CP Violation and Beyond the Standard Model（2）

Matter－anti－Matter－Asymmetry

Wai－Yee Keung（姜偉宜）

University of Illinois at Chicago

Two phases

$\operatorname{Prob}(P \rightarrow Q)=\left(\cdots A_{j}^{*} \cdots\right)\left(\begin{array}{c}\vdots \\ \vdots \\ g_{j}^{*} \\ \vdots\end{array}\right)\left(\cdots g_{i} \cdots\right)\left(\begin{array}{c}\vdots \\ \vdots \\ A_{i} \\ \vdots\end{array}\right)$
$\operatorname{Prob}(P \rightarrow Q)=g_{i} g_{j}^{*} A_{i} A_{j}^{*}$

$$
\left|g_{1} A_{1}\right|=\left|g_{1}^{*} A_{1}\right|
$$

$$
\operatorname{Prob}(\bar{P} \rightarrow \bar{Q})=g_{i}^{*} g_{j} A_{i} A_{j}^{*}
$$

－One complex g not enough for CP $\quad \operatorname{diff}=-2 \operatorname{Im}\left(g_{i} g_{j}^{*}\right) \operatorname{Im}\left(A_{i} A_{j}^{*}\right)$

2 HDM and Beyond

$$
\mathcal{L}=-\left(\sqrt{2} G_{F}\right)^{\frac{1}{2}} \bar{\epsilon}\left(A \frac{1-\gamma_{S}}{2}+A^{*} \frac{1+\gamma_{5}}{2}\right) t H^{0}
$$

phase cannot be rotated away because of the mass term m $m t$ ．

$$
\sigma\left(t_{L} \bar{I}_{L}\right) \stackrel{?}{=} \sigma\left(t_{R} \bar{x}_{R}\right)
$$

$A_{m p}\left(H^{0} \rightarrow t_{L} \bar{t}_{L}\right) \sim A_{R} \beta+i A_{I}$
$\operatorname{Amp}\left(H^{0} \rightarrow t_{R} \bar{t}_{R}\right) \sim A_{R} \beta-i A_{I}$

$$
\begin{array}{cc}
A_{m p}\left(t_{L} \bar{E}_{L}\right) \sim A_{R} \beta & +i A_{I}(1+i a) \\
A_{m p}\left(t_{R} \bar{t}_{R}\right) \sim A_{R} \beta & -i A_{I}(1+i a) \\
P\left(t_{L} \bar{t}_{L}\right)-P\left(t_{R} \bar{t}_{R}\right) \sim 4 a A_{I} A_{R} \beta
\end{array}
$$

$$
\begin{aligned}
& t \rightarrow b \bar{e} \nu \\
& \frac{d N}{d \cos \psi}=1+\cos \psi
\end{aligned}
$$

when t is moving

In parallel，
\bar{e} has higher energy profile from t_{R} than t_{L} ．
e has higher energy profile from \bar{t}_{L} than \bar{t}_{R} ．

If $t_{L} \bar{t}_{L}$ and $t_{R} \bar{t}_{R}$ are produced equally，difference is even out．But $N\left(t_{L} \bar{t}_{L}\right) \neq N\left(t_{R} \bar{t}_{R}\right)$ ；
\Rightarrow Asymmetry in the energy of the secondary leptons．

rL, 16305, 261 (43)

Angular correlation in Z^{\prime} to ZZ

FIG．1：Two decay planes of $Z_{1} \rightarrow \ell_{1} \bar{\ell}_{1}$ and $Z_{2} \rightarrow \ell_{2} \bar{\ell}_{2}$ define the azimuthal angle $\phi \in[0,2 \pi]$ which rotates ℓ_{2} to ℓ_{1} in the transverse view．The polar angles θ_{1} and θ_{2} shown are defined in the rest frame of Z_{1} and Z_{2} ，respectively．

$$
O_{C P V}=f_{4} Z_{\mu}^{\prime}\left(\partial_{\nu} Z^{\mu}\right) Z^{\nu}, O_{A}=f_{5} \epsilon^{\mu \nu \rho \sigma} Z_{\mu}^{\prime} Z_{\nu}\left(\partial_{\rho} Z_{\sigma}\right)
$$

Amplitudes $Z^{\prime}\left(q_{1}+q_{2}, \mu\right) \rightarrow Z\left(q_{1}, \alpha\right) Z\left(q_{2}, \beta\right)$

$$
\Gamma_{Z^{\prime} \rightarrow Z_{1} Z_{2}}^{\mu \alpha \beta}=i f_{4}\left(q_{2}^{\alpha} g^{\mu \beta}+q_{1}^{\beta} g^{\mu \alpha}\right)+i f_{5} \epsilon^{\mu \alpha \beta \rho}\left(q_{1}-q_{2}\right)_{\rho} .
$$

$$
\begin{array}{cc}
\mathcal{M}_{+,+0}=-\mathcal{M}_{-, 0+}=R\left(-f_{5} \beta+i f_{4}\right) & \beta^{2}=1-4 m_{Z}^{2} / m_{Z^{\prime}}^{2} \\
\mathcal{M}_{+, 0-}=-\mathcal{M}_{-,-0}=R\left(-f_{5} \beta-i f_{4}\right) & R=\frac{\beta m_{Z^{\prime}}^{2}}{2 m_{Z}} \\
\sum_{\kappa, h_{1}, h_{2}}\left|\sum_{\lambda_{1}, \lambda_{2}} \mathcal{M}_{\kappa, \lambda_{1} \lambda_{2}} g_{h_{1}} f_{\lambda_{1}}^{h_{1}}\left(\theta_{1}, \phi\right) g_{h_{2}} f_{\lambda_{2}}^{h_{2}}\left(\theta_{2}, 0\right)\right|^{2} & e^{2 i \delta}=\frac{-f_{5} \beta+i f_{4}}{-f_{5} \beta-i f_{4}} \\
f_{m}^{h}(\bar{\theta}, \bar{\phi})=(1+m h \cos \bar{\theta}) \frac{e^{i m \bar{\phi}}}{2}, f_{0}^{h}(\bar{\theta}, \bar{\phi})=\frac{h}{\sqrt{2}} \sin \bar{\theta}
\end{array}
$$

Universal Angular dependence

$$
\frac{8 \pi d N}{N d \cos \theta_{1} d \cos \theta_{2} d \phi}=\frac{9}{8}\left[1-\cos ^{2} \theta_{1} \cos ^{2} \theta_{2}\right.
$$

$-\cos \theta_{1} \cos \theta_{2} \sin \theta_{2} \sin \theta_{1} \cos (\phi+2 \delta)$

$$
\left.+\frac{\left(g_{L}^{2}-g_{R}^{2}\right)^{2}}{\left(g_{L}^{2}+g_{R}^{2}\right)^{2}} \sin \theta_{1} \sin \theta_{2} \cos (\phi+2 \delta)\right]
$$

Amp．Squared sum

$$
\begin{aligned}
& \mathcal{M}[+\rightarrow(+, 0) \text { or }(0,-)]_{R R}=+g_{R}^{2}\left[(1+\cos \theta) e^{i \phi} \sin \theta^{\prime}+\left(1-\cos \theta^{\prime}\right) \sin \theta\right] \\
& \mathcal{M}[+\rightarrow(+, 0) \text { or }(0,-)]_{L L}=-g_{L}^{2}\left[(1-\cos \theta) e^{i \phi} \sin \theta^{\prime}+\left(1+\cos \theta^{\prime}\right) \sin \theta\right] \\
& \mathcal{M}[-\rightarrow(-, 0) \text { or }(0,+)]_{R R}=+g_{R}^{2}\left[(1-\cos \theta) e^{-i \phi} \sin \theta^{\prime}+\left(1+\cos \theta^{\prime}\right) \sin \theta\right] \\
& \mathcal{M}[-\rightarrow(-, 0) \text { or }(0,+)]_{L L}=-g_{L}^{2}\left[(1+\cos \theta) e^{-i \phi} \sin \theta^{\prime}+\left(1-\cos \theta^{\prime}\right) \sin \theta\right] \\
& \mathcal{M}[+\rightarrow(+, 0) \text { or }(0,-)]_{R L}=-g_{R} g_{L}\left[(1+\cos \theta) e^{i \phi} \sin \theta^{\prime}-\sin \theta\left(1+\cos \theta^{\prime}\right)\right] \\
& \mathcal{M}[+\rightarrow(+, 0) \text { or }(0,-)]_{L R}=+g_{L} g_{R}\left[(1-\cos \theta) e^{i \phi} \sin \theta^{\prime}-\sin \theta\left(1-\cos \theta^{\prime}\right)\right] \\
& \mathcal{M}[-\rightarrow(-, 0) \text { or }(0,+)]_{R L}=-g_{R} g_{L}\left[(1-\cos \theta) e^{-i \phi} \sin \theta^{\prime}-\sin \theta\left(1-\cos \theta^{\prime}\right)\right] \\
& \mathcal{M}[-\rightarrow(-, 0) \text { or }(0,+)]_{L R}=+g_{L} g_{R}\left[(1+\cos \theta) e^{-i \phi} \sin \theta^{\prime}-\sin \theta\left(1+\cos \theta^{\prime}\right)\right]
\end{aligned}
$$

$4\left(g_{L}^{2}+g_{R}^{2}\right)^{2}\left[1-\cos ^{2} \theta \cos ^{2} \theta^{\prime}-\cos \theta \cos \theta^{\prime} \sin \theta^{\prime} \sin \theta \cos \phi\right]+4\left(g_{L}^{2}-g_{R}^{2}\right)^{2} \sin \theta \sin \theta^{\prime} \cos \phi$

Ang．Integrated Oscillation

$$
\begin{array}{r}
\frac{2 \pi d N_{ \pm}}{N d \phi}=\frac{1}{2}\left[1 \mp \frac{1}{8} \cos (\phi+2 \delta)+\frac{9 \pi^{2}}{128} \frac{\left(g_{L}^{2}-g_{R}^{2}\right)^{2}}{\left(g_{L}^{2}+g_{R}^{2}\right)^{2}} \cos (\phi+2 \delta)\right] \\
\frac{\left(g_{L}^{2}-g_{R}^{2}\right)^{2}}{\left(g_{L}^{2}+g_{R}^{2}\right)^{2}} \rightarrow \frac{\left(g_{L}^{2}-g_{R}^{2}\right)\left(g_{L}^{\prime 2}-g_{R}^{\prime 2}\right)}{\left(g_{L}^{2}+g_{R}^{2}\right)\left(g_{L}^{\prime 2}+g_{R}^{\prime 2}\right)}
\end{array}
$$

SM $Z Z$ background 79 fb
For $100 \mathrm{fb}^{-1}$ luminosity at the LHC ，if we require the ratio of the signal S to the statistical error in the background $\sqrt{ } B$ to be 5 we need a $\sigma(Z Z)$ about 70 fb for a $240 \mathrm{GeV} \mathrm{Z}^{\prime}$ ．

In the Littlest Higgs Model with T－parity，the predicted total cross section for T－odd particles，will be 1.3 pb ．

Models of CP violation

$$
\theta=\theta_{0}-\operatorname{Arg}\left[\operatorname{Det}\left(\mathcal{M}_{u} \mathcal{M}_{d}\right)\right]
$$

－Extreme fine tune at tree
－finite start at 3－loop
－infinite at 7－loop

Simple Charged Higgs Model of Soft or Spontaneous CP Violation without Flavor Changing Neutral Currents

David Bowser－Chao，${ }^{1}$ Darwin Chang，${ }^{2,3}$ and Wai－Yee Keung ${ }^{1}$

$\mathrm{H}-\mathrm{CP}$

Simple Charged Higgs Model of Soft or Spontaneous CP Violation without Flavor Changing Neutral Currents

David Bowser－Chao，${ }^{1}$ Darwin Chang，${ }^{2,3}$ and Wai－Yee Keung ${ }^{1}$

$$
\mathcal{L}_{h_{i}}=\left[\left(g \lambda_{i \alpha} \bar{Q}_{L} d_{i R} h_{\alpha}+M_{Q} \bar{Q}_{L} Q_{R}\right)+\text { h.c. }\right]-\left(m^{2}\right)_{\alpha \beta} h_{\alpha}^{\dagger} h_{\beta}-\kappa_{\alpha \beta}\left(\phi^{\dagger} \phi-|\langle\phi\rangle|^{2}\right) h_{\alpha}^{\dagger} h_{\beta}
$$

$$
\operatorname{Im}\left(m^{2}\right)_{12} \quad h_{\alpha}=U_{\alpha i} H_{i} \quad \mathcal{L}_{Q q H}=g \sum_{q=d, s, b} \xi_{q j}\left(\bar{Q}_{L} q_{R}\right) H_{j}^{-}+\text {h.c. }
$$

$$
\xi_{q j} \equiv \lambda_{q \alpha} U_{\alpha j} .
$$

H．Georgi and S．Glashow S．Barr and A．Zee

ε And box

$\mathcal{H}^{\Delta S=2}=\frac{G_{F}^{2} m_{W}^{2}}{16 \pi^{2}} \sum_{I=R, L} C_{\Delta S=2}^{I}(\mu) O_{\Delta S=2}^{I}(\mu)$,
with

$$
O_{\Delta S=2}^{R, L}=\bar{s} \gamma_{\mu}\left(1 \pm \gamma_{5}\right) d \bar{s} \gamma^{\mu}\left(1 \pm \gamma_{5}\right) d
$$ The $W^{ \pm}$diagrams yield a purely real Wilson coefficient $C_{\Delta S=2}^{L}(\mu)$ ；CP violation is due solely to the operator $O_{\Delta S=2}^{R}$ rather than $O_{\Delta S=2}^{L}$ ，in contrast to the KM model， because the complex coefficient $C_{\Delta S=2}^{R}(\mu)$ is generated by the charged Higgs．At the scale $\mu=M_{Q}$ ，we have

$$
C_{\Delta S=2}^{R}\left(M_{Q}\right)=2 \xi_{d 1} \xi_{s 1}^{*} \xi_{d 2} \xi_{s 2}^{*} \frac{m_{W}^{2}}{M_{Q}^{2}} \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

with $f(h)=(1-h)^{-2}\left(1+2 h+h^{2}+h^{2} \ln h\right)$ ．

$$
+\sum_{i=1,2}\left(\xi_{d i} \xi_{s i}^{*}\right)^{2} \frac{m_{W}^{2}}{M_{Q}^{2}} \frac{d f}{d x}\left(x_{i}\right)
$$

$$
\mathcal{A}_{i j}^{q q^{\prime}}=\lambda_{q \alpha} \lambda_{q^{\prime} \beta} U_{\beta i} U_{\alpha j}^{*}=\xi_{q i}^{*} \xi_{q^{\prime} j}
$$

$$
R_{Q}=300 \mathrm{GeV} / M_{Q}
$$

$$
\operatorname{Im}\left(\mathcal{A}_{s d} /(0.058)^{2}\right)^{2} R_{Q}^{2}=1
$$

$$
\operatorname{Re}\left(\mathcal{A}_{s d} /(0.058)^{2}\right)^{2} R_{Q}^{2}=156 \mathcal{F}
$$

$$
\mathcal{H}^{\Delta S=1}=\left(G_{F} / \sqrt{2}\right) \tilde{C}\left(\bar{s} T^{a} \gamma_{\mu}\left(1+\gamma_{5}\right) d\right) \times \sum_{q}\left(\bar{q} T^{a} \gamma^{\mu} q\right)
$$

At the electroweak scale，the Wilson coefficient is

$$
\begin{gathered}
\tilde{C}=-\alpha_{s} \sum_{i} \frac{\xi_{d i} \xi_{s i}^{*}}{6 \pi} \frac{m_{W}^{2}}{M_{Q}^{2}} F\left(\frac{m_{H_{i}}}{M_{Q}^{2}}\right), \\
F(h)=\left[\frac{(2 h-3) h^{2} \ln h}{(1-h)^{4}}+\frac{7-29 h+16 h^{2}}{6(1-h)^{3}}\right]
\end{gathered}
$$

$$
\begin{gathered}
\epsilon^{\prime} / \epsilon=-1.9 \times 10^{-5} \operatorname{Im}\left(\mathcal{A}_{s d} /(0.058)^{2}\right) R_{Q}^{2} \\
= \pm 1.9 \times 10^{-5}\left(\sqrt{(156 \mathcal{F})^{2}+1}-156 \mathcal{F}\right)^{\frac{1}{2}} R_{Q} / \sqrt{2}
\end{gathered}
$$

Therefore the present experimental value of $\epsilon^{\prime} / \epsilon$ does not favor the above sim－ plified scenario of lightest－Higgs－dominance（ $m_{2} \gg m_{1}$ ）．On the other hand，if we let the two charged Higgs $H_{1,2}^{ \pm}$have comparable but not degenerate masses， it is possible that the three amplitudes in Eq．（9）cancel each other（even com－ pletely）for certain large complex couplings $\xi_{s i}$ and $\xi_{d i}(\gg 0.058)$ ．If such modest fine tuning of parameters is allowed，one can easily boost up the value of $\epsilon^{\prime} / \epsilon$ to the recently measured value as will be discussed in more details elsewhere ${ }^{8}$ ．

May 15， 2015
Keung，姜偉宜（UIC）at PPP 11

B Physics

$$
|1-\rho-i \eta|=1.01 \pm 0.21
$$

$B_{d}^{0}-\bar{B}_{d}^{0}$ oscillation $\quad\left|(1-\rho)^{2}+C_{R R}^{R H} / C_{L L}^{S M}\right|=(1.01 \pm 0.21)^{2}$
$\left|V_{u b} / V_{c b}\right|$ constraint $\rho^{2}+\eta^{2}=(0.41 \pm 0.07)^{2}$

$$
\rho= \pm(0.41 \pm 0.07)
$$

$$
\begin{gathered}
\mid(1-0.41 \pm 0.07)^{2} \\
C_{R R}^{R H} \simeq C_{L L}^{S M}
\end{gathered}
$$

when

$$
\mathcal{A}_{b d}=0.3^{2}
$$

May 15， 2015 Keung，姜偉宜（UIC）at PPP 11

CKM－like and 2－loop θ

$S U_{L}(2)$ singlets vector－like $U_{L i}, U_{R i}, D_{L i}, D_{R i}$ in an analogous fashion with the known quarks，$q_{L i} \equiv\binom{u_{L i}}{d_{L i}}, u_{R i}, d_{R i}$ A horizontal flavor symmetry $S O(3)_{\|}$

$$
\begin{aligned}
& \bar{d}_{R}\left(\mu_{d}+g_{d S} \phi_{S}+i g_{d A} \phi_{A}\right) D_{L}+\bar{D}_{R}\left(\mu_{D}+g_{D S} \phi_{S}+i g_{D A} \phi_{A}\right) D_{L} \\
& +\bar{u}_{R}\left(\mu_{u}+g_{u S} \phi_{S}+i g_{u A} \phi_{A}\right) U_{L}+\bar{U}_{R}\left(\mu_{U}+g_{U S} \phi_{S}+i g_{U A} \phi_{A}\right) U_{L} \\
& \quad+\left(h_{d} \bar{d}_{R}+h_{d}^{\prime} \bar{D}_{R}\right) H^{\dagger} q_{L}+\left(h_{u} \bar{u}_{R}+h_{u}^{\prime} \bar{U}_{R}\right) \tilde{H}^{\dagger} q_{L}+\text { H.c. }
\end{aligned}
$$

$M_{6}=\left(\begin{array}{cc}0 & \mu_{d}+g_{d S}\left\langle\phi_{S}\right\rangle+i g_{d A}\left\langle\phi_{A}\right\rangle \\ h_{d}^{\prime}\left\langle H^{\dagger}\right\rangle \mathbf{1} & \mu_{D}+g_{D S}\left\langle\phi_{S}\right\rangle+i g_{D A}\left\langle\phi_{A}\right\rangle\end{array}\right)$

Mixing

In the limit of $\langle H\rangle=0, d_{L}$ quarks decouple
the reduced mass matrix of a size 6×3 find a 6×6 unitary matrix V

$$
\left(\begin{array}{ll}
\bar{d}_{R} & \bar{D}_{R}
\end{array}\right)\binom{M_{d}}{M_{D}}\left(D_{L}\right), \quad V\binom{M_{d}}{M_{D}}=\binom{0}{M_{D}^{\prime}}
$$

top three row vectors of $V \perp$ the 3 column vectors in the mass matrix．

$$
\left(\bar{d}_{R}^{\prime} \bar{D}_{R}^{\prime}\right) V\binom{\mathbf{0}}{h_{d}^{\prime}\left\langle H^{\dagger}\right\rangle \mathbf{1}} d_{L}=\binom{\bar{d}_{R}^{\prime}}{\left.\bar{D}_{R}^{\prime}\right)}\binom{\hat{m}_{d}}{\hat{m}_{d}^{\prime}} d_{L}
$$

Including D_{L}^{\prime} ，we have

$$
\left(\bar{d}_{R}^{\prime} \bar{D}_{R}^{\prime}\right)\left(\begin{array}{cc}
\hat{m}_{d} & 0 \\
\hat{m}_{d}^{\prime} & M_{D}^{\prime}
\end{array}\right)\binom{d_{L}}{D_{L}^{\prime}} .
$$

Loop，hermiticity

$$
\begin{aligned}
& i \bar{D}_{L}\left(f_{S A} \phi_{S} \phi_{A}+f_{A S} \phi_{A} \phi_{S}\right) d_{R} \\
& -i \bar{d}_{R}\left(f_{A S}^{*} \phi_{S} \phi_{A}+f_{S A}^{*} \phi_{A} \phi_{S}\right) D_{L}
\end{aligned}
$$

$$
\phi_{S} \rightarrow \phi_{S}, \quad \phi_{A} \rightarrow-\phi_{A}, \quad \bar{D}_{L}(\cdots) d_{R} \rightarrow \bar{d}_{R}(\cdots) D_{L}
$$

This require $f_{S A}=f_{A S}^{*}$ ．

$$
i\left(f_{S A}\left\langle\phi_{S}\right\rangle\left\langle\phi_{A}\right\rangle+f_{A S}\left\langle\phi_{A}\right\rangle\left\langle\phi_{S}\right\rangle\right) \quad \text { remains hermitian. }
$$

If we impose a discrete symmetry under which u, d and all $\phi_{A, S}, H$ fields are odd，while U and D are even，we have

$$
h_{d}=0, \quad g_{D S}=0, \quad g_{D A}=0 .
$$

$$
M_{6}=\left(\begin{array}{cc}
\mathbf{0} & \mu_{d}+g_{d S}\left\langle\phi_{S}\right\rangle+i g_{d A}\left\langle\phi_{A}\right\rangle \\
h_{d}^{\prime}\left\langle H^{\dagger}\right\rangle \mathbf{1} & \mu_{D} \mathbf{1}
\end{array}\right)
$$

$\left|\begin{array}{ll}\mathrm{C} & \mathbf{A} \\ \mathrm{D} & \mathbf{B}\end{array}\right|=|\mathbf{C B}-\mathrm{DA}|$ ，provided $\mathrm{CD}=\mathrm{DC}$

Matrix property

$$
\begin{array}{ll}
\mathbf{1} & \boldsymbol{A} \\
\mathbf{1} & \boldsymbol{B}
\end{array}|=|\boldsymbol{B}-\boldsymbol{A}| \neq|\boldsymbol{B}|-|\boldsymbol{A}|
$$

$$
\left|\begin{array}{ll}
c \mathbf{1} & \boldsymbol{A} \\
d \mathbf{1} & \boldsymbol{B}
\end{array}\right|=|c \boldsymbol{B}-d \boldsymbol{A}| \neq|c \boldsymbol{B}|-d|\boldsymbol{A}|
$$

$$
\begin{aligned}
& \left|\begin{array}{ll}
\boldsymbol{C} & \boldsymbol{A} \\
\boldsymbol{D} & \boldsymbol{B}
\end{array}\right|=|\boldsymbol{C B}-\boldsymbol{D} \boldsymbol{A}|, \quad \text { provided } \boldsymbol{C} \text { and } \boldsymbol{D} \text { are diagonal } \\
& \\
& \left|\begin{array}{ll}
\boldsymbol{C} & \boldsymbol{A} \\
\boldsymbol{D} & \boldsymbol{B}
\end{array}\right|=|\boldsymbol{C B}-\boldsymbol{D} \boldsymbol{A}|, \quad \text { provided } \boldsymbol{C D}=\boldsymbol{D} \boldsymbol{C} \\
& \left|\begin{array}{ll}
\boldsymbol{C} & \boldsymbol{A} \\
\boldsymbol{D} & \boldsymbol{B}
\end{array}\right|=\left|\begin{array}{ll}
\boldsymbol{C} & \boldsymbol{A} \\
\boldsymbol{D} & \boldsymbol{B}
\end{array}\right|\left|\begin{array}{cc}
\boldsymbol{1} & -\boldsymbol{C}^{-1} \boldsymbol{A} \\
0 & 1
\end{array}\right|=\left|\begin{array}{cc}
\boldsymbol{C} & \boldsymbol{0} \\
\boldsymbol{D} & \boldsymbol{B}-\boldsymbol{D} \boldsymbol{C}^{-1} \boldsymbol{A}
\end{array}\right|=\left|\boldsymbol{C B}-\boldsymbol{C} \boldsymbol{D}^{-1} \boldsymbol{A}\right|
\end{aligned}
$$

Glashow＇s model on triangular matrix

three Higgs doublets，$H_{(0)}, H_{(1)}$ and $H_{(2)}$

$$
\begin{aligned}
& F\left(H_{(k)}\right)=k, \quad F\left(u_{R}^{(i)}\right)=F\left(d_{R}^{(i)}\right)=F\left(q_{L}^{(i)}\right)=f(i) \\
& f(i) \equiv\left\{\begin{aligned}
+1, & \text { for } i & =1 \\
0, & & i=2 \\
-1, & & i=3
\end{aligned}\right. \\
& \left(\bar{d}_{L} \bar{s}_{L} \bar{b}_{L}\right)\left(\begin{array}{ccc}
y_{d}^{(1,1)} H_{0} & y_{d}^{(1,2)} H_{1} & y_{d}^{(1,3)} H_{2} \\
0 & y_{d}^{(2,2)} H_{0} & y_{d}^{(2,3)} H_{1} \\
0 & 0 & y_{d}^{(3,3)} H_{0}
\end{array}\right)\left(\begin{array}{c}
d_{R} \\
s_{R} \\
b_{R}
\end{array}\right) \\
& +\left(\bar{u}_{L} \bar{c}_{L} \bar{t}_{L}\right)\left(\begin{array}{ccc}
y_{u}^{(1,1)} H_{0}^{*} & 0 & 0 \\
y_{u}^{(1,2)} H_{1}^{*} & y_{u}^{(2,2)} H_{0}^{*} & 0 \\
y_{u}^{(1,3)} H_{2}^{*} & y_{u}^{(2,3)} H_{1}^{*} & y_{u}^{(3,3)} H_{0}^{*}
\end{array}\right)\left(\begin{array}{c}
u_{R} \\
c_{R} \\
t_{R}
\end{array}\right) \\
& \left(\bar{d}_{L}^{(i)}\right)\left(M_{D}\right)_{i j}\left(d_{R}\right)^{(j)}, \quad\left(\bar{u}_{L}^{(i)}\right)\left(M_{U}\right)_{i j}\left(u_{R}\right)^{(j)} \\
& \left(M_{D}\right)=\left(\begin{array}{ccc}
y_{d}^{(1,1)}\left\langle H_{0}\right\rangle & y_{d}^{(1,2)}\left\langle H_{1}\right\rangle & y_{d}^{(1,3)}\left\langle H_{2}\right\rangle \\
0 & y_{d}^{(2,2)}\left\langle H_{0}\right\rangle & y_{d}^{(2,3)}\left\langle H_{1}\right\rangle \\
0 & 0 & y_{d}^{(3,3)}\left\langle H_{0}\right\rangle
\end{array}\right) \quad\left(M_{U}^{(0)}\right)=\left(\begin{array}{ccc}
y_{u}^{(1,1)}\left\langle H_{0}^{*}\right\rangle & 0 & 0 \\
y_{u}^{(1,2)}\left\langle H_{1}^{*}\right\rangle & y_{u}^{(2,2)}\left\langle H_{0}^{*}\right\rangle & 0 \\
y_{u}^{(1,3)}\left\langle H_{2}^{*}\right\rangle & y_{u}^{(2,3)}\left\langle H_{1}^{*}\right\rangle & y_{u}^{(3,3)}\left\langle H_{0}^{*}\right\rangle
\end{array}\right) \\
& \equiv\left(\begin{array}{ccc}
m_{d}^{(0)} & \epsilon_{12} & \epsilon_{13} \\
0 & m_{s}^{(0)} & \epsilon_{23} \\
0 & 0 & m_{b}^{(0)}
\end{array}\right), \\
& \equiv\left(\begin{array}{ccc}
m_{u}^{(0)} & 0 & 0 \\
\epsilon_{21}^{*} & m_{c}^{(0)} & 0 \\
\epsilon_{31}^{*} & \epsilon_{32}^{*} & m_{t}^{(0)}
\end{array}\right),
\end{aligned}
$$

Quark Mixing

$V_{12}=\frac{\epsilon_{12} m_{s}}{m_{s}^{2}-m_{d}^{2}}-\frac{\epsilon_{21}^{*} m_{u}}{m_{c}^{2}-m_{u}^{2}} \approx \frac{\epsilon_{12}}{m_{s}}-\frac{\epsilon_{21}^{*} m_{u}}{m_{c}^{2}}$

$$
\left(\begin{array}{ll}
0 & \left.\left(\begin{array}{cc}
m & \Delta \\
0 & M
\end{array}\right)\right)
\end{array}\right.
$$

$$
\left(\begin{array}{cc}
m & 0 \\
\Delta^{*} & M
\end{array}\right)
$$

$V_{23}=\frac{\epsilon_{23} m_{b}}{m_{b}^{2}-m_{s}^{2}}-\frac{\epsilon_{32}^{*} m_{c}}{m_{c}^{2}-m_{t}^{2}} \approx \frac{\epsilon_{23}}{m_{b}}-\frac{\epsilon_{32}^{*} m_{c}}{m_{t}^{2}}$
$V_{13}=\frac{\epsilon_{13} m_{b}}{m_{h}^{2}-m_{d}^{2}}-\frac{\epsilon_{31}^{*} m_{u}}{m_{t}^{2}-m_{u}^{2}} \approx \frac{\epsilon_{13}}{m_{b}}-\frac{\epsilon_{31}^{*} m_{u}}{m_{t}^{2}}$

It is clear that the down－quark mass matrix provides the dominant contribution to the mixing angles，with $\epsilon_{12} \approx 25 \mathrm{MeV}, \epsilon_{13} \approx 13 \mathrm{MeV}$ and $\epsilon_{23} \approx 150 \mathrm{MeV}$ ．We can choose the convention that $\epsilon_{12}, \epsilon_{23}$ are real，and only ϵ_{13} complex in the way consistent to the Wolfen－ stein（Chau－Keung）parameterization．

Geometric CP

with Chang＋Mohapatra，Phys．Lett．B515 431

The Fermion field in 5－D flat space time is decomposed into

$$
i \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi+\left(\bar{\psi}_{L} \partial_{y} \psi_{R}-\bar{\psi}_{R} \partial_{y} \psi_{L}\right)
$$

ψ_{L} and ψ_{R} have opposite Z_{2}

$$
S_{1} /\left(Z_{2} \times Z_{2}^{\prime}\right)
$$

Fields	$Z_{2} \times Z_{2}^{\prime}$
$q_{L}, u_{R}, d_{R}, \psi_{L}, e_{R}, H_{A}$	$(+,+)$
$q_{R}, u_{L}, d_{L}, \psi_{R}, e_{L}, H_{B}$	$(-,-)$
$Q_{L}, U_{L}, D_{L}, \Psi_{L}, E_{L}$	$(+,-)$
$Q_{R}, U_{R}, D_{R}, \Psi_{R}, E_{R}$	$(-,+)$

CP invariant Yukawa coupling of the quarks in 5 －dim

$\mathcal{L}_{Y}^{\prime}=h_{d} \bar{q} H_{A} d+h_{u} \bar{q} \tilde{H}_{A} u+h_{d}^{*} \bar{Q} H_{B} D+h_{u}^{*} \bar{Q} \tilde{H}_{B} U+$ H．c．

This leads to the familiar CKM Model．

Conclusion

It is like：we already know the answer．We just have to figure out what the question is．

Wolfenstein

