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PPP 11 and Celebration for Hai-Yang Cheng

Thanks to the organizers for the invitation to give a talk at this PPP 11 Workshop,
especially since it celebrates Hai-Yang Cheng.

We in the Yang Institute for Theoretical Physics have certainly benefited from Hai-
Yang’s many visits to Stony Brook.

One joint paper: H.-Y. Cheng and RS, “Some results on vector and tensor meson
mixing in a generalized QCD-like theory”, PRD 84, 094008 (2011).

We certainly look forward to Hai-Yang’s future visits to Stony Brook.



Higher-Loop Corrections to UV → IR Evolution of Gauge
Theories

Consider an asymptotically free, vectorial gauge theory with gauge group G and Nf

massless fermions in representation R of G.

Asymptotic freedom ⇒ theory is weakly coupled, properties are perturbatively
calculable for large Euclidean momentum scale µ in deep ultraviolet (UV).

The question of how this theory flows from large µ in the UV to small µ in the infrared
(IR) is of fundamental field-theoretic interest.

For some fermion contents, the (perturbatively calculated) beta function of the theory
may have an exact or approximate IR fixed point (zero of β).

Notation: g = g(µ); α(µ) = g(µ)2/(4π);
a(µ) = g(µ)2/(16π2) = α(µ)/(4π).



Dependence of α(µ) on µ described by renormalization group (RG) β function

βα ≡
dα

dt
= −2α

∞
∑

ℓ=1

bℓ a
ℓ = −2α

∞
∑

ℓ=1

b̄ℓα
ℓ

where dt = d lnµ, ℓ = loop order of the coeff. bℓ, and b̄ℓ = bℓ/(4π)
ℓ.

Coeffs. b1 and b2 in β are indep. of regularization/renormalization scheme, while bℓ for
ℓ ≥ 3 are scheme-dependent.

Asymptotic freedom means b1 > 0, so β < 0 for small α(µ), in neighborhood of UV
fixed point (UVFP) at α = 0. With b1 = (11CA − 4NfTf)/3, this requires
Nf < Nf,b1z = 11CA/(4Tf).

As the scale µ decreases from large values, α(µ) increases. Denote αcr as minimum
value for formation of bilinear fermion condensates and resultant spontaneous chiral
symmetry breaking (SχSB).



Two generic possibilities for β and resultant UV to IR flow:

• β has no IR zero, so as µ decreases, α(µ) increases beyond the perturbatively
calculable region (as in QCD).

• β has a IR zero, αIR, so as µ decreases, α → αIR; then two possibilities:
αIR < αcr or αIR > αcr.

If αIR < αcr, the zero of β at αIR is an exact IR fixed point (IRFP) of the renorm.
group (RG) as µ → 0 and α → αIR, β → β(αIR) = 0, and the theory becomes
exactly scale-invariant with nontrivial anomalous dimensions (Caswell, Banks-Zaks).

If β has no IR zero, or an IR zero at αIR > αcr, then as µ decreases through a scale
Λ, α(µ) exceeds αcr and SχSB occurs, so fermions gain dynamical masses ∼ Λ.

If SχSB occurs, then in low-energy effective field theory applicable for µ < Λ, one
integrates these fermions out, and β fn. becomes that of a pure gauge theory, with no
IR zero. Hence, if β has a zero at αIR > αcr, this is only an approx. IRFP of RG.



If αIR is only slightly greater than αcr, then, as α(µ) approaches αIR,
β = dα/dt → 0, so α(µ) runs very slowly as a function of the scale µ, i.e., there is
approximately scale-invariant (= dilatation-invariant, walking) behavior.

SχSB at Λ also breaks the approx. dilatation symmetry, leads to a resultant approx.
NGB, the dilaton (Yamawaki et al., 1986; Bardeen et al..). This is not massless, since
β is nonzero at α = αcr where SχSB occurs.

Denote the n-loop β fn. as βnℓ and the IR zero of βnℓ as αIR,nℓ. At the n = 2 loop
level,

αIR,2ℓ = −
4πb1

b2

which is physical for b2 < 0; this condition is met in the interval

I : Nf,b2z < Nf < Nf,b1z

where

Nf,b2z =
34C2

A

4Tf(5CA + 3Cf)



Take G = SU(Nc); e.g., with fermions in fund. rep.

• for SU(2), I: 5.55 < Nf < 11;

• for SU(3), I: 8.05 < Nf < 16.5;

• As Nc → ∞ with r = Nf/Nc fixed, I: 2.62 < r < 5.5.

Denote Nf = Nf,cr where αIR = αcr; Nf,cr separates chirally symmetric IR phase
at larger Nf and chirally broken IR phase at smaller Nf .

As Nf decreases and αIR increases toward αcr ∼ O(1), theory becomes moderately
strongly coupled, motivating higher-loop calculations of αIR, and γm evaluated at
αIR, where γm is anomalous dimension for ψ̄ψ (early work by Gardi, Grunberg,
Karliner).

Calculations up to 4-loop level for general fermion rep. R in Ryttov and RS, PRD83,
056011 (2011) [arXiv:1011.4542] and Pica and Sannino, PRD83, 035013 (2011)
[arXiv:1011.5917]. These use calculations of b3 and b4 by Vermaseren, Larin, and van
Ritbergen in MS scheme.

Further studies in RS, PRD 87, 105005 (2013) [arXiv:1301.3209]; RS, PRD 87, 116007
(2013) [arXiv:1302.5434] and on effects of scheme transformations (discussed below).
Analytic results in papers; examples of numerical results:



Numerical values of αIR,nℓ at the n = 2, 3, 4 loop level for SU(2), SU(3) and
fermions in fundamental representation:

Nc Nf αIR,2ℓ αIR,3ℓ αIR,4ℓ
2 6 11.42 1.645 2.395
2 7 2.83 1.05 1.21
2 8 1.26 0.688 0.760
2 9 0.595 0.418 0.444
2 10 0.231 0.196 0.200

3 10 2.21 0.764 0.815
3 11 1.23 0.578 0.626
3 12 0.754 0.435 0.470
3 13 0.468 0.317 0.337
3 14 0.278 0.215 0.224
3 15 0.143 0.123 0.126
3 16 0.0416 0.0397 0.0398

(Perturbative calculation not applicable if αIR,nℓ too large.)



Some general features of these results:

• Value of IR zero of β, αIR,nℓ, decreases substantially going from n = 2 loop order
to n = 3 loop order (generalizes beyond MS scheme).

• Value of αIR,nℓ increases slightly going from 3-loop to 4-loop order, but the
fractional change is smaller, so

• 4-loop value, αIR,4ℓ, is smaller than 2-loop value, αIR,2ℓ.

• Hence, with Nf,cr determined by αIR = αcr and αIR,nℓ increasing with
decreasing Nf , these higher-loop results suggest that Nf,cr may be smaller than
the early estimate Nf,cr ≃ 4Nc in agreement with many lattice results.

• The smaller fractional change in value of IR zero of β at higher-loop order agrees
with expectation that calculation to higher-loop order should give more stable result
if perturbation theory is reliable.
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Figure 1: βnℓ for SU(3), Nf = 12, at n = 2, 3, 4 loops. From bottom to top, curves are β2ℓ, β4ℓ, β3ℓ.



An important quantity is the anomalous dimension γm ≡ γ for the fermion bilinear
ψ̄ψ. As with the IR zero of βnℓ, it is useful to calculate this to higher-loop order.

Series expansion for γm:

γ =
∞
∑

ℓ=1

cℓa
ℓ =

∞
∑

ℓ=1

c̄ℓα
ℓ

where c̄ℓ = cℓ/(4π)
ℓ is the ℓ-loop coefficient.

The 1-loop coeff. c1 is scheme-independent; the cℓ with ℓ ≥ 2 are scheme-dependent
and have been calculated up to 4-loop level in MS scheme (Vermaseren, Larin, and van
Ritbergen): c1 = 6Cf , etc. for higher-loop coeffs.

Denote γ calculated to n-loop (nℓ) level as γnℓ and, evaluated at the n-loop value of
the IR zero of β, as

γIR,nℓ ≡ γnℓ(α = αIR,nℓ)



In the IR chirally symmetric phase, an all-order calculation of γ evaluated at an
all-order calculation of αIR would be an exact property of the theory.

In the chirally broken phase, just as the IR zero of β is only an approx. IRFP, so also,
the γ is only approx., describing the running of ψ̄ψ and the dynamically generated
running fermion mass near the zero of β having large-momentum (large k) behavior

Σ(k) ∼ Λ

(

Λ

k

)2−γ

(γ bounded above as γ < 2 in general). Analytic results given in our papers; numerical
results:



Illustrative numerical values of γIR,nℓ for SU(2) and SU(3) at the n = 2, 3, 4 loop
level and fermions in the fundamental representation with Nf ∈ I:

Nc Nf γIR,2ℓ γIR,3ℓ γIR,4ℓ
2 7 (2.67) 0.457 0.0325
2 8 0.752 0.272 0.204
2 9 0.275 0.161 0.157
2 10 0.0910 0.0738 0.0748

3 10 (4.19) 0.647 0.156
3 11 1.61 0.439 0.250
3 12 0.773 0.312 0.253
3 13 0.404 0.220 0.210
3 14 0.212 0.146 0.147
3 15 0.0997 0.0826 0.0836
3 16 0.0272 0.0258 0.0259

Plot of γ as function of Nf for SU(3):



Figure 2: n-loop anomalous dimension γIR,nℓ at αIR,nℓ for SU(3) with Nf fermions in fund. rep: (i) blue:

γIR,2ℓ; (ii) red: γIR,3ℓ; (iii) brown: γIR,4ℓ.



We find that the 3-loop and 4-loop results are closer to each other for a larger range of
Nf than the 2-loop and 3-loop results.

So our higher-loop calcs. of αIR,nℓ and γIR,nℓ allow us to probe the theory reliably
down to smaller values of Nf and thus stronger couplings.

Comparison with Lattice Measurements:

One of the most heavily studied cases on the lattice is for the gauge group SU(3) with
Nf = 12 fermions in the fundamental representation.

For this theory, Appelquist et al. (LSD); Deuzeman, Lombardo, and Pallante;
Hasenfratz et al.; DeGrand et al.; Aoki et al. (LatKMI) find that the IR behavior is
chirally symmetric (Jin and Mawhinney, and Kuti et al. found it is chirally broken).



For this SU(3) theory with Nf = 12, we get

γIR,2ℓ = 0.77, γIR,3ℓ = 0.31, γIR,4ℓ = 0.25

some lattice results (error estimates do not include all systematic uncertainties):

γ = 0.414 ± 0.016 (Appelquist et al. (LSD Collab.), PRD 84, 054501 (2011).

γ ∼ 0.35 (DeGrand, PRD 84, 116901 (2011).

0.2 <∼ γ <∼ 0.4 (Kuti et al. (method-dep.) arXiv:1205.1878, arXiv:1211.3548,
1211.6164, PTP, finding SχSB).

γ ≃ 0.4 (Y. Aoki, T. Aoyama, M. Kurachi, T. Maskawa, K.-I. Nagai, H. Ohki, A.
Shibata, K. Yamawaki, and T.Yamazaki (LatKMI Collab.) PRD 86, 054506 (2012)
[arXiv:1207.3060]);

γ = 0.27(3) (Hasenfratz et al., arXiv:1207.7162; γ ≃ 0.25; Hasenfratz et al.,
arXiv:1310.1124).

γ = 0.235(46) (Lombardo, Miura, Nunes, Pallante (LMNP), arXiv:1410.0298).

So 2-loop value is larger than, and the 3-loop and 4-loop values closer to, lattice data.

Thus, our higher-loop calculations of γ yield better agreement with these lattice
measurements than two-loop calculations.



The LatKMI value is consistent with the LMNP value; different types of data analysis
accounts for different values (explained by LatKMI group).

Schwinger-Dyson estimates suggest γ could be ≃ 1 in walking regime with SχSB
(Yamawaki et al., Appelquist et al..,Holdom; Cohen-Georgi..). In technicolor theories,
γ ∼ 1 enhances SM fermion mass generation.

Lattice studies of SU(3) with Nf = 8 report γ ∼ 1 and hence are consistent with
this: Y. Aoki et al. (LatKMI), PRD 87, 094511 (2013) [arXiv:1302.6859]; and Y. Aoki,
T. Aoyama, M. Kurachi, T. Maskawa, K. Miura, K.-I. Nagai, H. Ohki, Rinaldi, A.
Shibata, K. Yamawaki, and T.Yamazaki (LatKMI), PRD 89, 111502 (2014)
[arXiv:1403.5000]; Appelquist et al. (LSD) PRD 90, 114502 (2014) [arXiv:1405.4752].

The IR behavior for SU(3) with Nf = 8 involves too strong a coupling for our
perturbative calculations to be applied.

As with our results for αIR,nℓ the decrease that we find in γIR,nℓ at higher loop order
n, combined with the expectation that γIR ∼ 1 for Nf = Nf,cr suggests that Nf,cr

may be smaller than the early estimate Nf,cr ≃ 4Nc, again in agreement with many
lattice results.



We find same trend for supersymmetric vectorial SU(Nc) gauge theory with chiral
superfields in fund. rep. (SQCD), where Nf,cr = (3/2)Nc is known, i.e., reductions
in αIR,nℓ and γIR,nℓ at higher-loop order (Ryttov and RS, PRD85, 076009 (2012)
[arXiv:1202.1297]).

Also useful to study theories with fermions in higher-dimensional reps. of gauge group
(Sannino...).

e.g. SU(3) with Nf = 2 fermions in symmetric rank-2 tensor rep. (sextet rep.); here
we calculate γIR,3ℓ = 1.28 and γIR,4ℓ = 1.12.

These values are consistent with γIR ∼ 1.5 obtained from lattice study by Kuti group,
arXiv:1205.1878; update with scalar mass: arXiv:1502.00028 finding SχSB for this
theory.

N.B.: γIR <∼ 0.5 obtained for this theory by Degrand, Shamir, Svetitsky, PRD88,
054505 (2013) [arXiv:1307.2425], finding χ sym.



Interesting property: for R = fund. rep., αIR,nℓNc and γIR,nℓ are similar in theories
with different values of Nc and Nf if they have equal or similar values of r = Nf/Nc.

This motivates a study of the UV to IR evolution of an SU(Nc) gauge theory with Nf

fermions in the fundamental rep. in the ’t Hooft-Veneziano (HV) limit Nc → ∞,
Nf → ∞ with

r ≡
Nf

Nc

and α(µ)Nc ≡ ξ(µ) finite

(RS, Phys. Rev. D87, 116007 (2013) [arXiv:1302.5434]).

Define a rescaled beta function that is finite in the this limit:

βξ ≡
dξ

dt
= lim

HV
βαNc

Interval of r where βξ,2ℓ has an IR zero is

Ir :
34

13
< r <

11

2
, i.e., 2.615 < r < 5.500



2-loop IR zero of βξ,2ℓ is at

ξIR,2ℓ =
4π(11 − 2r)

13r − 34

Value of n-loop γ evaluated at n-loop ξIR,nℓ: γIR,nℓ ≡ γnℓ
∣

∣

ξ=ξIR,nℓ
;

γ
IR,2ℓ

=
(11 − 2r)(1009 − 158r + 40r2)

12(13r − 34)2

We find that corrections to the HV limiting forms go like 1/N 2
c and hence this limit is

approached rather rapidly as Nc and Nf increase. For example,

αIR,2ℓNc =
4π(11 − 2r)

13r − 34
+

12πr(11 − 2r)

(34 − 13r)2N 2
c

+ O
( 1

N 4
c

)

γ
IR,2ℓ

=
(11 − 2r)(1009 − 158r + 40r2)

12(13r − 34)2

+
(11 − 2r)(18836 − 5331r + 648r2 − 140r3)

(13r − 34)3N 2
c

+ O
( 1

N 4
c

)



Results for γIR,nℓ up to 4-loop level in this limit:

r γ
IR,2ℓ

γ
IR,3ℓ

γ
IR,4ℓ

3.6 1.853 0.5201 0.3083
3.8 1.178 0.4197 0.3061
4.0 0.7847 0.3414 0.2877
4.2 0.5366 0.2771 0.2664
4.4 0.3707 0.2221 0.2173
4.6 0.2543 0.1735 0.1745
4.8 0.1696 0.1294 0.1313
5.0 0.1057 0.08886 0.08999
5.2 0.05620 0.05123 0.05156
5.4 0.01682 0.01637 0.01638

These results provide an understanding of similarities in αIR,nℓ and γIR,nℓ in theories
having different values of Nc and Nf with similar or identical values of r.



Study of Scheme Dependence in Calculation of IR Fixed
Point

Since coeffs. bn in βnℓ, and hence also αIR,nℓ, are scheme-dependent for n ≥ 3, it is
important to assess the effects of this scheme dependence (RS, PRD 88, 036003 (2013)
[arXiv:1305.6524]; RS, PRD 90, 045011 (2014) [arXiv:1405.6244]; Choi and RS, PRD
90, 125029 (2014) [arXiv:1411.6645]; Ryttov and RS, PRD 86, 065032 (2012)
[arXiv:1206.2366] and PRD 86, 085005 (2012) [arXiv:1206.6895]).

A scheme transformation (ST) is a map between α and α′ or equivalently, a and a′,
where a = α/(4π) of the form

a = a′f(a′)

with f(0) = 1 since ST has no effect in limit of zero coupling.

f(a′) = 1 +

smax
∑

s=1

ks(a
′)s = 1 +

smax
∑

s=1

k̄s(α
′)s

where k̄s = ks/(4π)
s, and smax may be finite or infinite.

The Jacobian J = da/da′ = dα/dα′ = 1 +
∑smax

s=1 (s+ 1)ks(a
′)s, satisfying

J = 1 at a = a′ = 0.



After the scheme transformation is applied, the beta function in the new scheme is
given by

βα′ ≡
dα′

dt
=
dα′

dα

dα

dt
= J−1 βα

with the expansion

βα′ = −2α′
∞
∑

ℓ=1

b′ℓ(a
′)ℓ = −2α′

∞
∑

ℓ=1

b̄′ℓ(α
′)ℓ

where b̄′ℓ = b′ℓ/(4π)
ℓ.

We calculate the b′ℓ as functions of the bℓ and ks. At 1-loop and 2-loop, this yields the
well-known results

b′1 = b1 , b′2 = b2

We find
b′3 = b3 + k1b2 + (k21 − k2)b1 ,

b′4 = b4 + 2k1b3 + k21b2 + (−2k31 + 4k1k2 − 2k3)b1



b′5 = b5 + 3k1b4 + (2k21 + k2)b3 + (−k31 + 3k1k2 − k3)b2

+(4k41 − 11k21k2 + 6k1k3 + 4k22 − 3k4)b1

etc. at higher-loop order.

A physically acceptable ST must satisfy several conditions:

•C1: the ST must map a (real positive) α to a real positive α′, since a map taking
α > 0 to α′ = 0 would be singular, and a map taking α > 0 to a negative or
complex α′ would violate the unitarity of the theory.

•C2: the ST should not map a moderate value of α, where perturbation theory is
applicable, to a value of α′ so large that pert. theory is inapplicable.

•C3: J should not vanish (or diverge) or else there would be a pole in βα′

•C4: Existence of an IR zero of β is a scheme-independent property, so the ST
should satisfy the condition that βα has an IR zero if and only if βα′ has an IR zero.

These conditions can always be satisfied by an ST near the UVFP at α = α′ = 0, but
they are not automatic, and can be quite restrictive at an IRFP.



For example, consider the ST (dependent on a parameter r)

a =
tanh(ra′)

r
with inverse

a′ =
1

2r
ln

(

1 + ra

1 − ra

)

(e.g., for r = 4π, α = tanhα′). This is acceptable for small a, but if a > 1/r, i.e.,
α > 4π/r, it maps a real α to a complex α′ and hence is physically unacceptable.

We have constructed several STs that are acceptable at an IRFP and have studied
scheme dependence of the IR zero of βnℓ using these. For example, we have used a
sinh transformation (depending on a parameter r):

a =
sinh(ra′)

r
with inverse

a′ =
1

r
ln

[

ra+
√

1 + (ra)2
]



Written in the form a = a′f(a′), this has the transformation function

f(a′) =
sinh(ra′)

ra′

This satisfies f(0) = 1 and also approaches the identity map as r → 0. With no loss
of generality, take r ≥ 0.

The Jacobian is J = cosh(ra′), which always satisfies C3, i.e., is nonsingular.

Taylor series expansion of f(a′) has coefficients ks = 0 for odd s and

k2 =
r2

6
, k4 =

r4

120
, k6 =

r6

5040
, k8 =

r8

362880
,

etc. for s ≥ 10. Thus, for small |r|a′,

a = a′
[

1 +
(ra′)2

6
+ O

(

(ra′)4
)]

so (for a 6= 0) a′ < a for |r| > 0.



Illustrative results with this sinh scheme transformation follow. We denote the IR zero
of βα′ at the n-loop level as α′

IR,nℓ ≡ α′
IR,nℓ,r.

For SU(3) gauge theory with Nf = 12, αIR,2ℓ = 0.754, and:

αIR,3ℓ,MS = 0.435, α′
IR,3ℓ,r=3 = 0.434, α′

IR,3ℓ,r=6 = 0.433,

αIR,4ℓ,MS = 0.470, α′
IR,4ℓ,r=3 = 0.470, α′

IR,4ℓ,r=6 = 0.467,

Thus, we find moderately small scheme dependence in the value of the IR zero at
3-loop and 4-loop level for moderate α and r.

Construction and application of two new scheme transformations in Choi and RS, PRD
90, 125029 (2014) [arXiv:1411.6645] confirms and extends these results:

SLr : a =
ln(1 + ra′)

r

SQr : a =
a′

1 − ra′

where again, r is a parameter (some details on supplementary slides at end).



Since the coefficients bℓ at loop order ℓ ≥ 3 in the beta function are
scheme-dependent, one might expect that it would be possible, at least in the vicinity
of zero coupling (UVFP in an asymp. free theory; IRFP in an IR-free theory) to
construct a scheme transformations that would set b′ℓ = 0 for some range of ℓ ≥ 3,
and, indeed a ST that would do this for all ℓ ≥ 3, so that βα′ would consist only of the
1-loop and 2-loop terms (’t Hooft scheme).

We have constructed an explicit scheme transformation that can do this in the vicinity
of zero coupling constant. However, we have also shown that it is much more difficult
to try to do this at a zero of β away from the origin (IR zero for an asymp. free theory;
UV zero for an IR-free theory).

Specifically, we construct a scheme transformation, denoted SR,m,k1, that removes the
terms in the beta function from loop order 3 up tom+ 1, inclusive, for small coupling.
In the limit m → ∞, this transforms to the ’t Hooft scheme.

To construct this ST, first, we take advantage of the property that in b′ℓ, the ST
coefficient kℓ−1 appears only linearly. For example, b′3 = b3 + k1b2 + (k21 − k2)b1,
etc. for higher-ℓ b′ℓ. So solve eq. b′3 = 0 for k2, obtaining

k2 =
b3

b1
+
b2

b1
k1 + k21



This determines SR,2,k1.

To get SR,3,k1, substitute this k2 into expression for b′4 and solve eq. b′4 = 0, obtaining

k3 =
b4

2b1
+

3b3

b1
k1 +

5b2

2b1
k21 + k31

This determines SR,3,k1. We continue this procedure iteratively to calculate SR,m,k1
for higher m. In general, the equation b′ℓ = 0 is a linear equation for kℓ−1, so one is
guaranteed a unique solution.

So the ST SR,m,k1 has nonzero ks, s = 1, ...,m and in the transformed beta
function, sets b′ℓ = 0 for ℓ = 3, ...,m+ 1. The coefficients ks for this ST depend on
the bn in the original beta function for n = 1, ...,m+ 1, and on the parameter k1.

In addition to the successful application near the origin, α = 0, we have shown that
this ST SR,m,k1 can be applied over part, but not all, of the interval I where the
2-loop beta function has an IR zero.



Also of interest to study UV to IR evolution of asymptotically free chiral gauge theories
(χGTs).

In contrast to vectorial gauge theories (VGTs), when χGTs become strongly coupled in
the IR and produce fermion condensates, this generically self-breaks the chiral gauge
symmetry.

For strongly coupled χGT, use most attractive channel (MAC) guide: condensates form
preferentially in channel R1 ×R2 → Rcond. with largest
∆C2 = C2(R1) + C2(R2) − C2(Rcond.), (R = fermion rep., C2(R) = Casimir
invariant);

One then constructs the low-energy effective field theory and studies its further
evolution into the IR; this typically involves sequential self-breaking.

Some recent studies of patterns of UV to IR evolution in asymptotically free χGTs:
Appelquist and RS, PRD 88, 105012 (2013) [arXiv:1310.6076]; Y. Shi and RS, PRD 91,
045004 (2015) [arXiv:1411.2042]; M. Kurachi, RS, and K. Yamawaki, PRD 91, 055032
(2015) [arXiv:1501.06454].



Studies of RG Flows in Infrared-Free Gauge Theories

If the β function of a theory is positive near zero coupling, then this theory is IR-free;
as µ increases from the IR to the UV, the coupling grows. It is of interest to
investigate whether an IR-free theory might have a UV fixed point (UV zero of β).

In addition to performing perturbative calculations of β to search for such a UVFP in
an IR-free theory, one can use large-N methods. An explicit example is the O(N )
nonlinear σ model in d = 2 + ǫ spacetime dimensions. From an exact solution of this
model in the limit N → ∞ in 1976, we found that (for small ǫ)

β(λ) =
dλ

dt
= ǫλ

(

1 −
λ

λc

)

, i.e., β(x) =
dx

dt
= ǫx

(

1 −
x

xc

)

where λ is the effective coupling, λc = 2πǫ/N ; x = limN→∞ λN , xc = 2πǫ
(Bardeen, B. W. Lee, and RS, PRD14, 985 (1976); Brézin and Zinn-Justin, PRB 14,
3110 (1976)). Thus this theory has a UVFP at xc, so that if initial value of x < xc,
then x ր xc as µ → ∞.

There has long been interest in RG properties of d = 4 QED and, more generally, U(1)
gauge theory (early work: Gell-Mann and Low; Johnson, Baker, and Willey; Adler;
Yamawaki, Miransky,..).



Consider a vectorial U(1) theory with Nf massless Dirac fermions of charge q. With no
loss of generality, set q = 1. Write β function as

βα = 2α

∞
∑

ℓ=1

bℓ a
ℓ

The 1-loop and 2-loop coefficients are

b1 =
4Nf

3
, b2 = 4Nf

These coefficients have the same sign, so the two-loop beta function, βα,2ℓ, does not
have a UV zero, and this is the maximal scheme-independent information about it. The
coefficients have been calculated up to five loops in the MS scheme.

The 3-loop coefficient is negative:

b3 = −2Nf

(

1 +
22Nf

9

)

Hence, βα,3ℓ has a UV zero, namely,

α
UV,3ℓ

= 4πa
UV,3ℓ

=
4π[9 +

√

3(45 + 44Nf) ]

9 + 22Nf



The 4-loop coefficient (Gorishny et al.) is negative: numerically,

b4 = −Nf (46 + 82.97533Nf + 5.06996N 2
f)

Recently, b5 has been calculated (Kataev, Larin; Baikov et al., 2012, 2013).
Numerically,

b5 = Nf(846.6966 + 798.8919Nf − 148.7919N 2
f + 9.22127N 3

f)

which is positive for all Nf > 0.

In RS, PRD 89, 045019 (2014) [arXiv:1311.5268], we have investigated whether the
n-loop beta function for this U(1) gauge theory has a UV zero for n up to 5 loops, for
a large range of Nf . Our results are given in the table (dash means no UV zero).



Nf α
UV,2ℓ

α
UV,3ℓ

α
UV,4ℓ

α
UV,5ℓ

1 − 10.2720 3.0400 −
2 − 6.8700 2.4239 −
3 − 5.3689 2.0776 −
4 − 4.5017 1.8463 −
5 − 3.9279 1.67685 2.5570
10 − 2.5871 1.2135 1.3120
20 − 1.7262 0.8483 −
100 − 0.7081 0.33265 −
500 − 0.3038 0.1203 −
103 − 0.2127 0.07678 −
104 − 0.016614 0.016965 −

A necessary condition for the perturbatively calculated β function to yield evidence for
a stable UV zero is that it should remain present when one increases the loop order and
the fractional change in the value should decrease going from n to n+ 1 loops.

We find that the UV zeros that we have calculated at ℓ = 3, 4, 5 loop order for a
large range of Nf values do not satisfy this necessary condition. Hence, our results do
not give evidence for a UVFP in U(1) gauge theory for general Nf . We find similar
conclusions for an SU(N ) gauge theory with Nf larger than the asympt. free range.



RG Flows in the O(N) λ|~φ|4 Theory

We have carried out a similar study, again up to 5-loop order, of another IR-free theory,
namely O(N ) λ|~φ|4 theory (in d = 4) to search for a possible UV zero of the beta
function, in RS, Phys. Rev. D 90, 065023 (2014) [arXiv:1408.3141].

Interaction term: Lint = − λ
4!
(~φ 2)2

β function : βa =
da

dt
= a

∞
∑

ℓ=1

bℓ a
ℓ where a =

λ

16π2

Coefficients:

b1 =
1

3
(N + 8) , b2 = −

1

3
(3N + 14)

b3 =
11

72
N 2 +

(

461

108
+

20ζ(3)

9

)

N +
370

27
+

88ζ(3)

9
Numerically,

b3 = 0.15278N 2 + 6.93976N + 24.4571

and so forth for b4 and b5 (calculated in MS scheme)



Although the two-loop beta function has a UV zero, it occurs at too large a value of
the coupling for the perturbative calculation to be reliable, as shown by the fact that
when one calculates to higher-loop order, the 3-loop beta function has no UV zero, and
the 4-loop and 5-loop beta functions differ considerably from the 2-loop and 3-loop beta
functions where the 2-loop function has a zero.

We have studied this further with scheme transformations and Padé approximants.

We thus conclude that in the range of λ where the perturbative calculation of the
n-loop beta function is reliable, the theory does not exhibit evidence of a UV zero up to
the level of n = 5 loops.
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Figure 3: Plot of the n-loop β function βa,nℓ as functions of a for N = 1 and (i) n = 2 (red), (ii) n = 3

(green), (iii) n = 4 (blue), and n = 5 (black). At a = 0.18, going from bottom to top, the curves are

for n = 4, n = 2, n = 3, and n = 5.



N a
UV,2ℓ

a
UV,3ℓ

a
UV,4ℓ

a
UV,5ℓ

1 0.5294 − 0.2333 −
2 0.5000 − 0.2217 −
3 0.4783 − 0.2123 −
4 0.4615 − 0.2044 −
5 0.4483 − 0.1978 −
6 0.4375 − 0.1920 −
7 0.4286 − 0.1869 −
8 0.42105 − 0.1823 −
9 0.4146 − 0.1783 −
10 0.4091 − 0.1746 −
100 0.3439 − 0.1012 −
1000 0.3344 − 0.07241 0.02276
3000 0.3337 − 0.5475 0.008850
104 0.3334 − − 0.003460



RG Flows in a Yukawa Theory

With E. Mølgaard, we have calculated RG flows for Yukawa theories in Mølgaard and
RS, PR D 89, 105007 (2014) [arXiv:1403.3058].

To study flows in simple context, use the (one-gen.) leptonic sector of the SM with the
gauge fields turned off . This has a global chiral symmetry group: SU(2)L ⊗ U(1)Y ,
forbidding bare fermion mass terms.

fermions: ψL: fund. rep. of SU(2)L with U(1)Y charge Yψ; χR: singlet of SU(2)L
with U(1)Y charge Yχ; scalar φ: fund. rep. of SU(2) with U(1)Y charge
Yφ = Yψ − Yχ so Yukawa term yψ̄LχRφ+ h.c. allowed by symmetry.

RG flows depend on y and the quartic scalar coupling λ. Beta functions (with
dt = d lnµ):

βy =
dy

dt
, βλ =

dλ

dt



Convenient variables: ay = y2/(4π)2 and aλ = λ/(4π)2. Corresponding beta
functions: βay = day/dt = (2y)(4π)−2 βy and βaλ = daλ/dt = (4π)−2 βλ.

As before compare calculations to different loop orders; calculate βy and βλ to loop
orders (1,1), (1,2), (2,1), (2,2), then integrate to get the RG flows.

For small ay and aλ, the RG flow is to the IR-free zero of both beta functions at
ay = aλ = 0, i.e., y = λ = 0.

For larger y and λ, the flows show further structure.

Comparison of these different loop-order RG flows yields info. on the extent of the
region in ay and aλ where the perturbative calculations agree with each other and
hence may be reliable.



Figure 4: RG flows obtained via integration of beta functions βay,ℓ and βaλ,ℓ′ for small ay and aλ, calculated

for loop orders (ℓ, ℓ′): (1,1) (upper left); (1,2) (upper right); (2,1) (lower left); and (2,2) (lower right).

Arrows are flows from UV to IR.



Figure 5: RG flows obtained via integration of beta functions βay,ℓ and βaλ,ℓ′ for moderate ay and aλ,

calculated for loop orders (ℓ, ℓ′): (1,1) (upper left); (1,2) (upper right); (2,1) (lower left); and (2,2) (lower

right). Arrows are flows from UV to IR.



Conclusions

• Understanding the UV to IR evolution of an asymptotically free gauge theory and
behavior associated with an exact or approximate IR fixed point of RG is of
fundamental field-theoretic interest and may have relevance to physics beyond the
Standard Model.

• Our higher-loop calcs. give info. on this UV to IR flow and on determination of
αIR,nℓ and γIR,nℓ; interesting comparison with γIR from lattice.

•We have investigated effects of scheme-dependence of IR zero in the beta function
in higher-loop calculations.

•We have carried out analyses of RG flows other theories: IR-free theories including
U(1) gauge theory, nonabelian gauge theory with Nf > Nf,b1z, λ|~φ|

4, Yukawa
models.



Thank you.


