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EW precision observables + Higgs-boson signal strengths

a global fitting project
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1. Introduction
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 It looks very much like the SM Higgs!

JP = 0+

 In 2012, the Higgs boson, which had been the last missing 
piece of the SM, was finally discovered at the LHC!

mH ⇡ 125 GeV

 However the SM is not satisfactory: 

 finite neutrino masses, origins of the gauge 
and flavor structures, cosmological problems 
(dark matter, baryon asymmetry, inflation, 
dark energy), quantum gravity, naturalness, …
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 But, no NP particle has been found so far at the LHC!
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Indirect searches for NP

4

 Indirect searches are as relevant as ever after the 
LHC 7-8 TeV run. 

 Historically, indirect hints to unobserved heavy particles 
were obtained from low-energy experiments:

 We would like to investigate the interplay of direct and 
indirect searches in the light of experimental data 
available currently and in the forthcoming years:

LHC run2 (2015-), Belle-II (2018-), other flavor factories

 e.g., the existence of charm quark from kaon decays, 
the heavy top mass from B-Bbar oscillation,             
the Higgs mass from the EW precision fit, …
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“SusyFit ” project

 We have been developing a computational framework 
to calculate various observables in the SM or in its 
extensions, and to constrain their parameter space.  

“SusyFit ”
A temporary name, waiting for a better one, 
since we consider not only SUSY. 

     Rome:  Shehu S. AbdusSalam,  Jorge de Blas,  Debtosh Chowdhury,  Otto Eberhardt, 
                Marco Fedele,  Enrico Franco,  Ayan Paul,  Luca Silvestrini
     Rome Tre:  Marco Ciuchini
     ICTP/SISSA:  Giovanni Grilli di Cortona,  Ivan Girardi,  Mauro Valli
     Weizmann:  Diptimoy Ghosh
     Florida State U.:  Laura Reina
     Caltech:  Maurizio Pierini (CMS)

Other developers:

supported in part by
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SusyFit is written in C++, supporting MPI parallelization.  

 Dependencies:  ROOT,  GSL,  Boost libraries,  and 

SusyFit will be made available to the public under GPL. 

“SusyFit ” codes

Bayesian Analysis Toolkit (BAT). 
Beaujean, Caldwell, Greenwald, Kollar & Kroninger

Working developer versions are always available through github 
 (requires NetBeans IDE).

The first public release will be made available soon.



your observable
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What can be done with “SusyFit ” ?

config file

SUSY

SM

2HDM Effective 
Lagrangian

your model

Models

Obs' ThObservable

histograms
Br(B ! Xs�)

…
Predictions

Bayesian Analysis Toolkit

 alternatively, a library to compute observables in a given model. 

 a stand-alone program to perform a Bayesian statistical analysis. 

 add your favorite models and observables as external modules. 

(base class)

…

…
…

SusyFit
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 Each model class contains the definitions of parameters, 
effective couplings (Wilson coefficients), RGEs, etc. 

- Standard Model (tested)

- Some NP extensions for model-independent 
studies of EW and Higgs (tested)

- general MSSM (SLHA2 compatible, under testing)

Models

- Two-Higgs-doublet models (under construction)

(FeynHiggs is used to compute Higgs masses, etc.)

including MFV,  pMSSM, …

dim-6 operators,  oblique parameters,  etc. 
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Observables

 Observables are computed from the parameters, the 
effective couplings and so on that are defined in each 
model class.  

- EW precision observables (tested)

- Higgs-boson signal strengths (tested)

- LEP2 two-fermion processes (in progress/testing)

- Flavor observables          next slide

MW , �W , �Z , �0

h, sin2 ✓lept

e↵

(Qhad

FB

), P pol

⌧ , Af , A0,f
FB

, R0

f

for f = `, c, b

� and AFB for e+e� ! e+e�, µ+µ�, ⌧+⌧�, cc̄, b¯b

H ! ��, ZZ, WW, ⌧+⌧�, bb̄ for di↵erent categories
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Flavor observables
UT-analysis observables:

Rare decays:

Non-leptonic decays:
B ! PP, PV (in progress)

✏0/✏ (in progress)

Bs,d ! µ+µ�

K ! ⇡⌫⌫̄

K ! µ+µ�

⌧ ! µ�, ⌧ ! 3` (+other LFV processes,  in progress)

(in progress)
(in progress)

(in progress)B ! Xs�, B ! K⇤�

B ! Xs`
+`�, B ! K`+`� B ! K⇤`+`�(in progress) ,

UT angles,               amplitudes,              ,  CKM elements�F = 2

(tested against              )

B ! ⌧⌫

Our tool will be used to contribute to the joint theory-experiment 
activity “B2TiP” (Belle II-Theory Interface Platform)
                       https://belle2.cc.kek.jp/~twiki/bin/view/B2TiP Belle

https://belle2.cc.kek.jp/~twiki/bin/view/B2TiP
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 In the rest of the talk, I will present a part of the fit 
results obtained with SusyFit : 

- EW precision fit (SM,  model-independent NP)

- Constraints on the dimension-six effective Lagrangian

EW precision observables (EWPO)

EWPO + Higgs signal strengths
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2. Electroweak precision fit

M. Ciuchini, E. Franco, S.M. & L. Silvestrini,  JHEP 08, 106 (2013);
+ M. Pierini and L. Reina, in preparation
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 The precise measurements of the W and top masses at 
the Tevatron/LHC improve the power of the EW fit.

 Electroweak precision observables (EWPO) offer a 
very powerful handle on the mechanism of EWSB and 
allow us to strongly constrain NP models relevant to 
solve the naturalness (hierarchy) problem.

 Theoretical calculations of higher-order corrections in 
the SM have been improved in recent years.

No free SM parameter in the fit

EW precision physics

13

 Qualitative change:  The Higgs mass has been measured. 
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EW precision observables (EWPO)

Z-pole ob’s are given in terms of effective couplings:  

MW , �W and 13 Z-pole observables

A0,f
LR = Af =

2Re
⇣
gf
V /gf

A

⌘

1 +
h
Re

⇣
gf
V /gf

A

⌘i2 A0,f
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3

4
AeAf

P pol

⌧ = A⌧
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)
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2sW cW
Zµ f̄

⇣
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 Full fermionic EW two-loop corrections to the Z-boson 
partial widths have been calculated recently. 

              have been calculated with full EW two-loop 
(bosonic is missing for f=b) and leading higher-order 
contributions. 

Theoretical status
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 Mw has been calculated with full EW two-loop and 
leading higher-order contributions. 

See also Sirlin; Marciano&Sirlin; Bardin et al; Djouadi&Verzegnassi; Djouadi; Kniehl; Halzen&Kniehl; Kniehl&Sirlin; Barbieri et al; 
Fleischer et al; Djouadi&Gambino; Degrassi et al; Avdeev et al; Chetyrkin et al; Freitas et al; Awramik&Czakon; Onishchenko&Veretin; 
Van der Bij et al; Faisst et al; Awramik et al, and many other works

Awramik, Czakon, Freitas & Weiglein (04)

Awramik, Czakon & Freitas (06); Awramik, Czakon, Freitas & Kniehl (09)

sin2 ✓f
e↵

Freitas & Huang (12); Freitas (13); Freitas (14)

/40

 We use the formulae calculated in the on-shell scheme.

15
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Electroweak precision tests Ayres Freitas

MW GZ s0
had Rb sin2 q `

eff
Exp. error 15 MeV 2.3 MeV 37 pb 6.6⇥10�4 1.6⇥10�4

Theory error 4 MeV 0.5 MeV 6 pb 1.5⇥10�4 0.5⇥10�4

Table 1: Current experimental errors and theory uncertainties for the SM prediction of some of the most
important electroweak precision observables. Here R

b

⌘ G[Z ! bb̄]/G[Z ! hadrons].

2. Z-boson width at two loops

As a concrete example for the electroweak two-loop corrections to electroweak precision ob-
servables, this section will discuss the calculation of the O(N

f

a2) contribution to the (partial)
Z-boson width(s). The total Z-width is defined through the imaginary part of the complex pole of
the Z-boson propagator,

s0 = M

2
Z � iMZGZ. (2.1)

This definition leads to a Breit-Wigner function with constant width near the Z-pole, s µ
|s� s0|�2 = [(s�M

2
Z)

2 +M

2
ZG2

Z]
�1. Note that this differs from the Breit-Wigner function with

a running width used in the experimental analyses, so that one has to include a finite shift when
relating MZ and GZ to the reported measured values:

MZ = M

exp
Z �34.1 MeV, GZ = Gexp

Z �0.9 MeV. (2.2)

Expanding (2.1) up to next-to-next-to-leading order (NNLO) and using the power counting GZ ⇠
O(a)MZ, the result for GZ can be written as [8]1

GZ =
1

MZ
ImSZ(s0) =

1
MZ


ImSZ

1+ReS0
Z

�

s=M

2
Z

+O(G3
Z), (2.3)

where SZ is the Z self-energy. Using the optical theorem, the imaginary part of the self-energy can
be related to the decay process Z ! f f̄ , resulting in

GZ = Â
f

G
f

, G
f

=
N

f

c

MZ

12p
⇥
R f

V

F

f

V

+R f

A

F

f

A

⇤
s=M

2
Z
, F

f

V

⇡
|v

f

|2

1+ReS0
Z
, F

f

A

⇡
|a

f

|2

1+ReS0
Z
, (2.4)

where N

f

c

= 3(1) for quarks (leptons). Here the functions R f

V,A have been introduced, which capture
effects from final-state QED and QCD corrections. They are known up to O(a4

s ), O(aas) and
O(a2) in the limit of massless fermions, while mass corrections are known up to three-loop order
[10]. The electroweak corrections are contained in S0

Z and the effective Z f f̄ vector and axial-vector
couplings v

f

and a

f

. Note that v

f

and a

f

include contributions from photon-Z mixing. Eq. (2.4) is
accurate up to NNLO.

For the calculation of the fermionic electroweak O(a2) corrections, Feynman diagrams have
been generated with FeynArts 3.3 [11]. In addition to the diagrams for the Z ! f f̄ vertex cor-
rections, one also needs two-loop self-energy diagrams for the on-shell renormalization [12]. In
the on-shell renormalization scheme used here, particle masses are defined through the (complex)

1Here a term µ ImS00
Z has been omitted, since ImS00

Z = 0 at leading order for massless final-state fermions.

3

A. Freitas, 1406.6980

Theoretical status

Theory errors from missing higher-order corrections 
are safely below current experimental errors. 

16
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EW precision fit

Erler et al. (for PDG)
GAPP (Global Analysis of Particle Properties)

MSbar scheme  &  frequentist

Gfitter group

http://gfitter.desy.de

http://www.fisica.unam.mx/erler/GAPPP.html

on-shell scheme  &  frequentist
Gfitter (Generic fitting package)

Many other groups with ZFITTER
on-shell scheme

Our group

on-shell scheme  &  Bayesian

M. Ciuchini, E. Franco, S.M., L. Silvestrini and others …

http://zfitter.com

17

http://gfitter.desy.de
http://www.fisica.unam.mx/erler/GAPPP.html
http://zfitter.com
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SM fit
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Gfitter, 1407.3792

2.5�

�2.0�

Indirect:  determined w/o using the corresponding 
experimental information

�↵(5)
had(M

2
Z) = 0.02757 ± 0.00010

�1.4�

Data Fit Indirect Pull
↵s(M2

Z) 0.1185 ± 0.0005 0.1185 ± 0.0005 0.1185 ± 0.0028 +0.0

�↵
(5)

had

(M2

Z) 0.02750 ± 0.00033 0.02741 ± 0.00026 0.02727 ± 0.00042 �0.4
MZ [GeV] 91.1875 ± 0.0021 91.1879 ± 0.0020 91.198 ± 0.011 +0.9
mt [GeV] 173.34 ± 0.76 173.6 ± 0.7 176.6 ± 2.5 +1.2
mH [GeV] 125.5 ± 0.3 125.5 ± 0.3 99.9 ± 26.6 �0.8
MW [GeV] 80.385 ± 0.015 80.367 ± 0.006 80.363 ± 0.007 �1.3
�W [GeV] 2.085 ± 0.042 2.0892 ± 0.0005 2.0892 ± 0.0005 +0.1
�Z [GeV] 2.4952 ± 0.0023 2.4945 ± 0.0004 2.4944 ± 0.0004 �0.3
�0

h [nb] 41.540 ± 0.037 41.488 ± 0.003 41.488 ± 0.003 �1.4

sin2 ✓lept

e↵

(Qhad

FB

) 0.2324 ± 0.0012 0.23145 ± 0.00009 0.23144 ± 0.00009 �0.8
P pol

⌧ 0.1465 ± 0.0033 0.1476 ± 0.0007 0.1477 ± 0.0007 +0.3
A` (SLD) 0.1513 ± 0.0021 0.1476 ± 0.0007 0.1471 ± 0.0007 �1.9
Ac 0.670 ± 0.027 0.6682 ± 0.0003 0.6682 ± 0.0003 �0.1
Ab 0.923 ± 0.020 0.93466 ± 0.00006 0.93466 ± 0.00006 +0.6

A0,`
FB

0.0171 ± 0.0010 0.0163 ± 0.0002 0.0163 ± 0.0002 �0.8
A0,c

FB

0.0707 ± 0.0035 0.0740 ± 0.0004 0.0740 ± 0.0004 +0.9

A0,b
FB

0.0992 ± 0.0016 0.1035 ± 0.0005 0.1039 ± 0.0005 +2.8
R0

` 20.767 ± 0.025 20.752 ± 0.003 20.752 ± 0.003 �0.6
R0

c 0.1721 ± 0.0030 0.17224 ± 0.00001 0.17224 ± 0.00001 +0.0
R0

b 0.21629 ± 0.00066 0.21578 ± 0.00003 0.21578 ± 0.00003 �0.8

1
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Model-independent constraints

/4019

Oblique parameters Epsilon parameters

Zbb couplings
L =

v2

4
Tr

�
Dµ⌃

†Dµ⌃
� ✓

1 + 2V
h

v
+ · · ·

◆
+ · · ·

EW chiral Lagrangian



Oblique parameters

S = �16⇡⇧0
30(0) = 16⇡

h
⇧NP0

33 (0) � ⇧NP0
3Q (0)

i

T =
4⇡

s2W c2WM2
Z

⇥
⇧NP

11 (0) � ⇧NP
33 (0)

⇤

U = 16⇡
⇥
⇧NP0

11 (0) � ⇧NP0
33 (0)

⇤

 Suppose that dominant NP effects appear in the 
vacuum polarizations of the gauge bosons: 

Kennedy & Lynn (89); 
Peskin & Takeuchi (90,92)

U = 0U 6= 0

EWPO depend on the three combinations: 

�MW , ��W / �S + 2c2W T +

(c2W � s2W )U

2s2W
��Z / �10(3 � 8s2W )S + (63 � 126s2W � 40s4W ) T

others / S � 4c2W s2W T
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S

-0.5 0 0.5

T

-0.5

0

0.5

S
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

T

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
68% and 95% CL fit contours for U=0

=173 GeV)t=125 GeV, mH: Mref(SM
Present uncertainties
Prospects for LHC
Prospects for ILC/GigaZ

SM Prediction
 0.24 GeV± = 125.14 HM
 0.91 GeV± = 173.34 tm

Constraints on the oblique parameters

Gfitter, 1407.3792

Fit result Correlations
S 0.08 ± 0.10 1.00
T 0.09 ± 0.12 0.85 1.00
U 0.00 ± 0.09 �0.48 �0.79 1.00

Table 3: STU fit.

Fit result Correlations
S 0.08 ± 0.09 1.00
T 0.09 ± 0.07 0.87 1.00

Table 4: ST fit with U = 0.

Fit result Correlations
S 0.06 ± 0.09 1.00
T 0.10 ± 0.07 0.91 1.00

Table 5: Gfitter.

2
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3 Oblique parameters

Fit result Correlations
S 0.08 ± 0.10 1.00
T 0.10 ± 0.12 0.85 1.00
U 0.00 ± 0.09 �0.49 �0.79 1.00

Table 5: STU fit.

Fit result Correlations
S 0.08 ± 0.09 1.00
T 0.10 ± 0.07 0.87 1.00

Table 6: ST fit with U = 0.
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3 Oblique parameters

Fit result Correlations
S 0.08 ± 0.10 1.00
T 0.10 ± 0.12 0.85 1.00
U 0.00 ± 0.09 �0.49 �0.79 1.00

Table 5: STU fit.

Fit result Correlations
S 0.08 ± 0.09 1.00
T 0.10 ± 0.07 0.87 1.00

Table 6: ST fit with U = 0.

5

No evidence for NP!

68% & 95%
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Epsilon parameters

 Unlike STU,      involve non-oblique vertex corrections. 

Altarelli et al. (91,92,93)✏
1

= �⇢0 (2)

✏
2

= c2
0

�⇢0 +
s2
0

c2
0

� s2
0

�rW � 2s2
0

�0 (3)

✏
3

= c2
0

�⇢0 + (c2
0

� s2
0

)�0 (4)

s2W c2W =
⇡↵(M2

Z)p
2GµM

2

Z(1 � �rW )
(5)

p
Re ⇢e

Z = 1 +
�⇢0

2
(6)

sin2 ✓e
e↵

= (1 + �0) s2
0

(7)

s2
0

c2
0

=
⇡↵(M2

Z)p
2GµM

2

Z

(8)

9

✏
1

= �⇢0 (2)

✏
2

= c2
0

�⇢0 +
s2
0

c2
0

� s2
0

�rW � 2s2
0

�0 (3)

✏
3

= c2
0

�⇢0 + (c2
0

� s2
0

)�0 (4)

s2W c2W =
⇡↵(M2

Z)p
2GµM

2

Z(1 � �rW )
(5)

p
Re ⇢e

Z = 1 +
�⇢0

2
(6)

sin2 ✓e
e↵

= (1 + �0) s2
0

(7)

s2
0

c2
0

=
⇡↵(M2

Z)p
2GµM

2

Z

(8)

9

✏
1

= �⇢0 (2)

✏
2

= c2
0

�⇢0 +
s2
0

c2
0

� s2
0

�rW � 2s2
0

�0 (3)

✏
3

= c2
0

�⇢0 + (c2
0

� s2
0

)�0 (4)

s2W c2W =
⇡↵(M2

Z)p
2GµM

2

Z(1 � �rW )
(5)

p
Re ⇢e

Z = 1 +
�⇢0

2
(6)

sin2 ✓e
e↵

= (1 + �0) s2
0

(7)

s2
0

c2
0

=
⇡↵(M2

Z)p
2GµM

2

Z

(8)

9

and ✏b

 Moreover,      also involve SM(top/Higgs) contributions. 

✏
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✏
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�✏i = ✏i � ✏SMi (9)

9

     involve the oblique corrections beyond S, T and U.

✏i

✏i

✏i
i.e., V, W, X,Y
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⇧V V 0(q2) ' ⇧V V 0(0) + q2 ⇧0
V V 0(0) +

(q2)2

2!
⇧00

V V 0(0) + · · ·

3 parameters
7 parameters

g, g0, v

⇧��(0) = ⇧Z�(0) = 0

3 are absorbed in
V V 0 = {WW,ZZ,Z�, ��}



Modified epsilon parameters

✏
1

= �⇢0 (2)

✏
2

= c2
0

�⇢0 +
s2
0

c2
0

� s2
0

�rW � 2s2
0

�0 (3)

✏
3

= c2
0

�⇢0 + (c2
0

� s2
0

)�0 (4)

s2W c2W =
⇡↵(M2

Z)p
2GµM

2

Z(1 � �rW )
(5)

p
Re ⇢e

Z = 1 +
�⇢0

2
(6)

sin2 ✓e
e↵

= (1 + �0) s2
0

(7)

s2
0

c2
0

=
⇡↵(M2

Z)p
2GµM

2

Z

(8)

�✏i = ✏i � ✏SMi (9)

9

Fit result Correlations
�✏

1

0.0007 ± 0.0010 1.00
�✏

2

�0.0001 ± 0.0009 0.80 1.00
�✏

3

0.0006 ± 0.0009 0.86 0.51 1.00
�✏b 0.0003 ± 0.0013 �0.33 �0.32 �0.22 1.00

Table 9: �✏ fit.
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Table 10: �✏ fit with fixing �✏
2

= 0 and �✏b = 0.
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 Four solutions from Z-pole data, while two of 
them are disfavored by off Z-pole data for AFBb. 

Zbb couplings

Choudhury et al. (02)

 The solution closer to the SM: 

See also Batell et al. (13)

 Deviation from the SM due to 

�V ⇡ 0.06

V 2 [1.05, 1.22] @ 68%

V 2 [0.81, 0.97] @ 68%

Ab

A0,b
FB

�R0

b ⇠ 6.6 ⇥ 10�4 ! �R0

b ⇠ 6 ⇥ 10�5

5

6 Zbb̄

Fit result Correlations
�gb

R 0.018 ± 0.007 1.00
�gb

L 0.0029 ± 0.0014 0.90 1.00
�gb

V 0.021 ± 0.008 1.00
�gb

A �0.015 ± 0.006 �0.98 1.00

Table 11: Fit results for the shifts in the Zbb̄ couplings.

9
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EW chiral Lagrangian

      Satoshi Mishima (KIAS)

Barberi, Bellazzini, Rychkov & Varagnolo (07)

No new state below cutoff + custodial symmetry:

⌃ : Goldstone bosons

V V

h

V

The HVV coupling contributes to S and T at one-loop.

V = 1 in the SM

⇤ = 4⇡v/
q
|1 � 2

V |

L =
v2

4
Tr

�
Dµ⌃

†Dµ⌃
� ✓

1 + 2V
h

v
+ · · ·

◆
+ · · ·

S =
1

12⇡
(1 � 2

V ) ln

✓
⇤2

m2
h

◆

T = �
3

16⇡c2W
(1 � 2

V ) ln

✓
⇤2

m2
h

◆

+V V

G

V

ln(⇤2/M2
Z) � 2

V ln(⇤2/m2
h)

/4025



EW chiral Lagrangian
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             .

Falkowski, Rychkov & Urbano (12)

WLWL scattering is dominated by isospin 2 channelV > 1

1 � 2

V =
v2

6⇡

Z 1

0

ds

s

�
2�tot

I=0

(s) + 3�tot

I=1

(s) � 5�tot

I=2

(s)
�

  

 EWPO constraint on Kv is stronger than Higgs one, 
but no constraint on Kf.

Vκ
0.8 0.9 1 1.1 1.2

f
κ

0.6

0.8

1

1.2

1.4 EW+Higgs
EW
Higgs

Vκ

0.9 1 1.1

P
ro

b
a

b
ili

ty
 d

e
n
si

ty

0

5

10

15

20

V = 1.025 ± 0.021

Bellazzini, Martucci & Torre (14)
⇤ & 18 TeV @95% for V < 1

/4026
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Composite Higgs models
 Composite Higgs models typically generate             .

 Extra contributions to S and T are required to fix the 
EW fit under             .

Grojean et al. (13)

Fermionic resonances

x=0 HSML
x=0.1
x=0.2
x=0.25

UV con tr.

fe
rm
io
n
co
n t
r.

IR
con tr.

-2 -1 0 1 2 3

-1

0

1

2

S
`
¥ 103

T`
¥
10

3

V < 1

V < 1

e.g.  Minimal Composite Higgs Models (MCHM) based on SO(5)/SO(4)

V =
p

1 � ⇠ ⇠ =

✓
v

f

◆2

f :  scale of compositeness

IR contribution

UV cont’ from heavy vector resonances
+

+

Agashe, Contino & Pomarol (05)

/4027
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3. Constraints on the dim-6 Lagrangian

J. de Blas, M. Ciuchini, E. Franco, D. Ghosh, S.M., 
M. Pierini, L. Reina & L. Silvestrini, in preparation
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 Experimental data suggest that the NP scale is well 
above the EW scale.

 We consider an effective theory built exclusively from 
the SM fields with the SM gauge symmetries. 

SU(3)c ⇥ SU(2)L ⇥ U(1)Y

 Contributions from higher-dimensional operators are 
suppressed by powers of the NP scale. 

L = L(4)
SM +

1

⇤

X

i

C
(5)
i O

(5)
i +

1

⇤2

X

j

C
(6)
j O

(6)
j + O

✓
1

⇤3

◆

 We have found only a Higgs and no other new particle 
so far at the LHC.

Effective field theory approach
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Effective field theory approach

30

 Correlations among observables are induced by gauge-
invariant operators.

 Model-independent

Useful guide to look for NP effects

 Constraints on the Wilson coefficients will give us 
clues for constructing the UV theory.

Pros: 

Cons: 

 EFT analyses cannot capture the stronger correlations 
among operators that may arise in specific NP models.

 Too many operators in general.
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Grzadkowski, Iskrzynski, Misiak & Rosiek, JHEP10, 085 (2010)

 The dim-5 operator (LH)(LH) violates lepton number.

L = L(4)
SM +

1

⇤

X

i

C
(5)
i O

(5)
i +

1

⇤2

X

j

C
(6)
j O

(6)
j + O

✓
1

⇤3

◆

 Dim-6 operators contribute to EW/Higgs physics.

Buchmuller & Wyler, NPB268, 621(1986)

A list of the dim-6 operators was presented.
80 op’s (for one generation) that respect B/L.

59 independent op’s
31

Dim-6 operators

S-matrix elements have no contribution from particular 
combinations of operators, which vanish by the EOMs.

Politzer (80)
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Complete list of the dim-6 operators

32

Grzadkowski, Iskrzynski, Misiak & Rosiek (10)X3 H6 and H4D2  2H3

OG fABCGA⌫
µ GB⇢

⌫ GCµ
⇢ OH (H†H)3 OeH (H†H)(L̄eH)

O eG fABC eGA⌫
µ GB⇢

⌫ GCµ
⇢ OH⇤ (H†H)⇤(H†H) OuH (H†H)(Q̄ufH)

OW "IJKW I⌫
µ W J⇢

⌫ WKµ
⇢ OHD

�
H†DµH

�? �
H†DµH

� OdH (H†H)(Q̄dH)

OfW "IJK fW I⌫
µ W J⇢

⌫ WKµ
⇢

X2H2  2XH  2H2D

OHG (H†H)GA
µ⌫G

Aµ⌫ OeW (L̄�µ⌫e)⌧ IHW I
µ⌫ O(1)

HL (H†i
$
Dµ H)(L̄�µL)

OH eG (H†H) eGA
µ⌫G

Aµ⌫ OeB (L̄�µ⌫e)HBµ⌫ O(3)

HL (H†i
$
D I

µ H)(L̄⌧ I�µL)

OHW (H†H)W I
µ⌫W

Iµ⌫ OuG (Q̄�µ⌫TAu)fH GA
µ⌫ OHe (H†i

$
Dµ H)(ē�µe)

OHfW (H†H) fW I
µ⌫W

Iµ⌫ OuW (Q̄�µ⌫u)⌧ IfH W I
µ⌫ O(1)

HQ (H†i
$
Dµ H)(Q̄�µQ)

OHB (H†H)Bµ⌫B
µ⌫ OuB (Q̄�µ⌫u)fH Bµ⌫ O(3)

HQ (H†i
$
D I

µ H)(Q̄⌧ I�µQ)

OH eB (H†H) eBµ⌫B
µ⌫ OdG (Q̄�µ⌫TAd)H GA

µ⌫ OHu (H†i
$
Dµ H)(ū�µu)

OHWB (H†⌧ IH)W I
µ⌫B

µ⌫ OdW (Q̄�µ⌫d)⌧ IH W I
µ⌫ OHd (H†i

$
Dµ H)(d̄�µd)

OHfWB (H†⌧ IH) fW I
µ⌫B

µ⌫ OdB (Q̄�µ⌫d)H Bµ⌫ OHud i(fH†DµH)(ū�µd)

Table 11: Dimension-six operators other than the four-fermion ones.

(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R)

OLL (L̄�µL)(L̄�µL) Oee (ē�µe)(ē�
µe) OLe (L̄�µL)(ē�µe)

O(1)

QQ (Q̄�µQ)(Q̄�µQ) Ouu (ū�µu)(ū�
µu) OLu (L̄�µL)(ū�µu)

O(3)

QQ (Q̄�µ⌧
IQ)(Q̄�µ⌧ IQ) Odd (d̄�µd)(d̄�

µd) OLd (L̄�µL)(d̄�µd)

O(1)

LQ (L̄�µL)(Q̄�µQ) Oeu (ē�µe)(ū�
µu) OQe (Q̄�µQ)(ē�µe)

O(3)

LQ (L̄�µ⌧
IL)(Q̄�µ⌧ IQ) Oed (ē�µe)(d̄�

µd) O(1)

Qu (Q̄�µQ)(ū�µu)

O(1)

ud (ū�µu)(d̄�
µd) O(8)

Qu (Q̄�µT
AQ)(ū�µTAu)

O(8)

ud (ū�µT
Au)(d̄�µTAd) O(1)

Qd (Q̄�µQ)(d̄�µd)

O(8)

Qd (Q̄�µT
AQ)(d̄�µTAd)

(L̄R)(R̄L) and (L̄R)(L̄R) B-violating

OLedQ (L̄je)(d̄Qj) OduQ "↵��"jk
⇥
(d↵)TCu�

⇤ ⇥
(Q�j)TCLk

⇤

O(1)

QuQd (Q̄ju)"jk(Q̄
kd) OQQu "↵��"jk

⇥
(Q↵j)TCQ�k

⇤ ⇥
(u�)TCe

⇤

O(8)

QuQd (Q̄jTAu)"jk(Q̄
kTAd) O(1)

QQQ "↵��"jk"mn

⇥
(Q↵j)TCQ�k

⇤ ⇥
(Q�m)TCLn

⇤

O(1)

LeQu (L̄je)"jk(Q̄
ku) O(3)

QQQ "↵��(⌧ I")jk(⌧
I")mn

⇥
(Q↵j)TCq�k

⇤ ⇥
(Q�m)TCLn

⇤

O(3)

LeQu (L̄j�µ⌫e)"jk(Q̄
k�µ⌫u) Oduu "↵��

⇥
(d↵)TCu�

⇤ ⇥
(u�)TCe

⇤

Table 12: Four-fermion operators.
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Table 11: Dimension-six operators other than the four-fermion ones.

(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R)

OLL (L̄�µL)(L̄�µL) Oee (ē�µe)(ē�
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Table 12: Four-fermion operators.

5

EDMs, g-2,etc.

 Consider 18 CP-even op’s 
for EW and Higgs physics.

 To avoid dangerous FCNC, 
we assume flavor universality.

(Alternatively, MFV may be assumed. )

 Other choices of the basis 
are possible.

See, e.g., Giudice et al. (07); Contino et al. (13)

direct connections to observables
operator mixing in the RG running
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 switch on one operator at a time to avoid the flat 
directions and accidental cancellations.

Right-handed       

Left-handed        

!
!

S parameter (W3-B mixing)

T parameter (Mz)

! Fermi constant

!

! Zff̄

Zff̄

OHWB = (H†⌧ IH)W I
µ⌫B

µ⌫

OHD = (H†DµH)⇤(H†DµH)

OLL = (L�µL)(L�µL)

O(3)

HL = (H†i
 !
D I

µH)(L ⌧ I�µL)

O(1)

HL = (H†i
 !
D µH)(L�µL)

O(3)

HQ = (H†i
 !
D I

µH)(Q ⌧ I�µQ)

O(1)

HQ = (H†i
 !
D µH)(Q�µQ)

OHe = (H†i
 !
D µH)(eR�µeR)

OHu = (H†i
 !
D µH)(uR�µuR)

OHd = (H†i
 !
D µH)(dR�µdR)

17

 There are two flat directions in the fit. See, e.g., Han & Skiba (05)

Dim-6 contributions to EWPO
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Dim-6 contributions to Higgs physics
bCi =

v2

⇤2
Ci

�GF = bC(3)11
HL + bC(3)22

HL �
1

2

� bC1221
LL + bC2112

LL

�

LhV V =
⇣p

2GF

⌘1/2 bCHG GA
µ⌫G

Aµ⌫h

+ 2
⇣p

2GF

⌘1/2
M2

W

✓
1 �

1

4
bCHD + bCH⇤ �

1

2
�GF

◆
W †

µW
µh

+ 2
⇣p

2GF

⌘1/2 bCHWWµ⌫W †
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+
⇣p

2GF
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M2

Z
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1 +

1

4
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1
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�GF

◆
ZµZ
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+
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2GF

⌘1/2⇣
c2W

bCHW + s2W
bCHB + sW cW bCHWB

⌘
Zµ⌫Z
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+
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2GF

⌘1/2h
2sW cW
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⌘
� (c2W � s2W ) bCHWB
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2Gluon-Fusionprocess2

2.1Higgs-bosonproductioningluon–gluonfusion
Gluonfusionthroughaheavy-quarkloop[6](seeFig.1)isthemainproductionmechanismofthe
StandardModelHiggsbosonathadroncolliders.WhencombinedwiththedecaychannelsH→γγ,
H→WW,andH→ZZ,thisproductionmechanismisoneofthemostimportantforHiggs-boson
searchesandstudiesovertheentiremassrange,100GeV<

∼MH<
∼1TeV,tobeinvestigatedatthe

LHC.

H t,b

g

g

Fig.1:Feynmandiagramcontributingtogg→Hatlowestorder.

Thedynamicsofthegluon-fusionmechanismiscontrolledbystronginteractions.Detailedstudies
oftheeffectofQCDradiativecorrectionsarethusnecessarytoobtainaccuratetheoreticalpredictions.
InQCDperturbationtheory,theleadingorder(LO)contribution[6]tothegluon-fusioncrosssection
isproportionaltoα2

s,whereαsistheQCDcouplingconstant.Themaincontributionarisesfromthe
topquark,duetoitslargeYukawacouplingtotheHiggsboson.TheQCDradiativecorrectionstothis
processatnext-to-leadingorder(NLO)havebeenknownforsometime,bothinthelarge-mtlimit[7,8]
andmaintainingthefulltop-andbottom-quarkmassdependence[9,10].TheyincreasetheLOcross
sectionbyabout80−100%attheLHC.Theexactcalculationisverywellapproximatedbythelarge-mt

limit.WhentheexactBorncrosssectionwiththefulldependenceonthemassofthetopquarkisusedto
normalizetheresult,thedifferencebetweentheexactandtheapproximatedNLOcrosssectionsisonly
afewpercent.Thenext-to-next-to-leadingorder(NNLO)correctionshavebeencomputedonlyinthis
limit[11–17],leadingtoanadditionalincreaseofthecrosssectionofabout25%.TheNNLOcalculation
hasbeenconsistentlyimprovedbyresummingthesoft-gluoncontributionsuptoNNLL[18].Theresult
leadstoanadditionalincreaseofthecrosssectionofabout7−9%(6−7%)at

√
s=7(14)TeV.The

NNLLresultisnicelyconfirmedbytheevaluationoftheleadingsoftcontributionsatN3LO[19–23].
Recentyearshaveseenfurtherprogressinthecomputationofradiativecorrectionsandinthe

assessmentoftheiruncertainties.Theaccuracyofthelarge-mtapproximationatNNLOhasbeenstud-
iedinRefs.[24–29].ThesepapershavedefinitelyshownthatiftheHiggsbosonisrelativelylight
(MH<

∼300GeV),thelarge-mtapproximationworksextremelywell,tobetterthan1%.Asdiscussed
below,theseresultsallowustoformulateaccuratetheoreticalpredictionswherethetopandbottomloops
aretreatedexactlyuptoNLO,andthehigher-ordercorrectionstothetopcontributionaretreatedinthe
large-mtapproximation[30].

Considerableworkhasalsobeendoneintheevaluationofelectroweak(EW)corrections.Two-
loopEWeffectsarenowknown[31–35].Theyincreasethecrosssectionbyafactorthatstrongly
dependsontheHiggs-bosonmass,changingfrom+5%forMH=120GeVtoabout−2%forMH=
300GeV[35].ThemainuncertaintyintheEWanalysiscomesfromthefactthatitisnotobvioushowto
combinethemwiththelargeQCDcorrections.InthepartialfactorizationschemeofRef.[35]theEW
correctionappliesonlytotheLOresult.Inthecompletefactorizationscheme,theEWcorrectioninstead
multipliesthefullQCD-correctedcrosssection.SinceQCDcorrectionsaresizeable,thischoicehasa
non-negligibleeffectontheactualimpactofEWcorrectionsinthecomputation.Thecomputationofthe
dominantmixedQCD–EWeffectsduetolightquarks[30],performedusinganeffective-Lagrangian

2M.Grazzini,F.Petriello,J.Qian,F.Stoeckli(eds.);J.Baglio,R.BoughezalandD.deFlorian.
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SMσ/σBest fit 
-4 -2 0 2 4 6

 bb (ttH tag)→H 
 bb (VH tag)→H 

 (ttH tag)ττ →H 
 (VH tag)ττ →H 

 (VBF tag)ττ →H 
 (0/1 jet)ττ →H 

 WW (ttH tag)→H 
 WW (VH tag)→H 

 WW (VBF tag)→H 
 WW (0/1 jet)→H 

 ZZ (2 jets)→H 
 ZZ (0/1 jet)→H 

 (ttH tag)γγ →H 
 (VH tag)γγ →H 

 (VBF tag)γγ →H 
 (untagged)γγ →H 

 0.14± = 1.00 µ       
Combined

CMS
 (7 TeV)-1 (8 TeV) +  5.1 fb-119.7 fb

 = 125 GeVH m

 = 0.84
SM
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 We assume that the efficiencies of event selection 
are similar to those in the SM.  (This assumption is valid for 
small deviations from the SM couplings, which do not modify kinematic 
distributions significantly. )

 We use the ATLAS/CMS (and 
CDF/D0) data for the Higgs 
signal strengths relative to the 
SM expectations, which are 
divided into different categories 
to improve sensitivity to each 
production mechanism 

µ =

P
i ✏i[� ⇥ Br]iP

j ✏
SM
j [� ⇥ Br]SMj

for one specific measurement
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Fit results at 95% in units of 1/⇤2 TeV�2
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Data Fit Indirect Pull
↵s(M2

Z) 0.1185 ± 0.0005 0.1185 ± 0.0005 0.1185 ± 0.0028 +0.0

�↵
(5)

had

(M2

Z) 0.02750 ± 0.00033 0.02741 ± 0.00026 0.02727 ± 0.00042 �0.4
MZ [GeV] 91.1875 ± 0.0021 91.1879 ± 0.0020 91.198 ± 0.011 +0.9
mt [GeV] 173.34 ± 0.76 173.6 ± 0.7 176.6 ± 2.5 +1.2
mH [GeV] 125.5 ± 0.3 125.5 ± 0.3 99.9 ± 26.6 �0.8
MW [GeV] 80.385 ± 0.015 80.367 ± 0.006 80.363 ± 0.007 �1.3
�W [GeV] 2.085 ± 0.042 2.0892 ± 0.0005 2.0892 ± 0.0005 +0.1
�Z [GeV] 2.4952 ± 0.0023 2.4945 ± 0.0004 2.4944 ± 0.0004 �0.3
�0

h [nb] 41.540 ± 0.037 41.488 ± 0.003 41.488 ± 0.003 �1.4

sin2 ✓lept

e↵

(Qhad

FB

) 0.2324 ± 0.0012 0.23145 ± 0.00009 0.23144 ± 0.00009 �0.8
P pol

⌧ 0.1465 ± 0.0033 0.1476 ± 0.0007 0.1477 ± 0.0007 +0.3
A` (SLD) 0.1513 ± 0.0021 0.1476 ± 0.0007 0.1471 ± 0.0007 �1.9
Ac 0.670 ± 0.027 0.6682 ± 0.0003 0.6682 ± 0.0003 �0.1
Ab 0.923 ± 0.020 0.93466 ± 0.00006 0.93466 ± 0.00006 +0.6

A0,`
FB

0.0171 ± 0.0010 0.0163 ± 0.0002 0.0163 ± 0.0002 �0.8
A0,c

FB

0.0707 ± 0.0035 0.0740 ± 0.0004 0.0740 ± 0.0004 +0.9

A0,b
FB

0.0992 ± 0.0016 0.1035 ± 0.0005 0.1039 ± 0.0005 +2.8
R0

` 20.767 ± 0.025 20.752 ± 0.003 20.752 ± 0.003 �0.6
R0

c 0.1721 ± 0.0030 0.17224 ± 0.00001 0.17224 ± 0.00001 +0.0
R0

b 0.21629 ± 0.00066 0.21578 ± 0.00003 0.21578 ± 0.00003 �0.8

Only EW Only Higgs EW + Higgs
Ci/⇤2 [TeV�2] Ci/⇤2 [TeV�2] Ci/⇤2 [TeV�2]

Coe�cient at 95% at 95% at 95%
CHG — [�0.0077, 0.0066] [�0.0077, 0.0066]
CHW — [�0.039, 0.012] [�0.039, 0.012]
CHB — [�0.011, 0.003] [�0.011, 0.003]
CHWB [�0.0082, 0.0030] [�0.006, 0.020] [�0.0063, 0.0039]
CHD [�0.025, 0.004] [�4.0, 1.4] [�0.025, 0.004]
CH⇤ [�1.2, 2.0] [�1.2, 2.0]

C
(1)

HL [�0.005, 0.012] — [�0.005, 0.012]

C
(3)

HL [�0.010, 0.005] [�1.2, 0.3] [�0.010, 0.005]
CHe [�0.015, 0.006] — [�0.015, 0.006]

C
(1)

HQ [�0.026, 0.041] [�28, 15] [�0.026, 0.041]

C
(3)

HQ [�0.011, 0.013] [�0.6, 2.2] [�0.011, 0.013]
CHu [�0.067, 0.077] [�5, 11] [�0.067, 0.077]
CHd [�0.14, 0.06] [�33, 15] [�0.14, 0.06]
CHud — — —
CeH — [�0.071, 0.024] [�0.071, 0.024]
CuH — [�0.50, 0.59] [�0.50, 0.59]
CdH — [�0.073, 0.078] [�0.072, 0.078]
CLL [�0.007, 0.019] [�0.7, 2.5] [�0.007, 0.019]

1

Satoshi Mishima (KIAS)

“The fits will be updated in our upcoming paper”
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µ⌫

OHD = (H†DµH)⇤(H†DµH)

OH⇤ = (H†H)⇤(H†H)

O(1)

HL = (H†i
 !
D µH)(L�µL)

O(3)

HL = (H†i
 !
D I

µH)(L ⌧ I�µL)

O(1)

HQ = (H†i
 !
D µH)(Q�µQ)

O(3)

HQ = (H†i
 !
D I

µH)(Q ⌧ I�µQ)

OHe = (H†i
 !
D µH)(eR�µeR)

OHu = (H†i
 !
D µH)(uR�µuR)

OHd = (H†i
 !
D µH)(dR�µdR)

OHud = i(fH†DµH)(uR�µdR)

OeH = (H†H)(L̄ eRH)

OuH = (H†H)(Q̄ uR
fH)

OdH = (H†H)(Q̄ dRH)

OLL = (L�µL)(L�µL)

6

Only EW Only Higgs EW + Higgs
⇤ [TeV] ⇤ [TeV] ⇤ [TeV]

Coe�cient Ci = �1 Ci = 1 Ci = �1 Ci = 1 Ci = �1 Ci = 1
CHG — — 11.4 12.3 11.4 12.3
CHW — — 5.1 9.1 5.1 9.1
CHB — — 9.6 17.2 9.6 17.2
CHWB 11.1 18.4 12.5 7.1 12.6 15.9
CHD 6.3 15.4 0.5 0.8 6.3 15.5
CH⇤ — — 0.9 0.7 0.9 0.7

C
(1)

HL 14.8 9.2 — — 14.8 9.2

C
(3)

HL 9.8 14.8 0.9 1.7 9.8 14.9
CHe 8.2 12.8 — — 8.2 12.8

C
(1)

HQ 6.2 5.0 0.2 0.3 6.2 5.0

C
(3)

HQ 9.6 8.7 1.3 0.7 9.7 8.7
CHu 3.9 3.6 0.4 0.3 3.9 3.6
CHd 2.7 4.1 0.2 0.3 2.7 4.1
CHud — — — — — —
CeH — — 3.8 6.4 3.8 6.4
CuH — — 1.4 1.3 1.4 1.3
CdH — — 3.7 3.6 3.7 3.6
CLL 12.0 7.3 1.2 0.6 12.0 7.3

2

 EWPO and Higgs are complementary 
to each other. 

“The fits will be updated in our upcoming paper”
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Fits of multiple operators

39

A. Falkowski and F. Riva,  JHEP 1502 (2015) 039 [arXiv:1411.0669]

 Adding more observables, one may perform a simultaneous 
fit of the multiple operators that are relevant to the 
processes under consideration, removing blind directions.

See, e.g., 

J. Ellis, V. Sanz and T. You,  JHEP 1407 (2014) 036 [arXiv:1404.3667];  
                                  JHEP 1503 (2015) 157 [arXiv:1410.7703]

EWPO

Higgs-boson signal strengths 

Di-boson production at the LHC

WW productions at LEP2

Kinematic distributions in V+H production at Tevatron/LHC
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4. Summary

 We have been developing the SusyFit framework for 
computing observables in given models and exploring 
their parameter space. 

 The constraints from the EW precision and Higgs data 
are complementary to each other. 

 We have studied the model-independent constraints on 
NP with the EW precision and Higgs data. 

 We will perform more physics analyses (incl. flavor, 
MSSM, etc.) with SusyFit ! 



Backup
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Statistical approaches

Bayesian:

Frequentist:

data:  random variables
model parameter:  constant true value

68% confidence interval of a parameter:  

68% credible interval: 

model parameter:  random variable

The interval covers the true value with a probability of 68%.

The parameter is in the interval with a probability of 68%. 

P (~✓ |Data) =
L(Data | ~✓)⇡(~✓)

R
d~✓0 L(Data | ~✓0)⇡(~✓0)

prior p.d.f. for parameters ~✓
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Configuration file

 A configuration file specifies the model, the constraints 
on model parameters and observables used in the fit. 

StandardModel

ModelParameter  mtop      173.2       0.9         0.  
ModelParameter  mHl        125.6       0.3         0.  

Observable  Mw            Mw            M_{W}            80.3290 80.4064   MCMC weight   80.385 0.015 0.  
Observable  GammaW  GammaW   #Gamma_{W} 2.08569 2.09249   MCMC weight   2.085   0.042 0. 

…

…

output ranges data
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�↵(5)
had(M

2
Z) = 0.02750 ± 0.00033

Burkhardt & Pietrzyk (11) 
(see also Davier et al(11); Hagiwara et al(11) ; Jegerlehner(11))

Note: Smaller uncertainty has been obtained if using exclusive 
processes with pQCD: 

but discrepancy has been observed between inclusive and exclusive 
in low-energy data. 

 We adopt a conservative value:

measured with inclusive processes.

�
�
�↵(5)

had(M
2
Z)

�
⇠ ±0.00010

Hadronic corrections to the EM coupling



 [GeV]topm
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       LHC September 2013  0.88)± 0.26 ± (0.23  0.95±173.29 
       Tevatron March 2013 (Run I+II)  0.61)± 0.36 ± (0.51  0.87±173.20 

 prob.=93%2χ 
 / ndf =4.3/102χ World comb. 2014  0.67)± 0.24 ± (0.27  0.76±173.34 

-1 = 3.5 fbint   L
CMS 2011, all jets  1.23)± (0.69             1.41±173.49 

-1 = 4.9 fbint   L
CMS 2011, di-lepton  1.46)± (0.43             1.52±172.50 

-1 = 4.9 fbint   L
CMS 2011, l+jets  0.97)± 0.33 ± (0.27  1.06±173.49 

-1 = 4.7 fbint   L
ATLAS 2011, di-lepton  1.50)± (0.64             1.63±173.09 

-1 = 4.7 fbint   L
ATLAS 2011, l+jets  1.35)± 0.72 ± (0.23  1.55±172.31 

-1 = 5.3 fbint   L
D0 RunII, di-lepton  1.38)± 0.55 ± (2.36  2.79±174.00 

-1 = 3.6 fbint   L
D0 RunII, l+jets  1.16)± 0.47 ± (0.83  1.50±174.94 

-1 = 8.7 fbint   L

+jetsmiss
TCDF RunII, E

 0.86)± 1.05 ± (1.26  1.85±173.93 
-1 = 5.8 fbint   L

CDF RunII, all jets  1.04)± 0.95 ± (1.43  2.01±172.47 
-1 = 5.6 fbint   L

CDF RunII, di-lepton  3.13)± (1.95             3.69±170.28 
-1 = 8.7 fbint   L

CDF RunII, l+jets  0.86)± 0.49 ± (0.52  1.12±172.85 

-1 - 8.7 fb-1 = 3.5 fbint combination - March 2014,  LtopTevatron+LHC m
ATLAS + CDF + CMS + D0 Preliminary

)    syst.   iJES  stat.total    (Pr
ev
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C
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b.

)2 (GeV/ctM
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CDF March’07 2.66±     12.40  2.20)±1.50 ±(

Tevatron combination * 0.64±     174.34  0.52)±0.37 ±(
  syst)± stat  ±(

CDF-II MET+Jets 1.85±     173.93  1.36)±1.26 ±(

CDF-II track 9.43±     166.90  2.82)±9.00 ±(

CDF-II alljets * 1.95±     175.07  1.55)±1.19 ±(

CDF-I alljets 11.51±     186.00  5.70)±10.00 ±(

DØ-II lepton+jets 0.76±     174.98  0.63)±0.41 ±(

CDF-II lepton+jets 1.12±     172.85  0.98)±0.52 ±(

DØ-I lepton+jets 5.31±     180.10  3.60)±3.90 ±(

CDF-I lepton+jets 7.36±     176.10  5.30)±5.10 ±(

DØ-II dilepton 2.80±     174.00  1.49)±2.36 ±(

CDF-II dilepton * 3.26±     170.80  2.69)±1.83 ±(

DØ-I dilepton 12.82±     168.40  3.60)±12.30 ±(

CDF-I dilepton 11.41±     167.40  4.90)±10.30 ±(

Mass of the Top Quark

(* preliminary)July 2014

/dof = 10.8/11 (46%)2χ
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Measurements of the top pole mass
Tevatron combination

1407.2682
Tevatron + LHC combination

1403.4427

CMS lepton+jets CMS-PAS-TOP-14-001

mt = 172.04 ± 0.19 ± 0.75 GeV

CMS combination CMS-PAS-TOP-14-015

mt = 172.38 ± 0.10 ± 0.65 GeV
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Ambiguity in the top pole mass

 The measurements of the pole mass of the top quark at 
Tevatron and LHC suffer from ambiguities:

“All in all I believe that it is justified to assume that MC mass parameter is 
interpreted as mpole within the ambiguity intrinsic in the definition of mpole, 
thus at the level of ~250-500 MeV.”

M. Mangano at TOP2013:

“The uncertainty on the translation from the MC mass definition to a theoretically 
well defined short-distance mass definition at a low scale is currently estimated 
to be of the order of 1 GeV.”  (There is an additional uncertainty originating from 
the conversion of the short-distance mass to pole mass.)

S.O. Moch et al., 1405.4781 (report on the 2014 MITP scientific program):

S.O. Moch, 1408.6080: �mt =
+0.82
�0.62 GeV
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S.O. Moch, 1408.6080

out in the pole mass scheme so that Eq. (2) can be employed to relate mpole
t to the MS mass. For theory

predictions in terms of the MS mass the perturbative expansion in the strong coupling converges significantly
faster. At the same time, the residual scale dependence as a measure of the remaining theoretical uncertainty
is much improved when using the MS mass in contrast to the pole mass mpole

t .
These findings are illustrated in Figs. 2 and 3. The theory predictions for inclusive top-quark pair

production with the MS and the pole mass are compared in Fig. 2. The result in terms of the MS mass
mt(mt) displays a much improved convergence as the higher order corrections are successively added. The
corresponding scale dependence is shown in Fig. 3 and the predictions with the MS mass exhibit a much
better scale stability of the perturbative expansion. It is also interesting to observe, that the point of
minimal sensitivity where �LO ' �NLO ' �NNLO is located at scales µ = O(mt(mt)), i.e., it coincides with
the natural hard scale of the process for the MS mass (Fig. 3, left), whereas it resides at fairly low scales,
µ ' mpole

t /4 ' 45 GeV for the pole mass predictions (Fig. 3, right).

For the distribution in the invariant mass mtt of the top quark pair the same findings can be seen in
Fig. 4. For the MS mass predictions the convergence is improved. Also the overall shape of the distribution
changes in comparison to case of the pole mass, the peak becomes more pronounced, while the position of
the peak remains stable against radiative corrections. This is essential for precision determinations of the
MS mass in specific kinematic regions of the invariant mass distribution from LHC data in the upcoming
high-energy runs.

The results for the running mass imply, that experimental determinations of the mass parameter from
the measured cross section can be performed with very good accuracy and a small residual theoretical
uncertainty. This has been done in [25], where a fully correlated fit of the running mass from data for the
total cross section at Tevatron and the LHC has given the value for the MS mass at NNLO to

mt(mt) = 162.3± 2.3 GeV , (3)

with an error in mt(mt) due the experimental data, the PDFs and the value of ↵s(MZ). An additional
theoretical uncertainty from the variation of the factorization and renormalization scales in the usual range
(µ/mt(mt) 2 [1/2, 2]) is small, �mt(mt) = ±0.7 GeV. Eq. (3) is equivalent to the pole mass value of

mpole
t = 171.2± 2.4± 0.7 GeV , (4)

using the known perturbative conversion Eq. (2) at two loops. This is the value displayed in both plots of
Fig. 1, which show good consistency of the procedure and also with the top-quark mass values obtained from
other determinations within the current uncertainties. The accuracy of a mass determination in this way
is limited to order 1%, though, by the overall sensitivity of the total cross section to the mass parameter,
S ⇠ 5 in Eq. (1).

4 Monte Carlo mass

The currently most precise measurement of the top-quark mass has been reported in [39] as the world
combination of the experiments ATLAS, CDF, CMS and D0,

mt = 173.34 ± 0.76GeV . (5)

This combination is based on determinations of mt as a best fit to the mass parameter implemented in the
respective Monte Carlo program used to generate the theory input. It is referred to as Monte Carlo (MC)
top-quark mass definition and is, therefore, lacking a direct relation to a mass parameter in a well-defined
renormalization scheme.

Nonetheless, the MC mass definition can be translated to a theoretically well-defined short-distance mass
definition at a low scale with an uncertainty currently estimated to be of the order of 1 GeV, see [1,40]. This
translation uses the fact that multi-observable analyses like in [39] e↵ectively assign a high statistical weight
to the invariant mass distribution of the reconstructed boosted top-quarks, because of the large sensitivity
of the system on the mass parameter, especially around the peak region.

4The top-quark invariant mass distribution can be computed to higher orders in perturbative QCD, cf.,
Fig. 3, and its peak position can also be described in an e↵ective theory approach based on a factorization [41,
42] into a hard, a soft non-perturbative and a universal jet function. Each of those functions depends in a
fully coherent and transparent way on the mass at a particular scale. The reconstructed top object largely
corresponds to the jet function which is governed by a short-distance mass mMRS

t at the scale of the top
quark width �t, see, e.g., [1,40]. This line of arguments allows one to systematically implement proper short-
distance mass schemes for the description of the MC mass in Eq. (5), which can then indeed be converted
to the pole mass.

Thus, the top-quark mass parameter mMC
t is identified with a scale-dependent short-distance mass

mMSR
t (R) at low scales, cf. [40],

mMC
t = mMRS

t (3+6
�2 GeV) , (6)

with an uncertainty �mt originating from the range of possible scales, R ' 1 . . . 9 GeV. The value of �mt

can be read o↵ from Tab. 1 as �mt =+0.32
�0.62 GeV. It should be emphasized, though, that this uncertainty

is only an estimate of the conceptual uncertainty that is currently inherent in Eq. (6). Very likely, the true
corrections are not exactly calculable since a complete analytic control of the MC machinery is not feasible
and the exact definition of the MC mass also depends on details of the parton shower, the shower cut and
the hadronization model, see, e.g., [43].

Subsequently, there are two choices to convertmMSR
t in Eq. (6) to the pole massmpole

t . The first possibility
applies the renormalization group to runmMSR

t from the low scales, R ' 1 . . . 9 GeV, up to R = mt in order to
obtain the corresponding value for the MS mass mt(mt). This procedure e↵ectively resums large logarithms.
Afterwards, mt(mt) is then converted to the pole mass at a given order in perturbation theory. Tab. 1
illustrates this procedure for mMSR

t (3GeV) = 173.40 GeV, see [1] for a extensive documentation.

mMSR
t (1) mMSR

t (3) mMSR
t (9) mt(mt) mpole

1lp mpole
2lp mpole

3lp

173.72 173.40 172.78 163.76 171.33 172.95 173.45

Table 1: Columns 1-3: Top-quark MSR masses at di↵erent scales. Column 4: MS mass mt(mt) converted
at O(↵3

s) for ↵s(MZ) = 0.1185 from the MSR mass mMRS
t (3 GeV). Columns 5-7: Pole masses at 1, 2 and 3

loop converted from the MS mass mt(mt). All numbers are given in GeV units.

The second choice converts the short distance mass mMSR
t at the low scales directly to the pole mass as

shown in Tab. 2. This leads to relatively small corrections, however, the convergence of the perturbative
expansion is poor and it is therefore disfavored. In the application of the one-, two- or three-loop conversion
formula, the value of the mass parameter shifts by roughly �mt ⇠ 0.15GeV with every additional order.
This is due to large logarithms which need to be resummed via the renormalization group equation [44].

mMSR
t (3) mpole

1lp mpole
2lp mpole

3lp

173.40 173.72 173.87 173.98

Table 2: Column 1: Top-quark MSR mass at R = 3 GeV. Columns 2-4 show the 1, 2 and 3 loop pole
masses converted from the MSR mass mMRS

t (3 GeV). All numbers are given in GeV units.

In summary, this leads to the following result for the pole mass, which corresponds to the MC mass in
Eq. (5),

mpole
t = 173.39 ± 0.76GeV (exp) + �mth , (7)

where the small increase by 0.05GeV in the central value compared to Eq. (5), is due to the shift of the
three-loop pole mass with respect to mMSR

t (3GeV) in Tab. 1. The theoretical uncertainty can be estimated
to

�mth =+0.32
�0.62 GeV (mMC

t ! mMSR
t (3GeV)) + 0.50GeV (mt(mt) ! mpole

t ) , (8)

where, as indicated, the first part of the uncertainty is due to the scale choices when relating the MC mass
to the short-distance mass and is subject to the qualifications mentioned above. The second part of the
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Individual constraints on the Higgs mass

direct measurement at LHC (ATLAS & CMS):

indirect determination from the EW fit:

 Mw gives the most 
stringent constraint.  

 Tension between 
Al(SLD) and AFBb. 

mh = 99.9 ± 26.6 GeV
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EW chiral Lagrangian

 smaller Mw         smaller Kv

 Kv is tightly constrained for the scale compatible 
with direct searches. 
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 Direct contribution:

 Indirect contribution via input parameters:

Indirect and direct contributions
OHWB = (H†⌧ IH)W I
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NP contributions
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Operator
Kinetic terms SM param’s Direct contribution to interactions

GA W I B W 3B H MZ v Yf WWV Wff̄ 0 Zff̄ hV V hff̄ hV qq̄ 4`

OHG
p p

OHW
p p

OHB
p p

OHWB
p p p

OHD
p p p

OH⇤
p

O(1)
HL

p
O(3)

HL

p p
O(1)

HQ

p p
O(3)

HQ

p p p
OHe

p
OHu

p p
OHd

p p
OHud

p p
OeH

p p
OuH

p p
OdH

p p
OLL

p

Table 14: NP contributions from each dimension-six operators to the kinetic terms of each field, to the Z-boson
mass, to the Higgs VEV, to the Yukawa couplings, and to interactions, where only direct contributions are
considered for the last ones.
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Higgs production cross sections
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2 Gluon-Fusion process2

2.1 Higgs-boson production in gluon–gluon fusion
Gluon fusion through a heavy-quark loop [6] (see Fig. 1) is the main production mechanism of the
Standard Model Higgs boson at hadron colliders. When combined with the decay channels H → γγ ,
H → WW, and H → ZZ, this production mechanism is one of the most important for Higgs-boson
searches and studies over the entire mass range, 100 GeV <∼ MH

<∼ 1 TeV, to be investigated at the
LHC.

Ht,b

g

g

Fig. 1: Feynman diagram contributing to gg → H at lowest order.

The dynamics of the gluon-fusion mechanism is controlled by strong interactions. Detailed studies
of the effect of QCD radiative corrections are thus necessary to obtain accurate theoretical predictions.
In QCD perturbation theory, the leading order (LO) contribution [6] to the gluon-fusion cross section
is proportional to α2

s , where αs is the QCD coupling constant. The main contribution arises from the
top quark, due to its large Yukawa coupling to the Higgs boson. The QCD radiative corrections to this
process at next-to-leading order (NLO) have been known for some time, both in the large-mt limit [7,8]
and maintaining the full top- and bottom-quark mass dependence [9, 10]. They increase the LO cross
section by about 80−100% at the LHC. The exact calculation is very well approximated by the large-mt

limit. When the exact Born cross section with the full dependence on the mass of the top quark is used to
normalize the result, the difference between the exact and the approximated NLO cross sections is only
a few percent. The next-to-next-to-leading order (NNLO) corrections have been computed only in this
limit [11–17], leading to an additional increase of the cross section of about 25%. The NNLO calculation
has been consistently improved by resumming the soft-gluon contributions up to NNLL [18]. The result
leads to an additional increase of the cross section of about 7−9% (6−7%) at

√
s = 7 (14) TeV. The

NNLL result is nicely confirmed by the evaluation of the leading soft contributions at N3LO [19–23].
Recent years have seen further progress in the computation of radiative corrections and in the

assessment of their uncertainties. The accuracy of the large-mt approximation at NNLO has been stud-
ied in Refs. [24–29]. These papers have definitely shown that if the Higgs boson is relatively light
(MH

<∼ 300 GeV), the large-mt approximation works extremely well, to better than 1%. As discussed
below, these results allow us to formulate accurate theoretical predictions where the top and bottom loops
are treated exactly up to NLO, and the higher-order corrections to the top contribution are treated in the
large-mt approximation [30].

Considerable work has also been done in the evaluation of electroweak (EW) corrections. Two-
loop EW effects are now known [31–35]. They increase the cross section by a factor that strongly
depends on the Higgs-boson mass, changing from +5% for MH = 120 GeV to about −2% for MH =
300 GeV [35]. The main uncertainty in the EW analysis comes from the fact that it is not obvious how to
combine them with the large QCD corrections. In the partial factorization scheme of Ref. [35] the EW
correction applies only to the LO result. In the complete factorization scheme, the EW correction instead
multiplies the full QCD-corrected cross section. Since QCD corrections are sizeable, this choice has a
non-negligible effect on the actual impact of EW corrections in the computation. The computation of the
dominant mixed QCD–EW effects due to light quarks [30], performed using an effective-Lagrangian

2M. Grazzini, F. Petriello, J. Qian, F. Stoeckli (eds.); J. Baglio, R. Boughezal and D. de Florian.
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Fig. 4: Topologies of t-, u-, and s-channel contributions for electroweak Higgs-boson production, qq → qqH at
LO, where q denotes any quark or antiquark and V stands forW and Z boson.

α. The preferred choice, which should be most robust with respect to higher-order corrections, is the
so-called GF scheme, where α is derived from Fermi’s constant GF . The impact of EW and QCD
corrections in the favoured Higgs-mass range between 100 and 200 GeV are of order 5% and negative,
and thus as important as the QCD corrections. Photon-induced processes lead to corrections at the
percent level.

Approximate next-to-next-to-leading order (NNLO) QCD corrections to the total inclusive cross
section for VBF have been presented in Ref. [75]. The theoretical predictions are obtained using the
structure-function approach [65]. Upon including the NNLO corrections in QCD for the VBF production
mechanism via the structure-function approach the theoretical uncertainty for this channel, i.e. the scale
dependence, reduces from the 5−10% of the NLOQCD and electroweak combined computations [65,70]
down to 1−2%. The uncertainties due to parton distributions are estimated to be at the same level.

3.2 Higher-order calculations
In order to study the NLO corrections to Higgs-boson production in VBF, we have used two existing par-
tonic Monte Carlo programs: HAWK and VBFNLO, which we now present. Furthermore we also give
results of the NNLO QCD calculation based on VBF@NNLO and combine them with the electroweak
corrections obtained from HAWK.

3.2.1 HAWK – NLO QCD and EW corrections
HAWK [69–71] is a Monte Carlo event generator for pp → H + 2 jets. It includes the complete
NLO QCD and electroweak corrections and all weak-boson fusion and quark–antiquark annihilation
diagrams, i.e. t-channel and u-channel diagrams with VBF-like vector-boson exchange and s-channel
Higgs-strahlung diagrams with hadronic weak-boson decay. Also, all interferences at LO and NLO
are included. If it is supported by the PDF set, contributions from incoming photons, which are at
the level of 1−2%, can be taken into account. Leading heavy-Higgs-boson effects at two-loop order
proportional to G2

FM
4
H are included according to Refs. [76,77]. While these contributions are negligible

for small Higgs-boson masses, they become important for Higgs-boson masses above 400 GeV. For
MH = 700 GeV they yield +4%, i.e. about half of the total EW corrections. This signals a breakdown
of the perturbative expansion, and these contributions can be viewed as an estimate of the theoretical
uncertainty. Contributions of b-quark PDFs and final-state b quarks can be taken into account at LO.
While the effect of only initial b quarks is negligible, final-state b quarks can increase the cross section
by up to 4%. While s-channel diagrams can contribute up to 25% for small Higgs-boson masses in the
total cross section without cuts, their contribution is below 1% once VBF cuts are applied. Since the
s-channel diagrams are actually a contribution toWH and ZH production, they are switched off in the
following.
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Fig. 7: (a), (b) LO diagrams for the partonic processes pp → VH (V = W,Z); (c) diagram contributing to the
gg → HZ channel.

√
s = 7 TeV ATLAS expects to exclude a Higgs boson at 95% CL with a cross section equivalent to

about 6 times the SM one [101], while with 5 fb−1 of data and
√
s = 8 TeV CMS expects to exclude

a Higgs boson at 95% CL with a cross section equivalent to about 2 times the SM one [102]. These
results are very preliminary and partially rely on analyses which have not been re-optimized for the
lower center-of-mass energy.

One of the main challenges of these searches is to control the backgrounds down to a precision of
about 10% or better in the very specific kinematic region where the signal is expected. Precise differential
predictions for these backgrounds as provided by theoretical perturbative calculations and parton-shower
Monte Carlo generators are therefore crucial. Further studies (e.g. in Ref. [103]) suggest that with data
corresponding to an integrated luminosity of the order of 30 fb−1 the tt̄ background might be extracted
from data in a signal-free control region, while this seems to be significantly harder for theWbb̄ or Zbb̄
irreducible backgrounds, even in the presence of such a large amount of data.

For all search channels previously mentioned, a precise prediction of the signal cross section and
of the kinematic properties of the produced final-state particles is of utmost importance, together with
a possibly accurate estimation of the connected systematic uncertainties. The scope of this section is to
present the state-of-the-art inclusive cross sections for theWH and ZH Higgs-boson production modes
at different LHC center-of-mass energies and for different possible values of the Higgs-boson mass and
their connected uncertainties.

4.2 Theoretical framework
The inclusive partonic cross section for associated production of a Higgs boson (H) and a weak gauge
boson (V ) can be written as

σ̂(ŝ) =

∫ ŝ

0
dk2 σ(V ∗(k))

dΓ

dk2
(V ∗(k) → HV ) +∆σ , (2)

where
√
ŝ is the partonic center-of-mass energy. The first term on the r.h.s. arises from terms where a

virtual gauge boson V ∗ with momentum k is produced in a Drell–Yan-like process, which then radiates
a Higgs boson. The factor σ(V ∗) is the total cross section for producing the intermediate vector boson
and is fully analogous to the Drell–Yan expression. The second term on the r.h.s., ∆σ, comprises all
remaining contributions. The hadronic cross section is obtained from the partonic expression of Eq. (2)
by convoluting it with the parton densities in the usual way.

The LO prediction for pp → V H (V = W,Z) is based on the Feynman diagrams shown in
Fig. 7 (a),(b) and leads to a LO cross section of O(G2

F ). Through NLO, the QCD corrections are fully
given by the NLO QCD corrections to the Drell–Yan cross section σ̂(V ∗) [104–106]. For V = W, this
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5 ttH process8

5.1 Higgs-boson production in association with tt pairs
Higgs radiation off top quarks qq/gg → Htt (see Fig. 12) plays a role for light Higgs masses below
∼ 150 GeV at the LHC. The measurement of the ttH production rate can provide relevant information
on the top–Higgs Yukawa coupling. The leading-order (LO) cross section was computed a long time
ago [113–117]. These LO results are plagued by large theoretical uncertainties due to the strong de-
pendence on the renormalization scale of the strong coupling constant and on the factorization scales of
the parton density functions inside the proton, respectively. For the LO cross section there are several
public codes available, as e.g. HQQ [64, 118], MADGRAPH/MADEVENT [119, 120], MCFM [112], or
PYTHIA [121]. The dominant background processes for this signal process are ttbb, ttjj, ttγγ , ttZ,
and ttW+W− production depending on the final-state Higgs-boson decay.

q

q

H

t

t

H

g

g

t

t

Fig. 12: Examples of LO Feynman diagrams for the partonic processes qq, gg → ttH.

The full next-to-leading-order (NLO) QCD corrections to ttH production have been calculated
[122–125] resulting in a moderate increase of the total cross section at the LHC by at most ∼ 20%,
depending on the value ofMH and on the PDF set used. Indeed, when using CTEQ6.6 the NLO correc-
tions are always positive and the K-factor varies between 1.14 and 1.22 for MH = 90, . . . , 300 GeV,
while when using MSTW2008 the impact of NLO corrections is much less uniform: NLO corrections
can either increase or decrease the LO cross section by a few percents and result in K-factors between
1.05 and 0.98 forMH = 90, . . . , 300 GeV.

The residual scale dependence has decreased from O(50%) to a level of O(10%) at NLO, if
the renormalization and factorization scales are varied by a factor 2 up- and downwards around the
central scale choice, thus signalling a significant improvement of the theoretical prediction at NLO.
The full NLO results confirm former estimates based on an effective-Higgs approximation [126] which
approximates Higgs radiation as a fragmentation process in the high-energy limit. The NLO effects on
the relevant parts of final-state particle distribution shapes are of moderate size, i.e. O(10%), so that
former experimental analyses are not expected to change much due to these results. There is no public
NLO code for the signal process available yet.

5.2 Background processes
Recently the NLO QCD corrections to the ttbb production background have been calculated [127–131].
By choosing µ2

R = µ2
F = mt

√
pTbpTb as the central renormalization and factorization scales the NLO

corrections increase the background cross section within the signal region by about 20–30%. The scale
dependence is significantly reduced to a level significantly below 30%. The new predictions for the NLO
QCD cross sections with the new scale choice µ2

R = µ2
F = mt

√
pTbpTb are larger than the old LO

predictions with the old scale choice µR = µF = mt +mbb/2 by more than 100% within the typical

8C. Collins-Tooth, C. Neu, L. Reina, M. Spira (eds.); S. Dawson, S. Dean, S. Dittmaier, M. Krämer, C.T. Potter and
D. Wackeroth.
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Fig. 7: (a), (b) LO diagrams for the partonic processes pp → VH (V = W,Z); (c) diagram contributing to the
gg → HZ channel.

√
s = 7 TeV ATLAS expects to exclude a Higgs boson at 95% CL with a cross section equivalent to

about 6 times the SM one [101], while with 5 fb−1 of data and
√
s = 8 TeV CMS expects to exclude

a Higgs boson at 95% CL with a cross section equivalent to about 2 times the SM one [102]. These
results are very preliminary and partially rely on analyses which have not been re-optimized for the
lower center-of-mass energy.

One of the main challenges of these searches is to control the backgrounds down to a precision of
about 10% or better in the very specific kinematic region where the signal is expected. Precise differential
predictions for these backgrounds as provided by theoretical perturbative calculations and parton-shower
Monte Carlo generators are therefore crucial. Further studies (e.g. in Ref. [103]) suggest that with data
corresponding to an integrated luminosity of the order of 30 fb−1 the tt̄ background might be extracted
from data in a signal-free control region, while this seems to be significantly harder for theWbb̄ or Zbb̄
irreducible backgrounds, even in the presence of such a large amount of data.
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Vector-boson fusion

W/Z associated production

Top associated production

 NP contributions to the cross 
sections have been calculated at 
tree level with MadGraph.

 QCD corrections have then been taken into account by 
multiplying the corresponding K factors in the SM. 
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Higgs branching ratios
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 We use the formulae of NP contributions to 
the branching ratios derived by Contino et al. 
in a different operator basis (SILH basis), 
applying basis transformation. 

Contino et al. (14)

 NLO (NNNLO for H to gg) QCD corrections 
have been included. 


