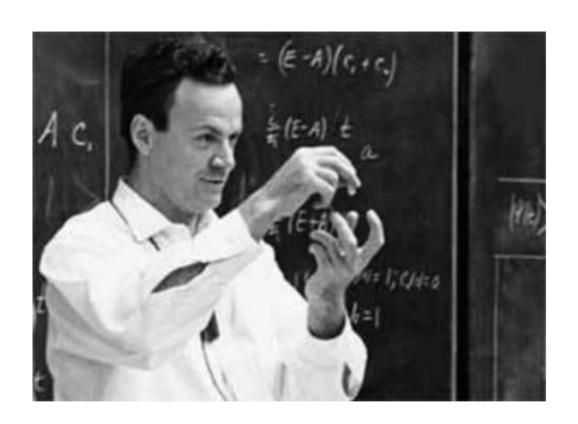
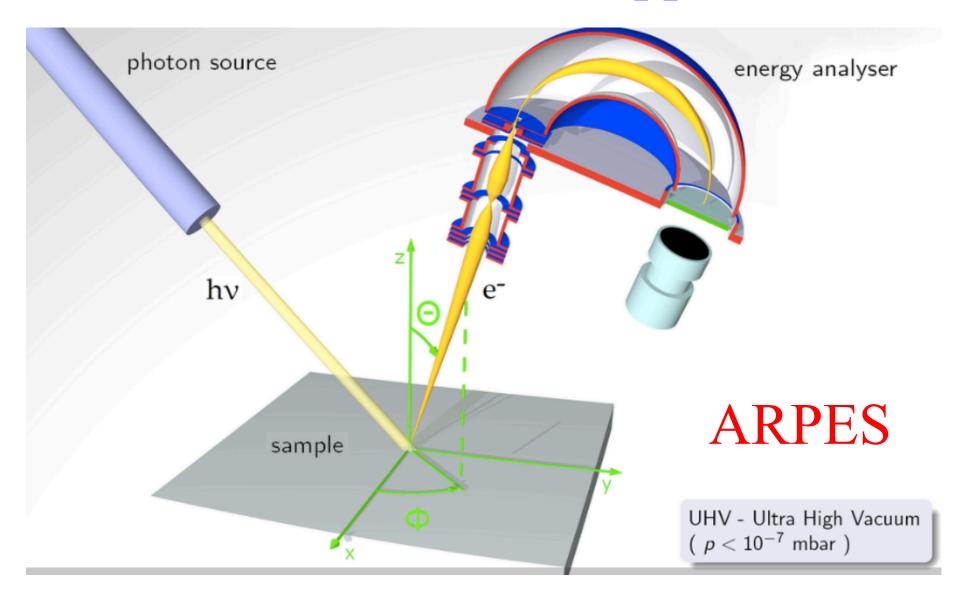
Recent Developments on Parton Distributions on a Lattice

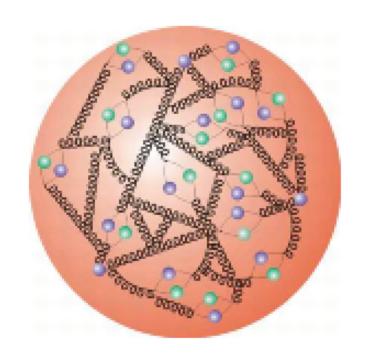

Jiunn-Wei Chen National Taiwan U.

Collaborators (LP3, MSULat): Saul D. Cohen, Tomomi Ishikawa, Zhouyou Fan, Carson Honkala,

Xiangdong Ji, Luchang Jin, Ruizi Li, Huey-Wen Lin, Yu-Sheng Liu, Andreas Schafer,


Yi-Bo Yang, Jianhui Zhang, Rui Zhang, Yong Zhao

One Sentence to Be Passed on to the Next Generation


All things are made by atoms.

Structures, reactions, applications

The Saga Continues

Proton is made by partons (quarks and gluons)

Structures:1d mom+spin PDF to 3d GPD & TMD to Wigner (and beyond?) [BNL, JLab, J-PARC, COMPASS, GSI, EIC, LHeC, ...] to applications (Higgs, new physics...)

Can we determine these distributions theoretically?

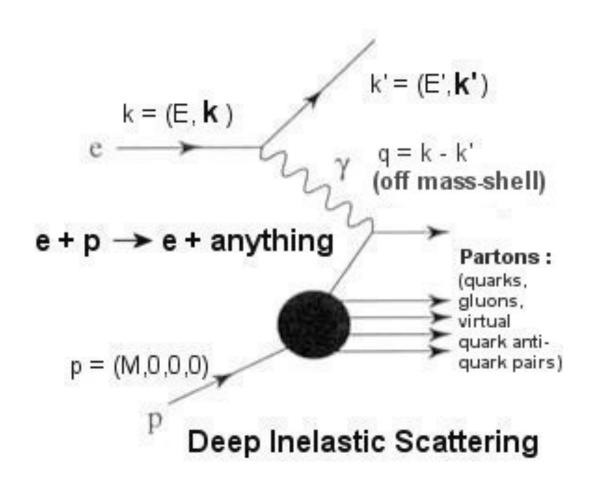
An Ultimate Question in Science

An Ultimate Question in Science

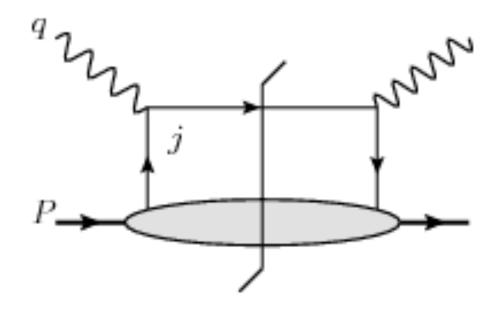
Life = known Physical Laws?

An Ultimate Question in Science

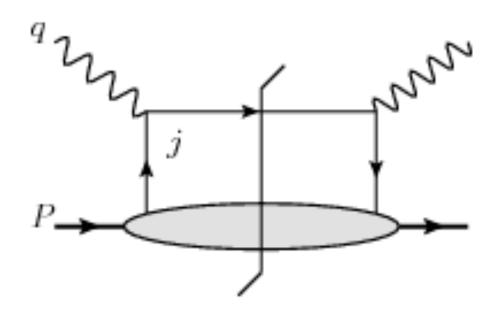
Life = known Physical Laws?


A computational problem!

Why is it so hard?


Proton PDFs from QCD

- The number of quark anti-quark pairs diverges (manifestation of non-perturbative nature of the problem): an infinite body problem!
- Lattice QCD
- Euclidean lattice: light cone operators cannot be distinguished from local operators $t^2 \mathbf{r}^2$


Measuring Parton Distributions Using DIS experiments

Parton Distribution Function (PDF) in QCD

Parton Distribution Function (PDF) in QCD

The struck parton moves on a light cone at the leading order in the twist-expansion.

$$q(x,\mu^2) = \int \frac{d\xi^-}{4\pi} e^{ix\xi^- P^+} \left\langle P \left| \overline{\psi}(0)\lambda \cdot \gamma \Gamma \psi(\xi^- \lambda) \right| P \right\rangle$$

Why is it so hard? Proton PDFs from QCD

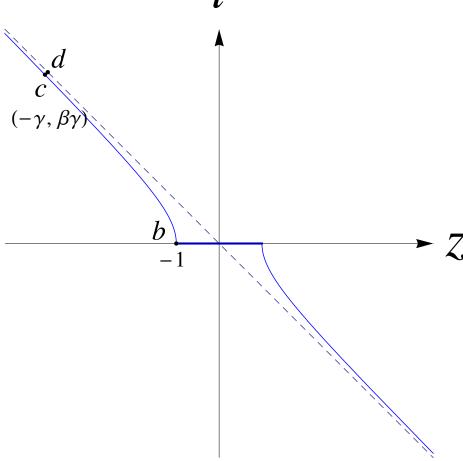
- Euclidean lattice: light cone operators cannot be distinguished from local operators
- Moments of PDF given by local twist-2 operators (twist = dim spin); limited to first few moments but carried out successfully

$$\langle x^n \rangle$$

Beyond the first few moments

- Smeared sources: Davoudi & Savage
- Gradient flow: Monahan & Orginos
- Current-current correlators: K.-F. Liu & S.-J. Dong; Braun & Müller; Detmold & Lin; QCDSF; Qiu & Ma
- Xiangdong Ji (Phys. Rev. Lett. 110 (2013) 262002): quasi-PDF: computing the x-dependence directly. (variation: pseudo-PDF, Radyushkin; w/ Karpie, Orginos, Zafeiropoulos)

Ji's idea


• Quark PDF in a proton: $(\lambda^2 = 0)$

$$q(x,\mu^2) = \int \frac{d\xi^-}{4\pi} e^{ix\xi^- P^+} \left\langle P \left| \overline{\psi}(0)\lambda \cdot \gamma \Gamma \psi(\xi^- \lambda) \right| P \right\rangle$$

- Boost invariant in the z-direction, rest frame OK
- Quark bilinear op. always on the light cone
- What if the quark bilinear is slightly away from the light cone (space-like) in the proton rest frame?

• Then one can find a frame where the quark bilinear is of equal time but the proton is moving.

Then one can find a frame where the quark bilinear is of equal time but the proton is moving.

- Then one can find a frame where the quark bilinear is of equal time but the proton is moving.
- Analogous to HQET: need power corrections & matching---LaMET (Large Momentum Effective Theory)

- Then one can find a frame where the quark bilinear is of equal time but the proton is moving.
- Analogous to HQET: need power corrections & matching---LaMET (Large Momentum Effective Theory)

$$ilde{q}(x,\Lambda,P_z) = \int rac{dy}{|y|} Z\left(rac{x}{y},rac{\mu}{P_z},rac{\Lambda}{P_z}
ight) q(y,\mu) + \mathcal{O}\left(rac{\Lambda_{ ext{QCD}}^2}{P_z^2},rac{M^2}{P_z^2}
ight) + \ldots$$

Matching

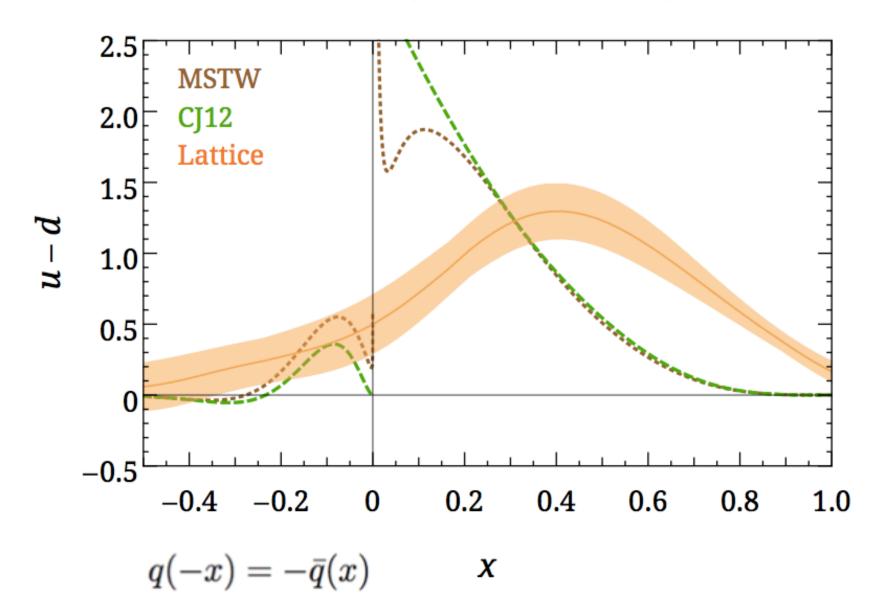
$$ilde{q}(x,\Lambda,P_z) = \int rac{dy}{|y|} Z\left(rac{x}{y},rac{\mu}{P_z},rac{\Lambda}{P_z}
ight) q(y,\mu) + \mathcal{O}\left(rac{\Lambda_{ ext{QCD}}^2}{P_z^2},rac{M^2}{P_z^2}
ight) + \ldots.$$

Xiong, Ji, Zhang, Zhao (GPD: Ji, Schafer, Xiong, Zhang; Xiong, Zhang) Factorization (Ma, Qiu; Li; OPE: Izubuchi, Ji, Jin, Stewart, Zhao), Linear divergence, LPT (Ishikawa, Ma, Qiu, Yoshida; JWC, Ji, Zhang; Xiong, Luu, Meissner; Rossi, Testa; Constantinou et al.) Multiplictive Renormalizability (Ji, Zhang, Zhao; Ishikawa, Ma, Qiu, Yoshida; Green, Jansen, Steffens; Zhang, Ji, Schäfer, Wang, Zhao; Li, Ma, Qiu), RI (Monahan & Orginos; Yong & Stewart; Constantinou et al.; LP3), NPR(Constantinou et al.; LP3), E vs. M spaces (Carlson et al.; Briceno et al.), Renormalon (Braun, Vladimirov, Zhang), Modeling (Xing et al.,...),...

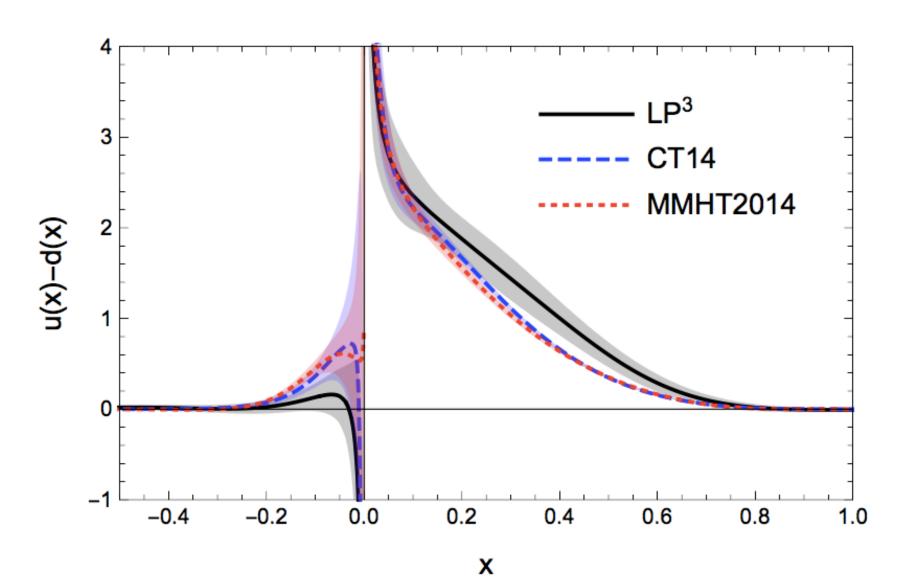
Lattice Setup (isovector proton PDF)

• Lattice: $64^3 \times 96$ $a=0.09 \; \mathrm{fm} \qquad L \approx 5.8 \; \mathrm{fm}$

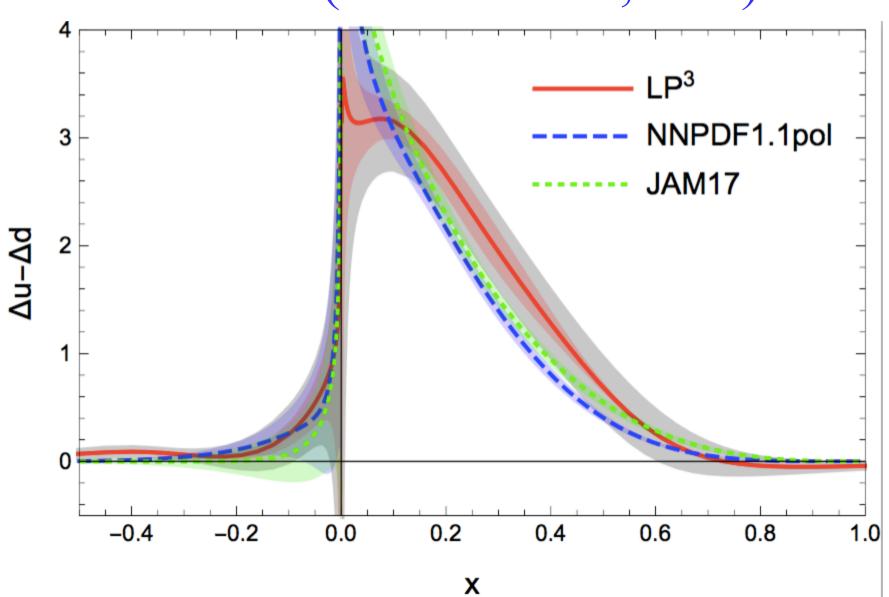
• Fermions: MILC highly improved staggered quarks (HISQ) Clover (valence)

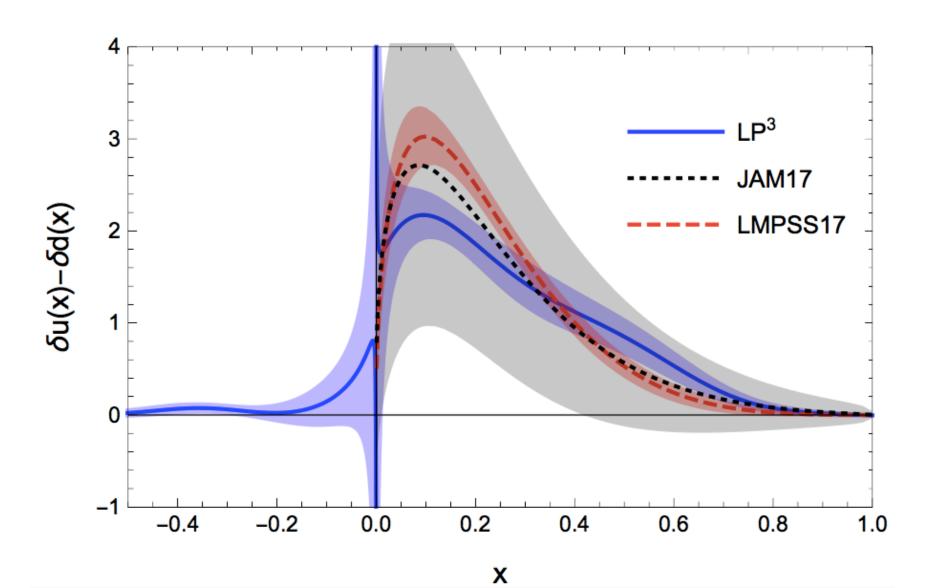

$$N_f = 2 + 1 + 1$$
 $M_{\pi} \approx 135 \text{ MeV}$

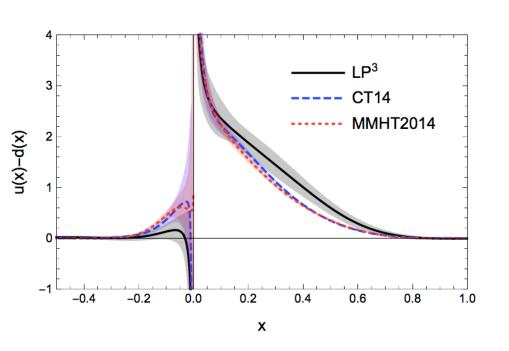
• Gauge fields/links: hypercubic (HYP) smearing (one step), 884 config.

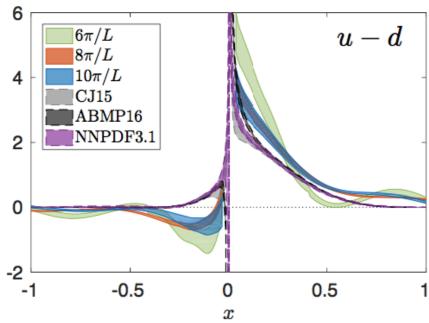

•
$$P^z = n\frac{2\pi}{L} = 2.2, 2.4, 3.0 \text{ GeV (n} = 10,12,14)$$

(high momentum smearing: Bali, Lang, Musch, Schafer; smaller energy gap)


LP3 (1402.1462)

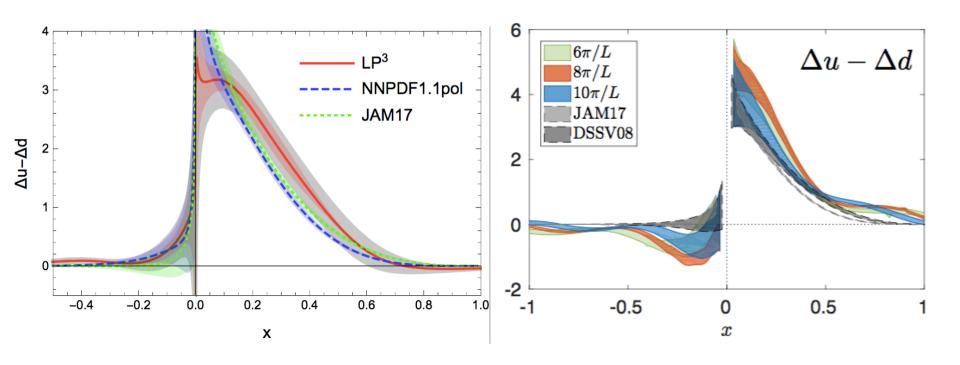

LP3 (1803.04393 v2)


LP3 (1807.07431,PRL)



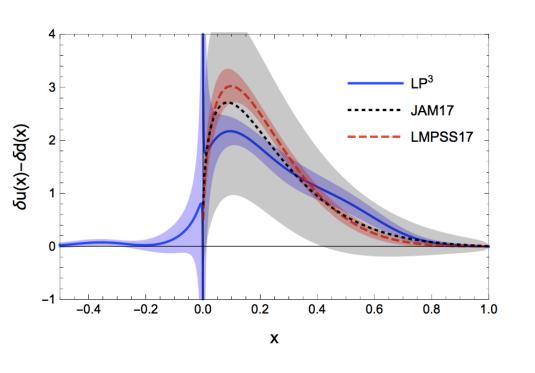
LP3 (1810.05043)

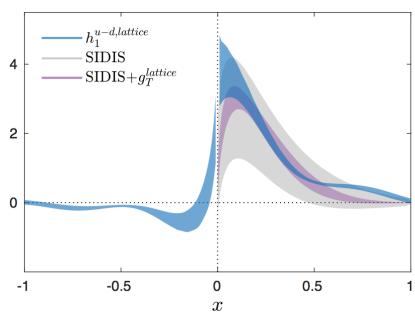
Compared with ETMC



LP3(1803.04393)

ETMC(1803.02685)


Compared with ETMC

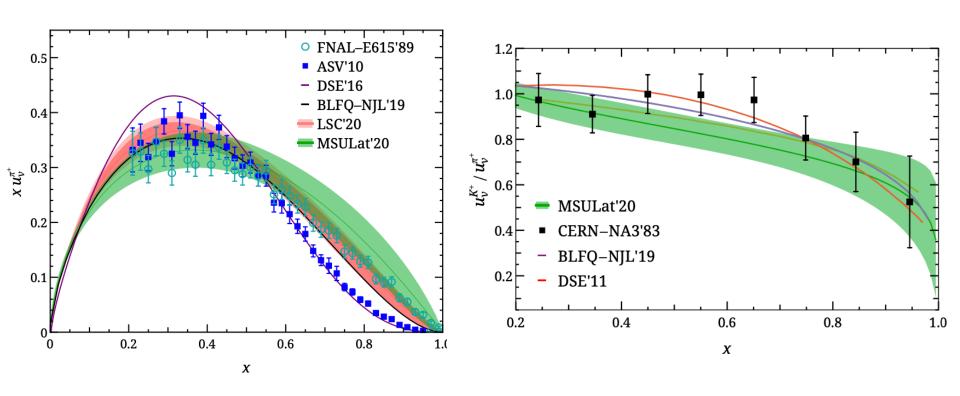


LP3(1807.07431,PRL)

ETMC(1803.02685,PRL)

Compared with ETMC

LP3 (1810.05043)


ETMC(1803.02685)

Generalized Parton Distributions

JWC, HW Lin, JH Zhang (1904.12376)

Meson Valence Quark Distributions

HW Lin, JWC, Z Fan, JH Zhang, R Zhang (2003.14128)

More Systematics Studies

• We need

$$\frac{\pi}{a} \gg P_z \gg \frac{1}{z_{max}} \gg \Lambda_{QCD}, m_\pi \gg \frac{\pi}{L}$$

Now we have

$$6.8 > 3 >> 0.15 \sim 0.2, 0.14 > 0.1 \text{ (GeV)}$$

- Finite volume effect: ChPT (w/ Wei-Yang Liu)
- long tail and lattice spacing: Hybrid or selfrenormalization (LPC)
- Renormalon: (w/ Wei-Yang Liu)

Outlook

- Rapid progress made since 2013
- Further error study (non-singlet)
 Know whether it works within 3 years (~20%)?
- Singlet PDF's: s, c, b and gluons Additional 3-5 yrs?
- If it works, complimentary to exp.: PDF (sea asymmetry, small and large x's, non-valence partons), DA, GPD, TMD, Wigner distributions ...

Backup slides

First (isovector) LPDF Computation

• Lattice: $24^3 \times 64$

$$a \approx 0.12 \text{ fm}$$
 $L \approx 3 \text{ fm}$

• Fermions: MILC highly improved staggered quarks (HISQ) Clover (valence)

$$N_f = 2 + 1 + 1$$
 $M_{\pi} \approx 310 \text{ MeV}$

• Gauge fields/links: hypercubic (HYP) smearing, 461 config.

•
$$P^z = \frac{2\pi}{L}n = n \times 0.43 \ GeV$$
 $n = 1,2,3...$

Review: Ji's LPDF (LaMET)

$$\widetilde{q}(x,\mu^{2},P^{z}) = \int \frac{dz}{4\pi} e^{-ixzP^{z}} \left\langle P \left| \overline{\psi}(0)\lambda \cdot \gamma \Gamma \psi(z\lambda) \right| P \right\rangle$$

$$\equiv \int \frac{dz}{2\pi} e^{-ixzP^{z}} h(zP^{z}) P^{z}$$

$$\lambda^{\mu} = (0, 0, 0, 1)$$

Taylor expansion yields

$$\overline{\psi}\lambda \cdot \gamma \Gamma \left(\lambda \cdot D\right)^n \psi = \lambda_{\mu_1} \lambda_{\mu_2} \cdots \lambda_{\mu_n} O^{\mu_1 \cdots \mu_n}$$

op. symmetric but not traceless

$$\left(\lambda_{\mu_1}\lambda_{\mu_2}-g_{\mu_1\mu_2}\lambda^2/4\right)$$

Review: Ji's LPDF (LaMET)

$$\langle P | O^{(\mu_1 \cdots \mu_n)} | P \rangle = 2a_n P^{(\mu_1} \cdots P^{\mu_n)}$$

- LHS: trace, twist-4 $\mathcal{O}(\Lambda_{QCD}^2/(P^z)^2)$ corrections, parametrized in this work
- RHS: trace $\mathcal{O}(M^2/(P^z)^2)$
- One loop matching $\alpha_s \ln P^z$, OPE

$$ilde{q}(x,\Lambda,P_z) = \int rac{dy}{|y|} Z\left(rac{x}{y},rac{\mu}{P_z},rac{\Lambda}{P_z}
ight) q(y,\mu) + \mathcal{O}\left(rac{\Lambda_{ ext{QCD}}^2}{P_z^2},rac{M^2}{P_z^2}
ight) + \ldots$$

Non-Perturbative Renormalization + Matching

$$ilde{q}(x,\Lambda,P_z) = \int rac{dy}{|y|} Z\left(rac{x}{y},rac{\mu}{P_z},rac{\Lambda}{P_z}
ight) q(y,\mu) + \mathcal{O}\left(rac{\Lambda_{ ext{QCD}}^2}{P_z^2},rac{M^2}{P_z^2}
ight) + \ldots$$

- NPR (RI/MOM scheme), γ_t $p^2 = -\mu_R^2$ Landau gauge $p_z = p_z^R$
- RI/MOM to \overline{MS} performed at one loop

Sensitivity (p_z^R

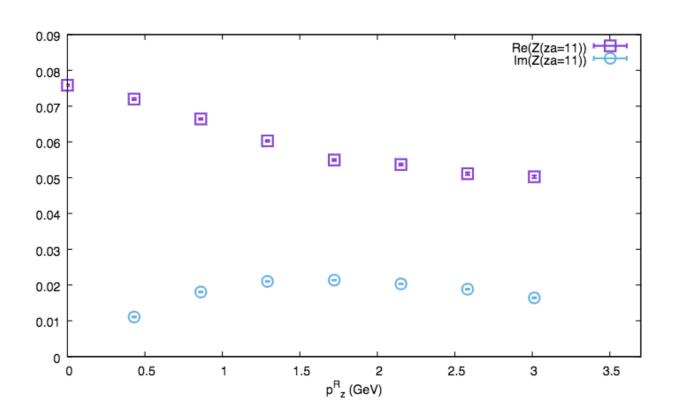


FIG. 1. The values of Z(z) (the inverse of the renormalization constant) at $z = 11a \approx 1.0$ fm as a function of p_z^R . Note that Z(z) becomes stable at large p_z^R .

insensitive to $\mu_R = 2.3$ and $3.7~{\rm GeV}$

Rossi & Testa's criticism

(1706.04428, 1806.00808)

- Criticism: The twist-4 effect is $\mathcal{O}(1/(aP_z)^2)$ from dimensional analysis instead of $\mathcal{O}(\Lambda_{QCD}^2/P_z^2)$
- This can be avoided by renormalizing the quark bilinear operators non-perturbatively such that one can go to continuum limit where the lattice spacing dependence disappears.
- The matching formula should be between the renormalized quasi-PDF and PDF, not between bare quasi-PDF and PDF as in earlier versions.

Advantages of RI/MOM

- RI/MOM: Quasi-PDF is renormalized nonperturbatively by performing an off-shell subtraction. Continuum limit can be taken afterwards to recover rotation symmetry, s.t.
- (1) power divergent mixing to lower moments removed
- (2) power divergent mixing with higher twist (same dim. different spin) also removed (Rossi and Testa problem)