m Class 10000 clean room and Class1000 clean booth
- Cryogenic Interferometer
- Main purpose: R&D of gravitational wave

technologies

Academia Sinica Gravitational physics Research Facility (ASGRAF)

- Cryogenic Active Vibration isolation system
- Controlled by Digital Control System
- Dual recycling interferometer
- Verification of calibration instruments
- Apply for Geoscience

Benefit of ASGRAF for future application

We can give a good training of interferometer control in Taiwan. We will send the human resource to LIGO after COVID-19.

We can test the new GW technology in Taiwan. If we can try actual contribution, ASGRAF will be a test facility of LIGO in Asia.

CHRONOS itself has interesting science. This technology can be applied for future LIGO. In any case, our effort can be led for the essential contribution in GW science

System is totally same as LIGO. So, we can test the LIGO's software in ASGRAF.

Torsion bar in Gravitational Wave

- Torsion bars keep staying through the metric
- Tensor mode metric perturbation (= Gravitational wave) change the relative angle of cross bars
- By measuring relative angle, we can reconstruct the gravitational wave foam, h(t).

We can dramatically reduce resonant frequency

Cross section of CHRONOS observatory

Seismic isolator

Lab test

Underground site

Expected Attenuation factor for rotation: 1/10¹²

Speed meter technique

- $\theta_1(t)$ $\theta_2(t)$ ϕ out
- $\delta \phi_{CW} \propto \theta_1(t) + \theta_2(t+\tau)$
- $\delta \phi \operatorname{ccw} \propto \theta_2(t) + \theta_1(t+\tau)$
- $\delta \phi \text{out} = \tau (\omega \text{ccw} \omega \text{cw})$
- We measure the phase delay of CW and CCW beams.
- Time interval, T, should be same.
- Similar to Sagnac Gyroscope.

Speed meter technique $\theta_1(t)$ $\theta_2(t)$ • $\delta \phi_{\rm CW} \propto \theta_1(t) + \theta_2(t+\tau)$ • $\delta \phi_{CCW} \propto \theta_2(t) + \theta_1(t+\tau)$ • $\delta \phi \text{OUT} = \tau (\omega \text{CCW} - \omega \text{CW})$ • Install the ring cavity to amplify the signal. Power recycling cavity and Signal recycling

cavity are also employed

• Differential angular velocity.

Cryogenic vibration isolation technology

Brownian Motion

To attenuate the brownian motion, we cool down the suspension system

Overview of CHRONOS Cryogenic suspension system

Progress of ASGRAF construction

Research team of CHRONOS

PI: Yuki Inoue Co-PI: Henry Wong

Demonstration of locking and onsite analysis tool for the observation

Preparation of Lab environment to accept main interferometer in 2023 June

Listing up the possible science of **CHRONOS** based on the expected sensitivity

Test in National Central University

- R&D of interferometer control
- Establishment of procedure
 for digital feedback control
 and onsite analysis
- R&D for input optical system
 to provide high quality laser
- Training for staff and student for ASGRAF phase

NCU observatory (Physics department)

We develop the Michelson interferometer system for the test of the digital feedback control. We will test the Sagnac interferometer for the test of speed meter after Michelson test. Even if it is COVID-19, we can learn LIGO's interferometer system in Taiwan.

Studies of main interferometer

VIS (suspension)

- ✓ Two suspension
- ✓ Passive damping
- Active control
- Vacuum chamber

Optics

- ✓ Mode cleaner
- ✓ Intensity stabilization
- Frequency stabilization

- ✓ Monitors
- ✓ Digital feedback
- ✓ Data storage
- Control GUI

Input optical system

- To keep the lock acquisition state constantly, we need to provide high quality laser beam
- By using feedback control system, we stabilize the laser beam.

Test in Academia Sinica

- Preparation of infrastructure
 to accept NCU interferometer
 at early 2023
- Development of cryogenic
 measurement environment
 with large chamber

Temperature of large chamber

We need to achieve the 4K temperature at main stages. We need to reduce the thermal loading and establish the heatlink technology with pure aluminum wire.

Overview of Cryogenic system

- Cryocooler : 2-Stages pulse tube cooler
- Stages temp. : 50 K, 4 K
- CHRONOS requirement : 4K

 Multiple Applications cryocooler system with Realtime feedbacked Low Environmental background (MARLE) consists of 3 chambers

Setup of cryogenic system

Optical table and standalone server are prepared

Compressor

Chiller(to be upgraded to be more powerful)

50 layers MLI cover the 50K stage

MLI cover the 4K cooling head

Feedback control system

Feedback control :

□Vibration noise almost large enough to swamp the signal we are looking for

□Do more than barely make the instrument work : use feedback to control the relevant angles and positions

6 degree of freedom?

Translational vibration couples to the rotational motion

Development of loss measurement system - Characterization of Vibration-

- We measured the vibration from PTC
- To mitigate the periodic vibration from PTC (~10um), we are developing active damping vibration isolation system
- To make error signal for feedback, we start to install the accelerometer and photo sensors.
- We plan to finish the initial test within 1.5 month
- From May, we will start the optical test for loss characterization system with my students

By collaborating with theorist, we need to list up all science possibility with sensitivity curves. We will discuss it in Theory session.

Earth quake measurement in Taiwan

- **Dynamical of mass** inside the earth surface **can generate a perturbation to gravitational potential** on the surface of the earth
- It can be observed by strainmeter throught gravity strain

$$\mathbf{h}(\mathbf{r},t) = \int_0^t d\tau' \int_0^{\tau'} d\tau \, \nabla \otimes \delta \mathbf{g}[\mathbf{r},\tau].$$

• Harms (2016) provided a numerical calculation method to **compute the gravity strain signal by** solving the equation with double-couple source (symmetric **moment tensor**) in homogeneous half-space (the signal is sourced from the underground).

Simulation and Sensitivity

SIMULATED GRAVITY STRAIN FROM MOMENT TENSOR DATA IN TAIWAN

Collaboration is very welcome!!

Development of ASGRAF (Software / Hardware)

Vacuum, Electronics, Machining, and Cryogenic

Application of active damping cryogenic system for other experiment (CMB, Dark matter, ..)

Astronomical research for Intermediate black hole generation process

Study for Stochastic back ground

GEO science and analysis with ASGRAF data

Summary

Gravitational wave was detected by LIGO. Nowadays, we can observe gravitational wave every ten days.

AS-NCU-NRHU group start the LIGO study from 2021. We focus on calibration and coating study.

Construction of ASGRAF is ongoing. We will test the new technology for future R&D. We would like to apply our facility as one of the test facility of LIGO in the future.

R&D of Taiwanese GW experiment, CHRONOS, is ongoing.We are testing key technology in NCU and Academia Sinica.